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Cohomological Hasse principle and
resolution of quotient singularities

Moritz Kerz and Shuji Saito

ABSTRACT. In this paper we study weight homology of singular schemes.
Weight homology is an invariant of a singular scheme defined in terms of
hypercoverings of resolution of singularities. Our main result is a McKay
principle for weight homology of quotient singularities, i.e., we describe
weight homology of a quotient scheme in terms of weight homology of
an equivariant scheme. Our method is to reduce the geometric McKay
principle for weight homology to Kato’s cohomological Hasse principle
for arithmetic schemes. The McKay principle for weight homology im-
plies the McKay principle for the homotopy type of the dual complex of
the exceptional divisors of a resolution of a quotient singularity. As a
consequence we show that the dual complex is contractible for isolated
quotient singularities.
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Introduction

Quite a few examples have been observed which show that an arithmetic
method can play a significant role for a geometric question. In this paper
we present such a new example. The geometric question concerns the dual
(or configuration) complex of the exceptional divisors of a resolution of a
quotient singularity X/G, where X is a quasi-projective smooth scheme
over a perfect field k£ endowed with an action of a finite group G. Let
Z be the singular locus of X/G. Assume furthermore that there exists a
resolution of singularities g : Y 5 X /G such that g is proper birational and
an isomorphism outside Z and E = g~ 1(Z),eq is a simple normal crossing
divisor on the smooth scheme Y. The dual complex ['(E) is a CW-complex
(which is a A-complex in the sense of [Hat, Section 2.1]) whose a-simplices
correspond to the connected components of

Elal — H Ei,N---NE;,
1<ig<i1 < <o <N

where F1,..., En are the irreducible components of E.

A model case is a Klein quotient singularity C?/G, where G C SLo(C)
acts linearly on C?. The origin 0 € C?/G is the unique singular point of
C2/G. Let g : Y — C2/G be the minimal resolution. The irreducible
components of the exceptional locus E = ¢g~!(0) are rational curves that
form a configuration expressed by the Dynkin diagrams. For example, if we
take a binary dihedral

G=(o,7|o"=1, 2 =—1, Tor = =0 1),

the irreducible components of E form a configuration looking as

N NN

consisting of (n + 2) rational curves. The configuration complex I'(F) is

with (n 4 2) vertices and (n 4 1) edges.
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For general G C SLy(C) McKay observed a mysterious coincidence of
I'(E) and the so-called McKay graph which is computed in terms of repre-
sentations of G. The higher dimensional generalization of this fact, called
McKay correspondence, is now a fertile land of algebraic geometry. For more
details on this, we refer the readers to an excellent exposition by M. Reid
[Re]. Here we just quote the following principle:

McKay Principle. Let G be a finite group and X be a quasi-projective
smooth G-scheme over a field k (i.e., a quasi-projective smooth scheme over
k endowed with an action of G), and g : Y — X/G be a resolution of
singularities of X/G. Then the answer to any well posed question about the
geometry offf 18 the G-equivariant geometry of X.

In this paper we investigate McKay principle for the homotopy type of
I'(E), which is known to be an invariant of X/G independent of a choice
of a resolution ¥ — X /G by a theorem of Stepanov and its generalizations
([St], [ABW1], [Pa], [Th]).

Let us fix the setup for our main result. Let X and G be as before and
m: X — X/G be the projection. Fix a closed reduced subscheme S C X/G
which is projective over k and contains the singular locus (X/G)sing of X/G.
Let T = 7~ 1(S);eq be the reduced part of 771(S). Assume that we are given
the following datum:

e a proper birational morphism g : Y > X /G such that Y is smooth,
Es = g71(9)1eq is a simple normal crossing divisor on Y and g is an
isomorphism over X/G — S;

e a proper birational G-equivariant morphism f : X - X in Ca/k
such that X is a smooth G—schemg, Er = 1T )req is a G-strict

simple normal crossing divisor on X (cf. Definition 1.5) and f is an
isomorphism over X — T'.

Wﬁl(S)red =7 — X ! )? Er = fﬁl(T)red
S —— X/G 21— Y Es =g Y(8)1ed

Note that we do not assume the existence of a morphism Fr — Eg. By
definition G acts on I'(E7) and we can form a CW-complex I'(ET)/G.

Theorem 0.1 (Theorem 11.1). We assume that ch(k) = 0 or that k is
perfect and canonical resolution of singularities in the sense of [BM] holds
over k. In the homotopy category of CW -complexes, there exists a canonical
map

¢ :T(Er)/G — T'(Es)

which induces isomorphisms on the homology and fundamental groups:

Hy(T(Er)/G) = Hy(T(Es)) forVa € Z,
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m(D(Er)/G) — m (T(Es)).

By using basic theorems in algebraic topology (Whitehead and Hurewicz),
Theorem 0.1 implies the following:

Corollary 0.2. Let the assumption be as in Theorem 0.1.

(1) IfT(E7)/G is simply connected, ¢ is a homotopy equivalence.

(2) If T'(ET)/G is contractible, I'(Eg) is contractible.

(3) If T is smooth (e.g., dim(T") = 0 which means that (X/G)sing 15
isolated), T'(Eyg) is contractible.

We will deduce the following variant of Corollary 0.2(3).

Corollary 0.3 (Corollary 11.4). Let A be a complete reqular local ring con-
taining Q and let G be a finite group acting on A. Set X = Spec(A) and as-
sume that X/G has an isolated singularity s € X/G. Let g:Y — X/G be a
proper morphism such that g is an isomorphism outside s and Es = g7*(8)red
s a simple normal crossing divisor in the regular scheme Y. Then the topo-
logical space T'(Ey) is contractible.

Here we recall some known results on the contractibility of the dual com-
plex of the exceptional divisor of a resolution of singularities. Let (Y,.S) be
an isolated singularity over algebraically closed field of characteristic 0. We
recall the following implications for (Y, S):

finite quotient = KLT = rational,

where K LT stands for Kawamata log terminal. Let g : Y = Y be proper
birational such that Y smooth, Eg = ¢~!(S)eq is a simple normal crossing
divisor and g is an isomorphism over Y —S. The following facts are known:

e If (Y, 5) is rational, H.(T'(Eg)) is torsion ([ABW2]). The proof uses
a weight argument in Hodge theory.

e There exists a rational singularity (Y,.S) such that T'(Fg) has the
homotopy type of P%, in particular 7 (I'(Es)) = H1(T'(Es)) = Z/27Z
([Pa)).

o If (V,S) is KLT, m (I'(Es)) = 1. This is a consequence of a theorem
of Kolldr and Takayama ([Ko], [Ta]).

Recently, the intriguing question whether I'(Fg) is contractible if (Y, 5)
is KLT has been answered positively in [FKX].

Now we explain the main idea of the proof of Theorem 0.1. The proof of
the assertion on the fundamental group relies on a geometric interpretation
of the fundamental group of the dual complex of a simple normal crossing
divisor. More generally, for any locally noetherian scheme F, we associate
a CW-complex I'(E) to E in the same way as the case of simple normal
crossing divisors and show a natural isomorphism

m(I'(E)) = m1°(E),
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where the right-hand side denotes the classifying group of cs-coverings E/ —
E, which is by definition a morphism of schemes such that any point x € E
has a Zariski open neighborhood U C E such that E' xg U ~ [[U with a
possibly infinite coproduct (see §10).

In order to show the assertion of Theorem 0.1 on the homology groups, we
need introduce the equivariant weight homology. Let Ceq/ be the category of
pairs (X, G) of a finite group G and a G-scheme X which is quasi-projective
over k (see §1 for the definition of morphisms in Ceq/;). For simplicity we
ignore the p-torsion if ch(k) = p > 0 and work over A := Z[%] (we can
extend the following results to the case A = Z assuming appropriate form
of resolution of singularities). Let Mods be the category of A-modules. An
equivariant homology theory H = {H,}s>0 with values in A-modules on
Ceq/k 18 @ sequence of functors:

Ha(—) : Ceq/k — Modp (CL € Zzo)

which are covariant for proper morphisms and contravariant for strict open
immersions (a strict morphism in Ce /k means a G-equivariant morphism for
some fixed ) such that if i : Y < X is a strict closed immersion in Ceq /1,
with open complement j : V < X there is a long exact sequence called
localization sequence (see Definition 1.1)

D H (YY) S Ho(X) LS Ho (V) L Hy (YY) — -
A main input is the following result (see Theorem 1.4).

Theorem 0.4. For a A-module M, there exists a homology theory on Ceqp
with values in A-modules:

(X,G)— HY(X,G; M) (a € Z>)

called equivariant weight homology with coefficient M satisfying the following
condition: Let E be a projective G-scheme over k which is a G-strict simple
normal crossing divisor on a smooth G-scheme over k (see Definition 1.5
for G-strict). Then we have

HY (B, G; M) ~ H.(T(E)/G)
which is computed as the homology of the complex:
ooy proB)/G O g mo(BleTya 0 9y rmo(BIMY)/G
In particular, if X is a projective smooth G-scheme over k, we have

MX/G for a =0,

HY(X,G5 M) =
0 for a # 0,

where X(©) is the set of the generic points of X.
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In case G is the trivial group e, we write HYV (X; M) for HV (X,G; M).

The construction of HY (X, G; M) hinges on a descent argument due to
Gillet—Soulé ([GS1], [GS2]) and Jannsen [J], going back to Deligne [SGA4|
Exposé VP, If X is proper over k, we take a A-admissible hyperenvelope
(Xe, G) (see Definition 2.4) which is a certain simplicial object in Ceq/p, such
that X, are smooth projective over k for all n, and then define H)V (X, G; M)
as homology groups of the complex

ooy MT(Xn)/G 9 prmo(Xn-1)/G 9y 0 9 prmo(Xo)/G

The existence of hyperenvelopes relies on equivariant resolution of singular-
ities. In case ch(k) = 0 it follows from canonical resolution of singularities
[BM]. In case ch(k) > 0 the construction depends on Gabber’s refinement
of de Jong’s alteration theorem [II].

Theorem 0.1 is deduced from the following theorem (see Theorem 1.7 and
Corollary 1.9 in §1).

Theorem 0.5 (McKay principle for weight homology). For (X, G) € Ceqyi
let m: X — X/G be the projection viewed as a morphism (X,G) — (X/G,e)
in Coq/k, where e is the trivial group. Then the induced map

T HV(X,G; M) — HY (X/G; M)

is an isomorphism for all a € Z. In particular, if X is projective smooth
over k, we have HV (X/G; M) = 0 for a # 0.

Note that the last statement is nontrivial since X/G may be singular even
though X is smooth.

For k = k and M uniquely divisible Theorem 0.5 follows from the yoga
of weights. To see this let us for simplicity assume k£ = C. In terms of the
weight filtration on singular cohomology with compact support, see [D2],
one has

HY (X,G; M) = Homg(Wo H®(Xan, Q)%, M),

where the upper index G stands for G-invariants. It is not difficult to check
that

HE((X/Gan, Q) = HE(Xan, Q)
is an isomorphism, from which Theorem 0.5 follows in this special case.

Our basic strategy to show Theorem 0.5 in general is to introduce another
(arithmetic) homology theory

(X, G) — KHG(X, G; M) (a S Zzo)

called equivariant Kato homology with coefficient M as a replacement for
the weight zero part of singular cohomology with compact support above.
Here we assume that M is a torsion A-module. As in case of the weight
homology, we simply write K H,(X,G; M) = KH,(X; M) in case G = e.
For this homology theory McKay principle is rather easily shown:
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Proposition 0.6 (Proposition 8.3). For (X,G) € Ceqi, 7 @ X — X/G
induces an isomorphism

Tt KHo(X,G; M) —s KH,(X/G; M) for all a € 7.
Theorem 0.5 follows from Proposition 0.6 and the following.

Theorem 0.7 (Theorem 9.1). There exists a map of homology theories on
Coq/k-

KH.(X,G; M) - HY(X,G; M)
which is an isomorphism if k is a purely inseparable extension of a finitely
generated field and M = A := Q/A.

The proof of Theorem 0.7 relies on Theorem 0.9 below on the cohomologi-
cal Hasse principle. The cohomological Hasse principle originally formulated
as conjectures by K.Kato [K1], concerns a certain complex of Bloch—Ogus
type on an arithmetic scheme X (which means a scheme of finite type over
Z):

(0.1)
RN @ Ha+1(g;,Z/nZ(a))i> EB Ha(l’,Z/nZ(a—l))i...
z€X (q) 2€X (1)
D P Hw,2/nz0) S @ H (x,2/n2)
z€X() 2€X (o)

Here X4y denotes the set of points # € X such that dim {z} = a with the

closure {z} of z in X, and the term in degree a is the direct sum of the
Galois cohomology H**!(x,Z/nZ(a)) of the residue fields () for x € X,
(for the coefficients Z/nZ(a), see [KeS, Lemma 1.5]. If (n,ch(k(z))) = 1,
Z/nZ(a) is the Tate twist of n-roots of unity). The homology groups of the
above complex is denoted by K H,(X;Z/nZ) and called the Kato homology
of X (in case X has a component flat over Z, one need modify the definition
in order to take into account contributions of R-valued points of X but we
ignore it). Kato [K1] conjectured

Conjecture 0.8. Let X be a proper smooth scheme over a finite field, or a
reqular scheme proper flat over Z. Then

KH,(X;Z/nZ) =0 fora#0.

In case dim(X) = 1 the Kato conjecture is equivalent to the Hasse prin-
ciple for the Brauer group of a global field (i.e., a number field or a function
field of a curve over a finite field), a fundamental fact in number theory.

A generalization of the Kato homology to the (nonequivariant) case over a
finitely generated field was introduced in [JS]. The equivariant Kato homol-
ogy KH,(X,G; M) is its equivariant version (it agrees with K H,(X;Z/nZ)
in case G = e and M = Z/nZ). As for nonequivariant case, the following
result has been shown.
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Theorem 0.9 ([KeS]). Assume that k is a purely inseparable extension of
a finitely generated field. For a proper smooth scheme X over k and for a
prime to £ # ch(k), we have

KHo(X:Qq/Z¢) = lim KH,(X;Z/€"Z) =0 for a #0.

n

If k is finite, the same holds by replacing Qp/Zy by Z/nZ with n prime to
ch(k).

Key ingredients of the proof of Theorem 0.9 are Deligne’s theorem [D1]
on the Weil conjecture and Gabber’s refinement of de Jong’s alteration.

Theorem 0.7 is shown by using Theorem 0.9. As a corollary of Theo-
rem 0.7 and Proposition 0.6, we get the following extension of Theorem 0.9
to a singular case.

Corollary 0.10 (Corollary 9.3). Let k be a purely inseparable extension of
a finitely generated field. Let X be a proper smooth scheme with an action
of a finite group G over k. For a prime to £ # ch(k), we have

KHo(X/G;Qu/Z¢) =0 for a#0.

If k is finite, the same holds by replacing Qu/Zy by Z/nZ with n prime to
ch(k).

The paper is organized as follows. In §1 we explain the properties of
the equivariant weight homology theory and state McKay principle for the
equivariant weight homology and its corollaries. The construction of the
equivariant weight homology theory occupies four section §2 through §5. The
sections §6 and §7 are preliminaries for the construction of the equivariant
Kato homology and the proof of its basic properties given in §8. In §9
a comparison theorem of the equivariant Kato homology and the weight
homology is proved. McKay principle for the equivariant weight homology
stated in §1 is deduced from the comparison theorem. In §10 we relate
the fundamental group of the dual complex to the classifying group of cs-
coverings. Using this and the McKay principle stated in §1, we prove the
main theorem 0.1 in §11.

Recently, A. Thuillier observed that one can deduce the main results of our
paper using the theory of Berkovich spaces as developed in his article [Th].
This Berkovich approach has the advantage that it does not use resolution
of singularities.

Acknowledgements. A part of this work was done while the second au-
thor’s stay at University of Regensburg. He thanks Uwe Jannsen and the
first author cordially for hospitality and financial support. We thank Sam
Payne for explaining us his work on configuration complexes and Yoshihiko
Mitsumatsu for helpful discussions on algebraic topology.
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1. Equivariant weight homology

By k we denote a field and let A be either Z or Z[1/p|, where p is the
exponential characteristic of k. Let Ceq 1 be the category of pairs (X, G) of
a finite group G and a G-scheme X which is quasi-projective over k (i.e.,
X € Cjj, equipped with a left action of G over k). For objects (X,G) and
(Y, H) of Coq/k, the morphisms (X, G) — (Y, H) are pairs (¢, f) of a group
homomorphism ¢ : G — H and a map of G-schemes f : X — Y, where we
endow Y with the induced G-action. Note that the category Ceq/s, has fibre
products. We will often write just X for an object (X,G) € Ceqy when it
is clear from the context that X is endowed with a group-action.

We say (¢, f) is strict if G = H and ¢ is the identity. For fixed G, let
Ca/i C Coqyi be the subcategory of G-schemes and strict morphisms. A
morphism in Cg/y, is simply denoted by f : X — Y. Notice that in case
G = e the trivial group, Cg/,, is identified with Cj;, i.e., the category of
quasi-projective schemes over k.

A strict open immersion (resp. strict closed immersion, resp. strict proper
morphism) in Ceq /k Ineans an open immersion (resp. closed immersion, resp.
proper morphism) in Cqg sk for some G. An equivariant simplicial scheme is
a simplicial object in Cg . for some G.

Definition 1.1. Let Ceqy/x« be the category with the same objects as Coq/p
and with morphisms in Ceq/;, Whose underlying morphisms of schemes are
proper. Let A be a commutative ring. An equivariant homology theory
H = {Hy}q>0 with values in A-modules on C.q;, is a sequence of covariant
functors:

Hy(—) @ Coq/i — Mody
satisfying the following conditions:

(i) For each strict open immersion j : V < X in Ceqy, there is a map
J*+ Hy(X) — Hy(V), associated to j in a functorial way.

(ii) Ifi: Y < X is a strict closed immersion in Ceq 4, With open comple-
ment j : V < X, there is a long exact sequence (called localization
sequence)

D H (YY) S Ho(X) LS Ho (V) L Hy (YY) — -

(The maps O are called the connecting morphisms.)

(iii) The sequence in (ii) is functorial with respect to proper morphisms
or strict open immersions in Ceq/, in the following sense. Consider
a commutative diagram in Ceq/p,

U,@) — (x',G) L (2,

| I J1o

U,G) —1— (X,G) «—— (2,Q),
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such that the squares of the underlying schemes are cartesian, and
i (resp. ') is a strict closed immersion and j (resp. j') is its open
complement.

If G = G’ and f is a strict open immersion, the following diagram
is commutative.

Ha(ZaG)%HCL(Xa CTY)4>I{Il(U'76¥)4> a+1(Z7G)

e
Ho(Z',G) = Ho(X',G) =~ H,(U',G) = Ho1(Z',G)

If f is proper, the following diagram is commutative.

Hoy(Z',G') = Ho(X',G') = Ho(U',G') = Hoi1(Z',G)

(fz)*i f*l (fU)*J/ (fz)*i

Ha(Z, G) - Ha(X» G) - Ha(Uv G) - a+1(Za G)

A morphism between homology theories H and H' is a morphism ¢ : H —
H' of functors on Cy, /k+» Which is compatible with the long exact sequences
from (ii).

Definition 1.2. We call (X,G) € Coq ) primitive if G acts transitively on
the set of irreducible components of X. Let Seq/x C Ceq/i (vesp. Sy C
Cq /i) be the full subcategory of objects whose underlying schemes are smooth

projective over k and S:;i/r]? C Seq/k (resp. Sgr/i;:l C Sgyk) be the full subcat-

egories of primitive objects.
Let p be the exponential characteristic of k. Let k be the perfection of k.
We consider the following condition on resolution of singularities:
~ with

(RS),, For (X,G) € Ceq@' with X reduced, there are (X', G) € Cou/i
X’ smooth over k and a strict, projective, birational morphism f :
X’ — X such that f is an isomorphism over the regular locus X;eg

of X and that the reduced part of f~1(X — X,¢g) is a simple normal
crossing divisor on X’.
Remark 1.3.

(1) The condition (RS),, includes as a special case G = e (nonequiv-
ariant) resolution of singularities proved by Hironaka [H] assuming
ch(k) = 0. Under the same assumption (RS),, is a consequence of
canonical resolution of singularities shown in [BM].

(2) In case ch(k) > 0, (RS),, would be false in general if we did not
work over the perfection k of k.

Theorem 1.4 (See Construction 5.2). Assume the following conditions:
1

(%) A=z

} ;. or A=7 and (RS),, holds.
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For a A-module M, there exists a homology theory on Ceq/y, with values in
A-modules:
(X,G) — HY(X,G; M)
called equivariant weight homology. It satisfies:
(i) There are canonical isomorphisms for (X, G) € Seq/i

MX0/G for a =0,

HY(X,G; M) =
0 for a # 0,

compatible with pushforward in Sy, where X©) s the set of the
generic points of X.

(i) M — HWY(—; M) is a covariant functor from A-modules to the cat-
egory of equivariant homology theories.

(iii) For a short exact sequence of A-modules

0— M — My — M3 —0
there is a natural long exact sequence
W . Wi . W . W .
o> HY (= My) — H, (—; My) — H,” (—; M3) - H,” {(—; My) —---.
(iv) For (X, Q) € Coqx there is a natural convergent spectral sequence
E, = Tory (M, H)Y (X,G;A)) = H,",(X,G; M).

(v) HV(X,G;\) is a finitely generated A-module for all a > 0.
(vi) For extensions of fields k C k' there are natural pushforward maps
Too e+ Hy (Xp, G M) — HY (X, G5 M),
where the left-hand side weight homology is relative to the base field
k'. They satisfy:
(a) If k' is purely inseparable over k, Tk /k 1S an isomorphism.
(b) For fized (X,G) € Ceqx and a > 0, and for a directed system
of fields {kq}acr with ko C ko for o = o and liga ko = K the
1nverse system

{H," (Xk,, G M)}a
becomes stationary for big o and equal to H)V (X, G; M).

If G = e is trivial, we write HV (X; M) for HV (X, G; M).

In §4 and §5 we give a descent construction of the equivariant weight
homology. In the nonequivariant case this is due to Gillet-Soulé ([GS1],
[GS2]) and Jannsen [J], relying on ideas of Deligne [SGA4] Exposé VP, If
ch(k) > 0 our construction depends on Gabber’s refinement of de Jong’s
alteration theorem [Il], see Theorem 2.2.

Definition 1.5. A G-stable simple normal crossing divisor £ on a smooth
scheme over k with a G-action is G-strict if for any irreducible component
E; of E and for any g € G, g(E;) = E; or E;Ng(E;) = .
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Example 1.6. Let X € Cg/ be a G-strict simple normal crossing divisor
(Definition 1.5). Then HY (X, G; M) is the homology of the complex:

ooy proXID/G O g pmo(Xlet/ G O 0 g rmo(XI) /G
Here X1,..., Xy are the G-primitive components of X and

Xl = H Xigyia (Xig,ia = Xig N N X5,)
1<ip<-+<iq <N
and 7my(—) denotes the set of connected components, and the differentials
0 are obvious alternating ones. Note that assuming equivariant resolution
of singularities one can essentially calculate H" by these recipes up to
extensions of groups.

One of the main results of this paper is the following. Our proof in
Section 9 uses arithmetic results due to Jannsen and the authors on Kato’s
cohomological Hasse principle ([J], [JS] and [KeS]). Recall that p is the
exponential characteristic of k.

Theorem 1.7 (McKay principle for weight homology). Assume the con-
dition (%) of Theorem 1.4. For (X,G) € Coqyi; let 7 : X — X/G be the
projection viewed as a morphism (X,G) — (X/G,e) in Coq/i- Then the
induced map

T HY(X,G; M) — HY (X/G; M)

s an isomorphism for all a € Z.

Corollary 1.8. Let the assumption be as in 1.7. Assume (X,G) € Sg;i/rl? .
Then
M a=0,

HZV(X/G;M>:{O "

Corollary 1.8 is a direct consequence of Theorem 1.7 and Theorem 1.4(i).

Corollary 1.9. Let the assumption be as in Theorem 1.7. Let (X, G) € Ceq/k
and assume X is smooth over k. Let S C X/G be a reduced closed subscheme
which contains the singular locus of X/G. Let f :' Y — X/G be a proper
birational morphism such that'Y is smooth over k and f is an isomorphism
outside S. Assume:
(i) S is proper over k (e.g., S is isolated).
(ii) There exist a strict open immersion j : X — X in Cayr and an open
immersion Y — Y with X and Y projective and smooth over k, and
a commutative diagram
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where f is proper birational.
Then the map
H,Y (f71(8); M) = H,Y (S5 M)
is an isomorphism for all a € 7Z. In particular, if S is smooth over k,
HY (f71(8); M) =0 for a # 0.

Remark 1.10. The assumption (ii) always holds if ch(k) = 0 thanks to [H]
and [BM]. Assuming that k is perfect, the assumption (ii) is a consequence
of (RS),,-

Proof of Corollary 1.9, assuming Theorem 1.7. We may assume that
(X, Q) is primitive and Y is connected. Put S = SU(X/G—-X/G) C X/G.
By the localization sequence for weight homology we have a commutative
diagram with exact rows

HW

a1 (V) ——= Hl (Y = f71(9)) —= H' (f71(S)) ——=H," (V)

i |- | |

HY L (X/G) — HY, (X /G = 8) H,Y(8) —— HY (X/G).

In the diagram we suppressed the coefficients M for simplicity of notation.

The second vertical isomorphism holds since Y — f~1(S) & X /G — S. By
Corollary 1.8 we get

— ~ — ~ | M =0

mY (VM) S o (X/6.an 5 ¢ 0

0 a#0.

Thus, from the above diagram we deduce an isomorphism

=Y (f71(8); M) 5 HyY (S; M)
By the assumption (i), S is the disjoint sum of S and (X /G — X/G). Hence
the above isomorphism induces the desired isomorphism of Corollary 1.9. [

From the proof of Theorem 1.7 we also deduce the boundedness of H"
in Section 9.

Proposition 1.11. For X € Cq, and for a A-module M we have under
condition (%) of Theorem 1.4

HY(X,G;M) =0
if a > dim(X) + 1.

Proposition 1.11 would follow immediately from Theorem 1.4 under the
assumption of a strong form of equivariant resolution of singularities, which
we do not have in positive characteristic at the moment. See [GS1, Sec.
2.5] for an analogous argument. Our proof of Proposition 1.11 relies on
equivariant Kato homology and is of arithmetic nature (see its proof in the
last part of §9).
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2. Admissible envelopes

Let the notation be as in Section 1. We define A-admissible envelopes of equi-
variant schemes generalizing an idea of Gillet [Gi]. Then we state an equi-
variant alteration theorem due to Gabber and sketch a proof. This allows
us to construct smooth hyperenvelopes of equivariant simplicial schemes.
Recall that p denotes the exponential characteristic of the base field k£ and
that A is either Z or Z[%].

Definition 2.1 ([GS1, 1.4.1]). A morphism f : (X,G) — (Y,G) in Cg/y, is
called a A-admissible envelope if the underlying morphism X — Y is proper
and it satisfies the following condition.

If A =Z, for a primitive G-equivariant scheme (Spec(L), G) where L is a
finite product of fields, the induced map X (L) — Y (L) on the the sets of
G-equivariant points of X and Y with values in (Spec(L), G) is surjective.

If A # Z, for each prime number ¢ # p and for each G-equivariant point
P € Y(L) with values in (Spec(L), G), there is a finite G-equivariant exten-
sion (Spec(L’), G) — (Spec(L), G) of degree prime to ¢ and a G-equivariant
point P’ € X(L') mapping to P € Y(L) — Y (L').

Clearly the system of A-admissible envelopes is closed under compositions
and base changes.

For the construction of admissible envelopes we need some sort of reso-
lution of singularities over the base field k. For this consider the following
condition:

(G)¢ For a prime number ¢ and (X,G) € Ceqr with X reduced, there
are (X', G) € Ceqi, with X’ smooth over k and a strict, surjective,
projective morphism f : X’ — X which is finite of degree prime to
£ over any maximal point of X.

Theorem 2.2 (Gabber). If k is perfect, (G); holds whenever ¢ # p.

In case G = e this result due to Gabber is shown in [Il]. Gabber commu-
nicated the following proof [Ga] to us in the general case.

Proof. Without loss of generality X is G-primitive. Let X; be an irre-
ducible component of X and put G; = {g € G | g(X1) = X1}. Let Gy be
an (-Sylow subgroup of G; and denote by D — Y = X /Gy the locus over
which Gy does not act freely on X;. According to [Il, Theorem 1.3], there is
a dominant generically finite morphism ¢ : Y’ — Y of degree prime to ¢ such
that Y’ is smooth and D’ = g~1(D) is a simple normal crossing divisor on
Y'. Let Y7 be the normalization of Y in k(Y") @4(yy k(X1). As Y] is tamely
ramified over Y’ we use Abhyankar’s lemma [SGA1, XIII Proposition 5.1] in
order to find étale locally over Y’ an embedding of Y7 into a Kummer étale
extension of the log scheme (Y’, D’). By [Il, Proposition 6.6(c)] (Y1, D1) is
log regular where D7 is the reduced preimage of D’. Using results of Kato,
Niziol and Gabber [K2] and [N] on resolution of log regular schemes, we
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find an equivariant resolution of singularities (X1, Gy) — (Y1, Gy). If we let
(X', G) be the equivariant smooth scheme given by X' = G x¢, X1, the
morphism [ : (X',G) — (X, G) is as demanded in (G),. O

Proposition 2.3. Assume the condition (%) of Theorem 1.4 and further
that k is perfect. Then, for any (X,G) € Cqj, with X reduced, there is a
A-admissible envelope f: (X', G) — (X, Q) with X' smooth over k.

Proof. In case A = Z and (RS),,, holds, the assertion is proved by the same

argument as [GS1, Lemma 2]. We prove the assertion in case A = Z[%]. We
use the induction on d = dim(X). Start with an arbitrary prime ¢ # p.
According to Theorem 2.2, there is (X;,G) with X, smooth over k and a
surjective proper morphism fy : (X;, G) — (X, G) which is finite of degree
prime to £ over each maximal point of X. For every prime ¢ in the set

L = {¢ prime | ¢ # p and ¢'| deg(f7)},

choose (X, G) with X}, smooth over k and a surjective proper morphism
fr (X}, G) — (X, G) which is finite of degree prime to ¢’ over each maximal
point of X. Consider the object

X =X, 10 [] X0
t'el

in Cq/p- Then foen @ (Xgen, G) — (X, G) is a A-admissible envelope over a
dense open G-equivariant subscheme U C X. Now by induction there is a
A-admissible envelope fo, : (Y/,G) — (Y, G) with Y’ smooth over k, where

Y = X — U with reduced structure. The morphism
f=feen I fop: XyUY' = X
is the envelope we are looking for. O

In the next section A-admissible equivariant hyperenvelopes will play a
central role.

Definition 2.4. A A-admissible hyperenvelope is an equivariant morphism
of simplicial schemes f : Xq — Y, in Cé Ik such that the morphism

X, — (cosk™ ;sky—1Xe)a
is a A-admissible envelope for any a > 0.

Note that the system of A-admissible hyperenvelopes of equivariant sim-
plicial schemes is closed under composition and base change. Indeed, this
can be deduced from the characterization of hypercovers given in [GS2, Lem.
2.6] and the analogous statement for A-admissible envelopes.

Combining Proposition 2.3 and Theorem 2.2 with the proof of [GSI,
Lemma 2], we deduce:
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Proposition 2.5. Assume the condition (%) of Theorem 1.4 and further
that k is perfect. Then for Xo € Cé/k there is a A-admissible hyperenvelope

Yo = Xo in C& with Y,/k smooth for all a > 0.

3. Descent construction of homology theories

In this section we explain how to extend equivariant homology functors
defined for smooth projective varieties to all varieties, assuming that they
satisfy a certain descent property. The construction is an equivariant version
of Gillet-Soulé [GS1, §2]

Let C4(Mody) be the category of homological complexes of A-modules
vanishing in negative degrees. By definition an equivariant simplicial scheme
(Xe, G) is a simplicial object in Cg 4, for a fixed finite group G. We say that
(Xe, G) has proper face maps if the underlying morphisms of the face maps
are proper.

Definition 3.1. A homology functor
D : Coqyr — C+(Moday)

is a covariant functor on Ceq i« Which is also contravariant with respect to
strict open immersions and which satisfies the following conditions:

(i) Ifi: Y — X is a strict closed immersion in Ceq/, With strict open
complement j : V — X the composition

B(Y) 25 d(X) Lo a(V)

vanishes as a map of complexes.
(ii) In the situation (i) the induced homomorphism

cone[®(Y) & &(X)] — &(V)
is a quasi-isomorphism.
(iii) Consider a diagram in Ceq/y,
v,e) — (x' @)
lfv Jf
(V.6) —— (X.G),
such that the diagram of the underlying schemes is cartesian, and f

and fy are proper, and j and j' are strict open immersions. Then
the following square commutes:

(X, G L= (V.G

(fV)*\L \Lf*

X, G) —— 2(V,G).
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(iv) For (X, G) and (Y, G) in Seq/k, the natural morphism of complexes
(X)) DY) d (X I1 Y)

is an isomorphism.

We also use the notion of a homology functor on Cq/;, for a fixed finite
group GG, whose definition is analogous. Using total complexes one extends
a homology functor ® : Coq/;, — C4+(Mody) to a functor

®: Co g — C(Mody),

where CeAq Sk is the category of equivariant simplicial schemes with proper
face maps and proper morphisms.

Definition 3.2. For a homology functor ®, the functors
H(®) = {Ha(®)}ax0
with
Hy(®) : Ceq/i — Mody ;5 (X, G) — Ho(2(X, G))
form a homology theory on C.q/;; (this is obvious from the definition). We

call H(®) the homology theory associated to ®.
Definition 3.3. A pre-homology functor
F: Seq/k’ — C+(MOdA>
is a covariant functor on S,/ which satisfies the following condition: For
(X,G) and (Y, G) in Syq/k, the natural morphism of complexes
FX)aF(Y)SF <X I1 Y>
is an isomorphism.

Definition 3.4 ([GS1)).
(1) Let ASq/ be the category with the same objects as Sg/, and with
morphisms
Homys, , (X,Y) = AHoms,, , (X,Y),

the free A-module on the set Homs, , (X,Y). It is easy to check
that ASq/y is a A-additive category and the coproduct X &Y of
X,Y € Ob(S),) is given by X [[Y.

(2) For a simplicial object in Sg

e
=
IERERENENE
>
=7 e
“><
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we define a homological complex in ASq

AXy : o o X, I X = 0= (—1)6;
§=0
This gives a functor
Sepm — C+(ASapm),
where C (ASg ;) is the category of homological complexes in ASq /.-

Let F' : Sq/, — C+(Mody) be a pre-homology functor. Using total
complexes, one extends F' to a functor

(31) F: C+(ASG/]€) — C+(MOC1A).

For a simplicial object Xo in Sg /i, we write F'(X,) = F'(AX,).

Consider the following descent conditions for a homology functor ® on
Ceq/k (resp. a pre-homology functor F' on Seq/p). For a homology functor
P, we let @ Seasr denote the pre-homology functor obtained by restricting ®
to the subcategory Seq/i Of Coq /-

(D)4 For any finite group G and for any A-admissible equivariant hyper-
envelope of simplicial schemes f : Xo — Y, in Cé i the map
fo 1 ©(Xe) = ®(Ys)
is a quasi-isomorphism.
(D) For any finite group G and for any X, € Cy(ASq/;) with the prop-
erty that @5, (X,) is acyclic for any homology functor ® satisfying
(D)4, we have that F(X,) is acyclic.
Lemma 3.5.
(1) If a homology functor ® satisfies (D)4, then F = (I)ISeq/k satisfies
(D).
(2) Let f: Xo — Yo be a A-admissible hyperenvelope in Cqyy, such that

Xeo and Y are objects in Sgyi,. If a pre-homology functor F' satisfies
(D) g, then f, : F(Xo) = F(Y,) is quasi-isomorphism.

Proof. (1) is obvious. We prove (2). Put C, = cone(AX, — AY,) in
C4(ASg)i)- For a homology functor @, we have

s, (C.) = cone(®(X.) L5 B(YL)).

eq/k(
Hence, if ¢ satisfies (D)4, ®ys,, , (Cs) is acyclic since f is a quasi-isomor-
phism. Thus (D) implies

F(C,) = cone(F(X,) LN F(Y,))

is acyclic, which proves the desired conclusion of Lemma 3.5. O
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The heuristic idea for the following construction is that there should be a
universal extension up to quasi-isomorphisms of a pre-homology functor F
satisfying (D) to something similar to a homology functor ®¥ satisfying
(D)gr. However we do not know how to make this precise, but we can
at least construct the expected homology theory associated to ®¥. The
construction we explain below is essentially due to Gillet-Soulé [GS1].

Construction 3.6. We now assume the following:

(i) k is perfect.
(ii) The condition (%) of Theorem 1.4 holds.

Given a pre-homology functor F' with values in A-modules satisfying
(D), we construct an equivariant homology theory H!" (see Definition 1.1)
with the following properties:

(1) There is a canonical isomorphism of homology groups

F
H, |50q/k

>~ H,(F) forallaecZ

compatible with equivariant pushforwards.

(2) For X, € Sé/k and X € Cgy proper and for a A-admissible equi-
variant hyperenvelope X, — X, there is a natural descent spectral
sequence

Egp = Hy (Xa,G) = Hy\,(X,G).

(3) If FF = @5, for a homology functor & satisfying (D)g, we have a

canonical isomorphism of homology theories HY = H(®).

(4) Let F — F’ be a morphism of pre-homology functors satisfying (D) 5
and (D), with associated homology theories H¥ and H'. Then
there is a canonical morphism HY — HF' of homology theories. Fur-
thermore, if for every (X, G) € Seq/k, the map F(X,G) — F'(X,G)
is a quasi-isomorphism, the induced morphism of homology theories
HF = HY is an isomorphism.

(5) Let F” be cone(F — F') for a morphism of pre-homology functors
F — F' satisfying (D) and (D) and let HY, H and H'" be
the associated homology theories. Then for (X,G) € Syq/, there is
a long exact sequence

. HF (x,6) - H (x,6) » HI"(X,G) = HF [(X,G)— ---

compatible with equivariant proper pushforward and strict equivari-
ant open pullback.

(6) Assume that for every (X, G) € Seq i and every a € Z, the complex
F(X,G) consists of finitely generated A-modules. Then the homol-
ogy groups HF(X,G) are finitely generated A-modules for every
(X, G) S Ceq/k-
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(7) Let M be a A-module. Assume that for every (X,G) € Sk, the
complex F(X,G) consists of flat A-modules. There is a natural
spectral sequence

E?, = Torf (M, H (X, G)) = HI MM (X,G),

where F'@p M(X,G) = F(X,G) @\ M.

Now we describe how this construction is accomplished. The nonequivari-
ant case is explained in detail by Gillet—Soulé [GS1, §2] and the equivariant
case works similarly, which we explain briefly.

We start with a pre-homology functor F' satisfying (D). For (X,G) €
Ceq/k choose an equivariant compactification j : (X,G) — (X,G), where
X is projective over k and j is a strict open immersion with dense image.
It exists by a construction explained in the first part of Section 6. Let ¢ :
(Y,G) — (X, G) be the strict closed immersion of the (reduced) complement

of X in X. By Proposition 2.5 we can choose a commutative diagram in
A
Can
(3.2) (Y, G) —= (X, G)
F

(¥,G) —— (X,G).
where (Y,, G), (X.,G) € Sé/k and f, g are A-admissible equivariant hyper-
envelopes. Then we set

A o
HY(X,G) = Hy(cone[F(Y,) — F(X,)]).

It can be shown that the homology groups H! (X, G) are independent of the
choices made, i.e., are unique up to canonical isomorphism, and satisfy the
axioms of an equivariant homology theory.

We sketch a proof of independence. Let us first fix the compactification
(X,G) = (X,G). Choose a different commutative diagram in Cé/k

(3.3) (¥1,G) - (X, G)

lf’ lg’
(V,G) ——= (X, Q).
where (Y], G), (YI,,G) € Sé/k and f’,¢" are A-admissible equivariant hy-

perenvelopes. Thanks to Lemma 3.5(2), the method of [GS1, §2.2] produces
a canonical isomorphism

cone[F(Ya) = F(X.)] 2 cone[F(Y]) = F(X,)] in Dy(Mody).
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As for independence from compactifications, consider another compacti-
fication (X,G) — (Y/,G) with complement (Y’,G). By a standard trick,
see [GS1, §2.3], one can assume that there is a commutative diagram

(3.4) Y',G)— (X,G)
Y,G) — (X, Q).
Choose smooth A-admissible hyperenvelopes mapping to (3.4)
(3.5) (Y,6) — (X.,G)
(Yn G) - (YM G)a
where all terms are in Sé s We are ought to show that the induced map
cone[F(Y!) = F(X,)] =5 cone[F(Ys) — F(X.)]
is a quasi-isomorphism. This follows from the following.

Claim 3.7. Let = denote the total complex of the diagram in Cy(ASq/)
obtained by applying the functor in Definition 3.4(2) to the diagram (3.5).
Then

F(E)~0 in Dy(Mody).

Proof of Claim. For any homology functor ® satisfying (D)4 we have

(Y]) — (X, B(Y') — (X))
(I)\Seq/k(E) ~ Tot i} 4+ ~ Tot i} ¢
d(Y,) — ®(X.) dY) — BX)

~0 in Dy(Mody),

where the first quasi-isomorphism is obvious from the definition, the second
follows from (D)g, and the last follows from Definition 3.1(ii). By (D),
this implies the claim. O

4. Descent criterion for homology functors

In this section and the next we will explain two basic descent theorems
which give criteria for a homology functor ® (resp. a pre-homology func-
tor F) to satisfy the descent condition (D)4 (resp. (D)) from §3. This
will then allow us to apply the methods of Section 3 in order to construct
equivariant weight homology theory.

We say that an equivariant homology functor (Definition 3.1)

P : Coq/i — C+(Mody)
has quasi-finite flat pullback if the following conditions hold.
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e For a strict quasi-finite flat morphism f : (X,G) — (Y, G) there is
a functorial pullback f*: ®(Y,G) — ®(X,G) which coincides with
the usual open pullback if f is an open immersion.

e Consider a commutative diagram in Cg/p,

-/

V',G) —— (X,G)

| I

(V7 G) L) (X7 G)7
such that the diagram of the underlying schemes is cartesian, and
f and fy are proper, and j and j' are quasi-finite flat. Then the
following diagram commutes:

B(X") = BV

| |

LX) —B(V).
e For a strict finite flat morphism f : (X, G) — (Y, G) of degree d, the
composition

feoff:®(Y,G) = o(Y,G)
is multiplication by d.
Our first fundamental descent theorem reads:

Theorem 4.1. Consider an equivariant homology functor ® on Cg/y, which
we assume to have quasi-finite flat pullback if A # Z. Then ® satisfies (D).

Proof. The proof of Theorem 4.1 is practically the same as that of [GS2,
Theorem 3.4 and Theorem 3.9] (see also [GS2, §5.6]). One just has to add
a G-action everywhere. The details are left to the readers. ([

5. Descent criterion for pre-homology functors and weight
homology

We explain a descent criterion for equivariant pre-homology functors (Def-
inition 3.3) in terms of equivariant Chow motives. We start with explaining
the construction of the latter.

By the naive equivariant Chow group of (X, G) € Ceq/x, one usually means
the Chow group of the quotient variety CHy(X/G) (a > 0). The problem
with this definition is that there is no intersection product and no flat pull-
back on naive Chow groups. Edidin, Graham and Totaro ([EG], [To]) sug-
gested a definition of refined Chow groups. Choose a k-linear representation
G x V' — V such that for all 1 # g € G the codimension in V' of

Fix(g,V) ={v € V]|g-v = v and gy, = id}
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is greater than the dimension of X. Here we view V as an equivariant affine
space. Now define

CHq(X,G) = CHyyq, (X X V/G) (dv = dim(V)),

where we endow X x V' with the diagonal G-action. In [EG] it is shown that
this is independent of choices of V. For (X, G) primitive of dimension d, we
write

CHY(X,G) = CHy_o(X, G).

In what follows we consider covariant Chow motives with coeflicients in
A. We do not care about pseudo-abelian envelopes nor noneffective motives.
Fix a finite groups G. The objects of our category of Chow motives, denoted
by Chowg/y, are the objects of Sg/i. For (X, G) € Sg/i, we write M(X, G)
for the induced object in Chowg ;. For X,Y € Sg /i, we let the morphisms
in the category of Chow motives be

HomGhowg , (M(X, @), M(Y, G)) = @) CHy, (Xi x Y, G) @z A.
el
where X = [[X; with (X;,G) € Sgy, primitive of dimension d;. Compo-
1€l

sitions are defined as compositions of correspondences. Clearly M defines
a covariant functor from Sg/p to Chowgy, by associating to a morphism
f: X — Y its graph in X x Y. It extends in an obvious way to a A-linear
functor

(5.1) M ASq, — Chowg

where ASq /. is defined in Definition 3.4(1). Clearly the functor M in (5.1)
induces a canonical A-linear functor

(52) M C+(ASG/k) — C+(ChOWG/k)
which induces a canonical A-linear functor
(53) M : K+(ASG/k) — K+(ChOWG/k),

where K (-) represents the homotopy category of C'y(+) in each case.
We can now state our fundamental descent theorem for pre-homology
functors.

Theorem 5.1. Given a pre-homology functor
F Seq/k: — C+(M0d/\),
assume that for any finite group G, there is an additive A-linear functor
Fg : Chowg y, — C4(Mody)
such that the restriction F|5G/]C of F to Sgyy, 1s the composition of Fg with

Sa/k — ASqy M, Chowg . Then F satisfies the descent property (D).
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Construction 5.2 (Construction of weight homology). Fix a A-module M.
For (X, G) € Seqyi, We set

(5.4) FW(X,G) = Homz(CH(X,G), M)[0] ~ MX/C[0] € O, (Mody),

where X(©) is the set of the generic points of X. It is easy to see that FJ\V)[/ is
a pre-homology functor such that (F}y )1Se I extends to a A-linear functor
on Chowg ;. Therefore Theorem 5.1 shows that F ]\V}/ satisfies the descent
property (D)Fﬂ‘y-

We now assume that the condition (%) of Theorem 1.4 holds. If one
assumes further that k is perfect, we can apply Construction 3.6 to F]\V}/ to
get a homology theory on Ceq /i

(X,G) = {H) (X,G; M)}a>o0.
If k is not perfect field k, we define
(5.5) HY(X,G; M) = HYY (X @ k,G; M),

where k is the perfection of k. This homology theory is called weight homol-
oqy with coefficient M.

It is clear from Construction 3.6 that Theorem 1.4(i) through (v) hold. To
define the map 73/, in (vi), we argue as follows. By (5.5), we may replace
k and k' by their perfections to assume that those fields are perfect. Let
L1 Seq/k — Seq/k be the base change functor X — X @y k. Write F' and F’
for the pre-homology functors (5.4) on Seq i, and Seq g Tespectively. Then
we have a morphism F’ o — F' of pre-homology functors on Sg i, induced
by natural maps

CH(X,G) = CHY(X @4 K/, G) for (X,G) € Seqy-

By Construction 3.6(4), this induces a morphism of corresponding homology
theories

HFov— gF o, 5 gF
which gives the desired map 73/ /. Theorem 1.4(vi)(a) is obvious and (b) is
easily shown by using (v).

To prepare the proof of Theorem 5.1 we have to introduce a rigidified
version of the equivariant Gersten complex for algebraic K-theory [Q]. In
fact one could also use the Gersten complex for Milnor K-theory. Fix a
sequence of linear G-representations V; (j > 0) over k, dy, = dimy Vj, with
linear surjective equivariant transition maps V; — V;_1 such that for any
g # 1 € G, the codimension of Fix(g,V;) in V; converges to infinity as
J = 00. For X € Cgqp, define

Ru(X,G)=1lm P Ki(k(z)) ®z A,
J ze(XxV;)/G
dimm=q+i+dvj
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where the limit is taken over flat pullbacks. For fixed ¢ € Z we get a
homological complex of A-modules:

Ry(X,G): -5 R(X,G) % Ry 1(X,G) -5 - -5 Ro(X,G),

where R, ;(X, G) sits in degree ¢ and 0 are boundary maps arising from local-
ization theory for algebraic K-theory [Q]. These complexes form homology
functors

Rq : Ceq/k — C+(M0dA)
which have quasi-finite flat pullbacks [Q]. Hence we deduce the following
proposition from Theorem 4.1.

Proposition 5.3. For any q € Z the descent property (D)4 is satisfied for
¢ = R,.

Recall that the prehomology functor (R,), Seash defined as the restriction
of Ry to Seq/x extends to a canonical functor (cf. (3.1))

C+(ASG/k) — C+ (MOdA)

which we denote by R, for simplicity. With almost verbatim the same proof
as for Theorem 1 of [GS1] we obtain the following (cf. (5.3)):

Proposition 5.4. For X, € K (ASq ) with Ry(X.) acyclic for all ¢ > 0
we have
M(X*) =0€ K+(ChOWG/k)

Proof of Theorem 5.1. Consider X, € C1(ASg/) such that s (X5)

is acyclic for every homology functor ® satisfying (D). In particular, by
Proposition 5.3 R,(X,) is acyclic for every ¢ € Z. By Proposition 5.4 this
implies that M(X,) = 0in K4 (Chow/;). Since F factors through Chowgy,
by assumption, we conclude that F'(X,) =0 in K (Mody). O

6. Equivariant cohomology with compact support

Let the notation be as in §1. For X € Cgq/g, we consider G-sheaves F of
torsion A-module on X, which means that G acts in compatible way with
the action of G on X. The G-sheaves of torsion A-modules on (X, G) form
an abelian category Shvg (X, A). For a morphism f : X — Y in Cq/y, the
direct image functor f, on sheaves extends to the functor

(6.1) fr :Shvg (X, A) — Shvg(Y, A).

For a morphism (¢, f) : (X,G) — (Y, H) in Ceqi, the pullback functor f*
on sheaves extends to the functor

(6.2) (¢, )" : Shvg(Y) — Shvg(X, A).

For F € Shvg (X, A), we define its equivariant cohomology groups with
compact support. First we choose an equivariant compactification

jiX =X
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where j is an open immersion in Cg/, and X is proper over k. Such j always
exists: Take a (not necessarily equivariant) compactification j : X — Z
and consider the map

|G| times
—~
T:X%ZX]{---X]{Z

induced by j' - g for all g € G. Then one takes X to be the closure of the
image of 7 and j to be the induced immersion. Global sections on X form
a functor

(X, —) : Shvg(X) = Mody gy ; F —= I(X, F).
with its derived functor
RI(X,—) : D*(Shvg(X)) — DT (Modg)-

Let
I'(G,—) : Modpjg) — Mody ; M — MY

be the functor of taking the G-invariants of A[G]-modules and
RI(G,—) : D" (Modyg) = DT (Mody)

be its derived functor.
We define equivariant cohomology groups by

H"(X,G;F)=H"(RI'(G,RI'(X,F))) forneZ
and we define equivariant cohomology groups with compact support as
(6.3) H!(X,G;F) = H"(RT'(G,RI'(X,5F))) forn¢€Z.
We have a convergent spectral sequence
(6.4) EYY = HY(G, HY(X, F)) = H* (X, G; F).

Lemma 6.1. Let (X, G) € Coqyp, with G acting trivially on X. Then there
is an isomorphism of A-modules

H"(X,G; F) = H"(X, Ba(F)).
Here Bg denotes the cohomological Bar resolution functor
Bg(—) : Shvg(X) — CT(Shv(X)).

Let i : Z — X be a closed immersion in Cg/;, and j : U — X be its open
complement. For F € Shvg (X, A) we have an exact sequence in Shvg (X, A)

0= jj*F - F =i, F—0
which induces a long exact sequence
(6.5) -~ HNU,G;j*F) 25 HMNX,G; F) - H(Z,G;i* F)
s BN U, G F) — -
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Take f: (X,G) — (Y, H) in Ceq/p, and choose a commutative diagram in
Ceq/k

(X,6) 2 (X,6)
(6.6) |s |7
where jx and jy are strict open immersions, and X and Y are proper over
k. Such a choice is always possible by the above construction.
Assume G = H, f is strict and the underlying morphism f : X — Y is

flat and quasi-finite. If p is invertible in A we construct the pushforward
map

(6.7) for HU(X, G f*F) = HX(Y, G; F).

By SGA XVIII Theorem 2.9, we have the trace morphism Rf,f*F — F.
By applying (jy )i, it induces a map Rf,jx,f*F — jy,F, which gives rise
to a G-equivariant map

RT(X, jx f*F) = RU(Y, jy\.F).

This induces the map (6.7) by applying RI'(G, —) and taking cohomology.
Assume the underlying morphism f : X — Y is proper. Then we con-
struct the pullback map

(6.8) frHE(Y, H F) = H! (X, G f7F).

By the properness of f the map X — Y ><7Y induced from (6.6) is an

isomorphism and we have the base change isomorphism f* i F —ixf*F
by SGA2 XVII 5.2.1. It gives rise to an equivariant map
fr RF(?,]'Y!}—) — RP(Y,jX!f*]'—)
which induces
RU(H, RU(Y, jy\F)) — RU(G, RD(Y, jy . F)) 2 RD(G, RU(X, jx.f*F)),

where the first map is induced by G — H. This induces the map (6.8). If
f is a strict closed immersion, it is easy to see that f* coincides with the
pullback map in (6.5).

For an extension &'/k of fields and for (X, G) € Coq/p, Put

X' =X X Spec(k) Spec(k') € Cayp with f X' — X the natural map,

where the action of G on X’ is induced from that on X via the base change.
We construct the base change map

(6.9) v T HE (X, Gy F) = HY (X', Gy f*F).
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For a G-equivariant compactification jx : X < X, we have a cartesian
diagram

X X

b

x X, X
where X = X X Spec(k) Spec(k’) with F:X — X the natural map. It gives
rise to the base change isomorphism f* ixiF = J% . f*F, which induces the
map (6.9) by the same argument as before.

Lemma 6.2. Let the notation be as above.

(1) Consider a commutative diagram in Ceq/p,
¢y L (X6 L (2,

|5 |7 J1o

(U,G) —— (X,6) «—— (2,6)
such that the squares of the underlying schemes are cartesian, and
i (resp. i') is a strict closed immersion and j (resp. j') is its open
complement. Take F € Shvg(X,A) and put F' = f*F.
If f is proper, the following diagram is commutative.

/| /| N N

H(U', G5 F) = HP (X', G5 F') = H2 (2, G5 F) = HrH (U, G F).

If G =G and f is strict, flat and quasi-finite and if
F e ShVG(Y, A)

is the limit of the subsheaves annihilated by integers prime to ch(k),
the following diagram is commutative.

HE(U', Gy F') = HP (X', G5 F') = HZ(Z', Gy F') = HyH (U, G " F)

f*l f*J( f*J( |
H(U, G j* F) —= (X, G5 F) —= HE(Z,G3i" F) —= HIV (UG5 F).

Assuming further that f is finite flat of degree d, the composition
ff* is the multiplication by d.
(2) Consider morphisms in Cqyj,

(U,G) L (X,G) +— (Z,G)

where i is a strict closed immersion and j is its open complement.
Take F € Shvg(X,A). Let k'/k be an extension of fields and X',
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U', Z', F' be the base changes of X, U, Z, F via k' [k respectively.
Then the following diagram is commutative.

H}(U,G;j*F) —= H}MX, Gy F) —= HNZ,G;i*F) —= H* (U, G5 j* F)

HE(U', Gy " F') — HE (X', Gy F') — H (2, Gii " F') = HH (U, G: " F).

Proof. The corresponding fact in the nonequivariant case (i.e., the case G
is trivial) are well-known and the lemma is proved by the same argument as
in that case. ([

For (X,G) € Ceq/iy X is quasi-projective over k by definition, and by
SGA1, V§1, the geometric quotient X/G exists. Let m: X — X/G be the
natural projection, which is viewed as a map (X,G) — (X/G,e) in Coq/p,
where e is the trivial group. A sheaf F of torsion A-modules on X/G gives
rise to 7*F € Shvg (X, A) and a map

(6.10) ™ HNX/G,F) - H!(X,G; 7" F).
by the formalism of (6.8).
Proposition 6.3. If G acts freely on X, m* is an isomorphism for all n.
Proof. Take an equivariant compactification j : X < X and let
7: X - X/G
be the projection to the geometric quotient. Then j induces a commutative
diagram
x 14 X
| &
X/G —— X/G.
As in (6.1) we have a canonical pushforward functor
T« : Shvg (X, A) — Shvg(X/G, A),

where we consider X/G with the trivial G-action, and similarly for 7.
Putting Y = X/G and Y = X /G. we have

H)X,G;n*F) = H"(X,G; jim* F)
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where the second and third equality hold since 7 and 7 are finite. The fourth
equality holds by Lemma 6.1. Finally it is well known that there is a quasi-
isomorphism Bg(m.m*F) ~ F, since 7 is an étale covering with Galois group
G. Indeed, on stalks m,7w*F is given by G-representations which are induced
from the trivial group. This completes the proof of the proposition. O

A similar isomorphism to that in Proposition 6.3 holds in a radicial situ-
ation:

Lemma 6.4.

(1) Let f : (X,G) — (Y,G) be a map in Cq, where the underlying
morphism is finite, surjective and radicial. For F € Shvg(Y,A), the
pullback map (6.8)

[P HE(Y, G F) = HN(X, G5 f°F)

s an isomorphism.
(2) For a purely inseparable extension k'/k of fields and for (X,G) €
Ceq/ks the base change map (6.9)

v HE (X, G F) — HNX', G f*F)
is an 1somorphism. Here X' = X @4 K.

Proof. This follows from [SGA4] XVIII 1.2 and XVII 5.2.6. O

7. Equivariant étale homology

Let the assumption be as in §6. Let Gy be the absolute Galois group of
kE and M be a discrete A[Gg]-module which is torsion as a A-module and
continuous as a GG module. We let M denote the corresponding étale sheaf
on Spec(k). When M is finite, we write M"Y = Homp (M, Aw), the dual
A[Gg]-module, where Ay, be the torsion A-module Q/A.

Definition 7.1. The equivariant étale homology groups of (X,G) € Coq
with coefficient in a finite A[Gg]-module M are defined as

Hgt(X,G§ M)=H*X,G;M")" fora>0,

where MV on the right-hand side denotes the pullback to X of the étale sheaf
MY on Spec(k). For a A[Gg]-module M which is torsion as a A-module, we
write

M = hgan
with M,, finite A[G]-modules and set
H' (X, G; M) = lim Hi' (X, G5 M),
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By Lemma 6.2, the functor

Coq/i — Mody ; (X,G) — HE(X,G; M) (a € 7Z)

ea/
provides us with a homology theory on Ceq/), in the sense of Definition 1.1.
For (X,G) € Coq/i and an integer a > 0, let X,y denotes the set of

such z € X that dim({z}) = a. The group G acts on the set X(q) and
we let X(,)/G denotes the quotient set. For x € X, /G, let Gx be the
correspondlng G-orbit in X.

For a homology theory H on Ceq/) (Definition 1.1), we have a spectral
sequence of homological type, called the niveau spectral sequence:

(71)  EL(X,GM)= P Hup(z,G;M) = Hoy(X,G; M),
QTGX(Q)/G

where

Hy(x,G;M) = lim H,(V,G;M),
—

vC{Ga)

with the limit taken over all nonempty G-stable open subschemes V in the
closure {Gz} of Gz in X. This spectral sequence was constructed by Bloch—
Ogus [BO] in the nonequivariant case. The same construction works for the
equivariant case and one can show the following:

Proposition 7.2. For the spectral sequence (7.1), the following facts hold.

(1) The spectral sequence is covariant with respect to morphisms in Ce, Jk
whose underlying morphism of schemes are proper, and contravari-
ant with respect to strict open immersions in Ceq k-

(2) Consider a commutative diagram in Ceq/p,

V', Gy —I— (X',G")

va lf
(V,6) —— (X,G),
such that the diagram of the underlying schemes is cartesian, and f

and fy are proper, and j and j' are strict open immersions. Then
the following square commutes:

(B, (X', G M), dL ) Lo (L, (V6 M), )

(fV)*\L lf*

(E;,b(Xv G; M), di b) I (E;,b(vv G; M), d(ll b)-
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For the homology theory in Definition 7.1, the above spectral sequence
for (X, G) € Coqyy is written as

(12)  BLX.GM) = @ HE@,.GiM) = HY,(X,G:M),
IEX(CL /G

Proposition 7.3. For the spectral sequence (7.2), the following facts hold.

(1) If ch(k) is invertible in A, the spectral sequence is contravariantly
functorial for strict flat quasi-finite maps. For a commutative dia-
gram in Coqyp,

V.6 —— (X,

| |7

v,q) —= (X,0),

such that the diagram of the underlying schemes is cartesian, and f
and fy are proper, and j and j' are strict and flat quasi-finite, the
following square commutes:

(B (X', G M), dL ) Lo (B, (VG M), db)

' Yab ' Ya,b

(fV)*l lf*

(Egp(X, Gy M), dyg ) —— (Eg(V,G; M), dy ).

» Ya,b

Assuming further that f is finite flat of degree d, the composition
fef is the multiplication by d.

(2) If f : (X', G) — (X, G) is a map in Cqyy, where the underlying mor-
phism is finite, surjective and radicial, it induces an isomorphism of
spectral sequences

~

(Bap(X',Gi M), dgp) — (Eqp(X,G3 M), dgy)-

(3) For a purely inseparable extension k'/k of fields and for (X,G) €
Ceq/k» there is a natural isomorphism of spectral sequences

(ELy (X', G; M), dL,) > (BLy(X,G;M),dL,),

where X' = X Xgpec(k) Spec(k’) with the G-action induced from that
on X.
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(4) We have Eib(X7 G; M) =0 for b < 0. The projectionm: X — X/G
induces isomorphisms for all a € Z

E,o(X,G; M) ~ (@H”xM)

$6X<a)
~ D Hy: M) = BLo(X/G: M)
ye(X/G)(qy

and hence an isomorphism of complexes
(Bap(X,G: M), dbg) — (E3o(X/G: M), d} o).

Proof. (1) through (3) follow immediately from Lemma 6.2 and Lemma 6.4.
To show (4), we may assume M is finite. In the proof all homology (resp.
cohomology) functors have coefficients M (resp. M"). For simplicity we
suppress M in the notation. Recall for z € X, /G

HE  (2,G) = lim Homy (HP(U,G), A),
Uc{Gz}

where the limit is taken over all nonempty G-stable affine open subschemes
U in the closure {Gr} of Gz in X. By the affine Lefschetz theorem we have
H!(U) = 0 for all i < a. Hence the spectral sequence (6.4) implies

(7.3) H{U,G)=0 fori<a, HUG)~HYU)".

This immediately implies part (1) of the proposition and an isomorphism

BLGG) — @D Hﬁt@,cm(@ﬂsw)
G

mGX(a)/G CEEX(CL)
noting that for x € X(,) we have
HS (z) = hg Homy (HZ(V), Ax)
VC{z}

where the limit is taken over all nonempty affine open subscheme V in the
closure {z} of z in X. To complete the proof, it remains to show

(7.4) Hz,G) ~ H(y)  for z € X(a)/G and y = 7 (),

noting X(,)/G =~ (X/G) (4, an isomorphism of sets. Let H be the image of
G in Aut(Gx) the scheme theoretic automorphism group, and put H, =
{0 € H| o(x) =x}. One can choose a H,-stable affine open subschemes U
in {z} such that H, acts freely on U and o(U) N o'(U) = & for 0,0’ € H
with 0~ 'o’ ¢ H,. Put

G-U=|Jow)= ][ o).

oedG c€H/H,
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By (7.3), (6.4) implies

H
H?(U,G):( D H?(UW))) = H(U)" ~ HZ(U, Hy),
oc€H/H,

where the last group denotes the equivariant cohomology with compact sup-
port for (U, H;) € Ceq/i- By Proposition 6.3 we get

H(U,Hy) ~ H(U/Hy) = H (G- U/G),
where the last equality holds since U/H, = G - U/G. Thus we get
(7.5) HE(z,G) ~ lim Homy (H(G- U/G),A).
UC{z}
As U runs over all H,-stable nonempty open subsets of m, G - U/G runs
over all nonempty open subsets of T/G where T = {Gz}. Consider the

finite morphism 77 : T/G — S where S C X/G is the closure of y = 7(z)
in X/G.

Claim 7.4. Letting z € T /G be the generic point (note that T /G is integral),
k(2)/k(y) is purely inseparable. In particular wr is an isomorphism on the
underlying topological spaces.

The claim follows from [Bo, Ch.V §2.2 Thm.2(ii)].
Thanks to the above claim, we get from (7.5) and Proposition 6.4

Hi' (e, G) = lim Homy (HE(V), As) = Hi'(y),

vc{y}

where V' ranges over all nonempty open subsets of @, which proves the
desired claim (7.4). This completes the proof of Proposition 7.3. O

8. Equivariant Kato homology
Let the assumption be as in §7.

Definition 8.1. For (X, G) € Ceqi, we define the equivariant Kato complex
KC(X,G; M) of X with coefficient M to be

Eo(X,G: M) -+ = E;o(X,G; M) = Eg_y (X, G; M) —
o= By o(X, Gy M).
Here d = dim(X), the boundary maps are d'-differentials and E;O(X, G; M)
is put in degree a.

In case G = e, KC (X, G; M) is simply denoted by KC(X; M). This com-
plex has been introduced first in [JS] as a generalization of a seminal work
by Kato [K1]. The complex KC(X;Z/nZ) is isomorphic to the complex
(0.1) by duality, see [KeS, Sec. 1].
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Lemma 8.2. The correspondence
KC(—,G; M) : Coqy, = C+(Moda)
(X,G)—» KC(X,G; M)
is a homological functor on Ceq/i tn the sense of Definition 3.1.
Proof. The properties 3.1(i) and (ii) follow from the exact sequence of com-
plexes
0= KCOY,G; M) 5 KO(X,G; M) 2 KC(U, G5 M) — 0

for a closed immersion i : ¥ — X in Cg/ and its complement j : U =
X—Y — X, which is an easy consequence of the fact X,y = Y(,) [[ U(q). The
functoriality for proper morphisms and strict open immersions follows from
Proposition 7.2(1). The property 3.1(iii) follows from Proposition 7.2(2).
The property 3.1(iv) is obvious. O

Proposition 8.3. For (G,X) € Coq/i with the projection m : X — X/G,
the natural map

.t KCO(X,G; M) - KC(X/G; M)
is an isomorphism of complexes.
Proof. This follows from Proposition 7.3(4). O

Proposition 8.4.
(1) If £+ (X',G) = (X,G) is a map in Cqyj, where the underlying mor-
phism is finite, surjective and radicial, it induces an isomorphism of

complexes

fo i KO(X',G; M) = KC(X,G; M).
(2) For a purely inseparable extension k'/k of fields and for (X,G) €
Ceq/ks there is a natural isomorphism of complezes
KC(X',G; M) = KC(X,G; M).
where X = X X Spec(k) Spec(k') with the G-action induced from that
on X.
Proof. This follows from Proposition 7.3(2) and (3). O

Proposition 8.5. The homological functor KC(—,G; M) on Ceqy, satisfies
the descent condition (D). from Section 3.

Proof. This follows from Proposition 7.3(1) and Theorem 4.1. O

Definition 8.6. The equivariant Kato homology with coefficient M is the
homology theory on Cqqj associated to the homology functor KC(—,G; M)
(see Definition 3.2). By definition, for (X, G) € Ceqs,

KHy(X,G; M) = Ho(KC(X,G; M)) = ELo(X,G; M) (a € Zso).
In case G = e, KH,(X,G; M) is simply denoted by K H,(X; M).
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By Proposition 7.3(1) we have an edge homomorphism for each integer
a>0:

(8.1) €% HY(X,G; M) — KH,(X,G; M)

which is viewed as a map of homology theories (see Definition 1.1) on Ceq /-
Now we assume that Gy acts trivially on M and construct a map of
homology theories on Ceq/

i AKHo(=; M) }aez = {HY (= M) }aez.
First note HS'(Spec(k); M) =2 M, and hence
KC(Spec(k); M) = M[0],

where Spec(k) is viewed as an object of Coq i With the trivial action of e.

For (X,Q) € S}’:m, the natural map m : X — Spec(k) induces a map of

complex

e : KC(X,G; M) — KC(Spec(k); M) = M]0].
For (X, G) € Seq/k, We get a natural map (see (5.4))
(8.2) r  KO(X, G M) — MX/90] ~ FIV (X, G)

by taking the sum of the above maps for the G-orbits of connected compo-
nents of X. This gives us a map of prehomology theories

(8.3) v KC(—; M) — FyY.

Theorem 8.7. Assume the condition (%) of Theorem 1.4. There exists a
map of homology theories on Ceq/p:

v {K Ha(—; M) }aez — {Hy' (= M) }aez
such that for (X, G) € Seq/i, it coincides with the map induced from (8.2).

Proof. If k is perfect, this is an immediate consequence of Proposition 8.5
and Construction 3.6(4) with Lemma 3.5(1). The general case follows from
the above case thanks to Theorem 1.4(vi)(a) and Proposition 8.4(2). O

9. Proof of McKay principle for weight homology

Let the notation be as in §8 and assume that Gy, acts trivially on M. Recall
that A denotes either Z or Z[%] where p is the exponential characteristic of

k. Write Aoo = Q/A and A, = A/nA for an integer n > 0. Concerning the
map of homology theories on Ceq/x:

Vv {K Ho (=5 M) }acz — {HZV(—SM)}an,

we have the following result, which is one of the main results of this paper.
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Theorem 9.1. Assume that k is a purely inseparable extension of a finitely
generated field. Assume the condition (%) of Theorem 1.4. Then vy is an
isomorphism for M = Ao In particular, for (X,G) € Seqr we have

(A)X /6 fora=o,

KHa(X7G§Aoo):{O fora;éO

where X s the set of the generic points of X. If k is finite, the same
holds by replacing Ao by Ay, for any integer n > 0.

Theorem 1.7 and Proposition 1.11 will be deduced from from Theorem 9.1.
Theorem 9.1 will be deduced from the following result quoted from [JS]
Theorem 3.8 and [KeS] Theorem 3.5.

Theorem 9.2. Assume that k is a purely inseparable extension of a finitely
generated field. Assume the condition (%) of Theorem 1.4. Then, for a
smooth projective scheme X over k, we have KH,(X,As) = 0 for a # 0.
If k is finite, the same holds by replacing Ao by Ay, for any integer n > 0.

Note that Theorem 9.1 and Proposition 8.3 imply the following extension
of Theorem 9.2 to a singular case.

Corollary 9.3. Let the assumption be as in Theorem 9.2. For (X,G) €
Seq/ks we have KHy(X/G,Aoo) =0 for a # 0. If k is finite, the same holds
by replacing Aoy by A, for any integer n > 0.

For the proof of Theorem 9.1, we prepare some lemmas.

Lemma 9.4. For X € Seqi,, the map (8.2) induces an isomorphism
KHy(X,G; M) = HY(X,G; M).

Proof. We may suppose that X is primitive. By Proposition 7.3(4), the

edge homomorphism

&t HSY(X,G; M) — KHo(X,G; M)

is an isomorphism. Thus the assertion follows from the fact that the map
H§Y (X, Gy M) — H§"(Spec(k), M)

is an isomorphism, which is easily seen from the Definition 7.1. O

Lemma 9.5. Fix a finite group G and assume KH;(Z,G; M) = 0 for all
(Z,G) € Seqyi; and for all i > 0. Then

(9.1) v KHo(X,G; M) — HY(X,G; M)

is an isomorphism for all (X, G) € Cqyy, and for all a € 7Z.

Proof. By Lemma 9.4, the assumption implies that (9.1) is an isomor-
phism for all (X,G) € Sg/, and for all a € Z. Then the lemma follows

from Construction 3.6(4). For convenience of the readers, we give a proof.
We suppress the coefficient M from the notation. First assume that X is
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proper over k. Take a A-admissible hyperenvelope f : (Xo,G) — (X,G) in
Cq/ such that (X, G) € Sgyp, for all a > 0. By Construction 3.6(2) and
Theorems 8.5, we have spectral sequences

K E}L’b = KHy(X,,G) = KH,,(X,G),
WE;,b = H;/V(Xm G) = Hm—/i-b(Xﬂ G)v

a

and s induces a map of spectral sequences. By the assumption the map
on the F7 terms are all isomorphism which implies the desired isomorphism.

In case X is not proper, take an open immersion j : X < X in Cg /i With
X proper over k. Putting Y = X — X, we have a commutative diagram
with exact horizontal sequences

KH;(Y,G) — KHy(X,G) —= KH;(X,G) —= KH;_1(Y,G) — KH;_1(X,G)

| | | | |

HY(Y,G) — H"(X,G) — H" (X,G) —— H}Y,(Y,G) —— H}", (X, G).

Since X and Y are proper over k, all vertical maps except the middle are
isomorphisms and so is the middle one. This completes the proof. ([

Proof of Theorem 9.1. By Theorem 1.4(vi) and Proposition 8.4(2), we
may assume that k is the perfection of a finitely generated field. Let M =
A, for an integer n > 0 if k is finite, and let M = A, otherwise. For
(X,G) € Coqypy let 7 : (X,G) — (X/G,e) be the induced map in Ceqp-

Consider the commutative diagram

KH,(X,G;M) —— KH,(X/G; M)

E .|

HY(X,G; M) —— HY(X/G;M).

The map 7, in the upper row is an isomorphism by Proposition 8.3. The
map -y on the right-hand side is an isomorphism by Theorem 9.2 and Lem-
ma 9.5 with G the trivial group. In case (X, G) € S/, HY(X,G; M) =0
for a # 0 by Theorem 1.4(iv). Thus we get KH,(X,G; M) = 0 from the
diagram. By Lemma 9.5, this implies that 7% is an isomorphism for all a € Z
and for all (X, ) € Ceq - This completes the proof of Theorem 9.1. (|

Theorem 9.1 now allows us to deduce Theorem 1.7.

Proof of Theorem 1.7. By Theorem 1.4(vi), we may assume that k is
the perfection of a finitely generated field. By the universal coefficient
spectral sequence in Theorem 1.4(iv), we may assume M = A. Theo-
rem 1.4(v) shows that HY (X,G;A) and HY (X/G;A) are finitely gener-
ated A-modules. The subcategory Modfy C Mody of finitely generated
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A-modules is a Serre-subcategory, so we can talk about the quotient cate-
gory QMod, = Modp /Modfs. The long exact homology sequence for weight
homology associated to

(9.2) 0=-A—=>Q—=Ax—0
gives us isomorphisms in QMod:

H)(X,G;Q) ~ Hy (X,G; M) and  HY' (X/G;Q) = HyY (X/G; Aoo).
By Theorem 9.1 and Proposition 8.3 we have isomorphisms in Mod:
HY(X,G; M) ¢ KHo(X, G M) = KHo(X/G, M) < HY (X/G5 Ass).
Putting this together we get that 7, : (X,G) — (X/G,e) induces an iso-
morphism in QMod :

(9:3) H(X,G;Q) =~ H) (X/G; Q).
Lemma 9.6 below implies that (9.3) is a true isomorphism of Q-modules.
Lemma 9.6. If a morphism of Q-modules ¢ : A — B becomes an iso-

morphism in the category QMod, then ¢ is already a true isomorphism of
Q-modules.

We deduce Theorem 1.7 with M = A using the five-lemma from the
commutative diagram with exact rows associated to the sequence (9.2)

HYL (X, G5 Q) — Hl (X, G Ao) = HYY (X, G A) = HY (X, G;Q) — HyY (X, G: Awc)
] b i ] b
HYL(X/G5Q) = HY, (X/Gr Aoo) = HiY (X/G5 M) = HY (X/G: Q) = HYY (X/G: Awo).
This completes the proof of Theorem 1.7. ([
The following theorem is an analogue of Theorem 1.7 for a radicial mor-
phism.

Theorem 9.7. Assume ch(k) =p > 0 and that the condition (%) of Theo-
rem 1.4 holds. Let M be a A-module. A finite radicial surjective morphism
7: X' = X in C/ induces an isomorphism

mt HV (X', M) = HV(X; M) fora € Z.

Proof. By the same argument as the proof of Theorem 1.7, we are reduced
to the case M = Ay, = Q/A. Then the theorem follows from Theorem 9.1
and Proposition 8.4. O

Proof of Proposition 1.11. We may assume that the base field & is finitely
generated. For M = A,, we have by Theorem 9.1
Vaw : KHo(X, G5 Aoo) — HY (X, G5 Aso).

Thus we get HV(X,G;As) = 0 for a > dim(X) since KHy(X,G;As)
vanishes in degrees a > dim(X) by definition. By a simple devissage, this
implies
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() HV(X,G; M) = 0 for a > dim(X) and M torsion.

For a finitely generated A-module M, we consider the exact sequences

0= M/Mypy > M®;,Q—> M@Q/Z — 0,

0 — Moy = M — M /Mo — 0,
where Mo, is the torsion part of M. By (x) the first sequence implies

HY(X,G; M/Mio) ~ HY (X, G; M/Mo;) ®2 Q  for a > dim(X).
Since HY (X, G; M /M) is a finitely generated A-module, this implies
HWY(X,G; M /M) =0 for a > dim(X).

By (%) we deduce from the second sequence that HY(X,G; M) = 0 for
a > dim(X). This completes the proof of Proposition 1.11. O

10. Dual complexes and cs-coverings

The dual complex of a simple normal crossing divisor is a special kind
of CW-complex as sketched in the introduction (called A-complex in [Hat,
Section 2.1]). It describes the configuration of the irreducible components
of the divisor (see [St], [Pa] and [ABW1]).

Let E be alocally noetherian scheme and { £, } e be the set of irreducible
components of E. For a finite subset o = {vp, ..., vt} C K, put

Ey:=EyN---NE,.

Let {E4}ack, be the set of connected components of E,. In case E, = &,
K, = @ by convention.

To a locally noetherian scheme E, we associate its dual complex I' = I'( E)
as follows. Fix a linear ordering of K. The set of vertices of I'( F) is identified
with K. For a finite subset 0 = {vg, ..., v} C K with vg < --- < vg, put

AU:{Z tiviltizo, Zti:l} CRK.

0<i<k 0<i<k

To each o € Ky, is associated a k-simplex A, of I'(E) which is a copy of
A,. The interiors of these simplices are disjoint in I'(E) and we have

F(E) = H H Aa,a/ ~

cCKaeK,

where for finite subsets 7 C ¢ C K and for a € K, and 8 € K, such that
E, C Eg, A; 3 is identified with a face of A, , by the inclusion A; — A,
induced by 7 < o.

Clearly, as a topological space I'(E) does not depend on the ordering of
K.
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Let f : E — E’' be a morphism of locally noetherian schemes. Let
{E!,}wer be the set of irreducible components of E’. Choosing ¢(v) € K’
for each v € K such that f(E,) C E:p(v)’ we get a continuous map

¢: K — K'.
For each o € K, there is a unique ¢(a) € K(;(J) such that f(E,) C E(’é(a).
We define an affine map
¢ Doa = Do(o),4(a)
Z tiv; — Z tqu(vz)
0<i<k 0<i<k

(Here t; > 0 and > t; = 1.) These maps glue to induce a map of A-
complexes

¢:T(E) — T(E).
Lemma 10.1. Up to homotopy, ¢ does not depends on the choice of ¢ :
K — K'.
Proof. Pick vg € K and let ¢(vg) = wg € K'. Assume f(E,,) C E”ZUE) for
w) € K" with wj # wg. Let ¢ : I'(E) — I'(E’) be the map induced by the
map ¢ : K — K’ defined as ¢(v) = ¢(v) if v # vp and ¥(vg) = w(. It
suffices to show that v is homotopic to ¢. Let o = {vg,...,vp} C K and
a € K;. The assumption implies

f(Ea) C f(Eq) C Ey = By N Ejy N Eguy) N+ 0 By,
where
0 = ¢(0) Ut(o) = {wo, wp, d(v1),..., d(v)} C K.
There is a unique connected component E!, of Ej such that f(E.) C E..

We have E, C Efp(a) N E:Z)(a) and hence Ag(y).4(a) a0d Ay(o) 4p(a) are faces
of Ag . We define a map

Ha,a : [0, 1] X Aa,a — Agﬁ
(7’, Z tﬂ%) = to(rwo + (1 — 7)wp) + Z tip(vi)-
0<i<k 1<i<k

which gives a homotopy from ¢a, , to |, . The maps Hy, for all o and
a glue to give a desired homotopy H : [0,1] x T'(E) — T'(E’). O

Lemma 10.2. Let E be a G-strict simple normal crossing divisor over a
field as in Definition 1.5. There is a canonical homeomorphism

I'(E/G) = T(E)/G,
of topological spaces.

Proof. The proof is straightforward and left to the readers. O
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To investigate fundamental groups of dual complexes, we need a more
geometric interpretation. In the following we introduce the technique of
covering spaces of non-path-connected topological spaces, which we apply
to the Zariski topological space underlying a locally noetherian scheme.

Definition 10.3. For a connected topological space S let Cov(S) be the
category of topological coverings of S. For a point sg € S, let 7§°(S, sg) be
the automorphism group of the fiber functor

Cov(S) — Sets ; "+ S’ x5 s0.

In what follows we omit the base point sg from the notation. We call 7§*(.5)
the completely split fundamental group.

If S is a connected scheme we write 7§*(.S) for the cs-fundamental group
of the underlying Zariski topological space of S.

Lemma 10.4. If the connected topological space S admits a covering by open
subsets U = (U;)ier such that Cov(U;) consists only of the trivial coverings

for all i € I, then there is a universal connected covering S’ — S. We have
7§5(S) = Aut(S’/S).

Proof. Fix a linear ordering of I. One associates to the open covering U a
A-complex I'(U) in analogy to the construction above. Its k-simplices are
the connected components of U,, N---NU,, for vg < --- < vy € I. There is
a canonical equivalence Cov(S) = Cov(I'(if)). In fact objects of both sides
are described in terms of the following data: A family of sets (W;);cr and

a family of isomorphisms wq : W; = W; for each connected component o
of UyNUj (i < j) which satisfy cocycle conditions (one for each connected
component of U; NU; N Uy, with i < j < k). Since I'(U/) is a CW-complex,
it is locally path-connected and locally simply connected and therefore by
[Hat, Thm. 1.38] it has a universal covering space. O

The assumption of Lemma 10.4 is satisfied in particular for the topological
space underlying a locally noetherian scheme.

Proposition 10.5. Let X,Y be connected locally noetherian schemes and
let f: X =Y be a proper surjective morphism with connected fibers. Then
the induced map

fe 7P (X) = m*(Y)
18 surjective.

Proof. Let Y/ — Y be the universal connected covering. Clearly Y’ has
a canonical scheme structure. We have to show that X’ := X xy Y’ is
connected. In fact the fibers of X’ — Y’ are connected and the map is
closed and surjective. Therefore different connected components of X’ map
onto different connected components of Y’, but there is just one of the
latter. O
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Proposition 10.6. For a connected locally noetherian scheme E, there is
a natural isomorphism

g 1 7§ (E) — mi(D(E)).

Proof. An irreducible scheme has only trivial cs-topological coverings. This
implies that there is a canonical equivalence Cov(E) = Cov(['(E)) by an
argument similar to the proof of Lemma 10.4. ([

Corollary 10.7. Let E be a G-strict simple normal crossing divisor as in
Definition 1.5. Then we have a natural isomorphism

5 (E/G) — m(T(E)/G).

Proof. One combines the isomorphism g, of Proposition 10.6 with the
isomorphism of Lemma 10.2. U

11. McKay principle for homotopy type of dual complexes

Let the notation be as §1. We assume ch(k) = 0 or canonical resolution
of singularities in the sense of [BM] holds over k. Let (X,G) € Cqy, with
X smooth and 7 : X — X/G be the projection. Fix a closed reduced
subscheme S C X/G which is projective over k and contains the singular
locus (X/G)sing of X/G. Let T = 77 (S)ea be the reduced part of 71(S).
Assume that we are given the following data:

e a proper birational morphism g : Y » X /G such that Y is smooth,
Eg = g_l(S )red 1s & simple normal crossing divisor on Y and g is an
isomorphism over X/G — S

e a proper birational G-equivariant morphism f : X - X in Cayk
such that X is smooth, By = F7H(T)yeq is a G-strict simple normal

crossing divisor on X (cf. Definition 1.5) and f is an isomorphism
over X —T.

f

TN Nea =T — X X Er = f Y (T)red

| &
S —— X/G +2— v Eg =g (9)sed

Note that we do not assume that there exists a morphism Er — Eg. By
definition G act on I'(Er) and we can form the topological space I'(Er)/G.

Theorem 11.1. In the homotopy category of CW -complexes, there exists a
canonical map

¢ :T'(Er)/G — T'(Es)
which induces isomorphisms on the homology and fundamental groups:

Ho(T(Er)/G) —» H,(T(Es)) for Ya € Z,
m(D(BEr)/G) — m (T(Es)).
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IfT(E7)/G is simply connected, then ¢ is a homotopy equivalence.

The following corollaries are immediate consequences of Theorem 11.1.
Corollary 11.2. IfI'(E7)/G is contractible, then I'(Eg) is contractible.

Corollary 11.3. If T' is smooth (e.g., dim(T") = 0, meaning (X/G)sing is
isolated), then T'(Eg) is contractible.

Indeed, if T is smooth, one can take X to be the blowup of X along T
and I'(E7)/G consists only of 0-simplices.

Corollary 11.4. Let A be a complete reqular local ring containing Q and let
G be a finite group acting on A. Set X = Spec(A) and assume that X/G has
an isolated singularity s € X/G. Let g : Y — X/G be a proper morphism
such that g is an isomorphism outside s and Es = g~ '(5)req is a simple
normal crossing divisor in the reqular scheme Y. Then the topological space
['(E) is contractible.

Proof. Note that Y = X/G = Spec(A®) is automatically noetherian, X —
Y is finite and Y is complete, because we are in characteristic zero [Mu, Sec.
1.2]. One observes that the morphism X — Y is flat and locally complete
intersection outside s, see [Ma, Thm. 46, Thm. 36(4)].

By algebraization of isolated singularities [Ar, Thm. 3.8] the complete
local scheme Y results from the completion at an isolated singularity s’ € Y’
of a scheme Y of finite type over the residue field k of AY. By [El, Thm.
4] the morphism X — Y algebraizes to a morphism X’ — Y’ together
with the group action G on X'/Y', after possibly replacing Y’ by an étale
neighborbood of s’. Again after shrinking Y’ around s and using Artin
approximation [Ar] one finds a proper morphism Y’ — Y’ such that the
base change Y’ Xy Y coincides with ¥ — Y to some arbitrary high order
with respect to powers of the maximal ideal of A®. By choosing the order
large one can make sure that Y/ — Y is an isomorphism outside s’, that Y”
is regular and that the reduced preimage Ey of s’ in Y’ is a simple normal
crossing divisor.

It follows from Corollary 11.3 that I'(Ey) = I'(Es) is contractible. O

Proof of Theorem 11.1. The last assertion follows from the first using
the relative version of the Hurewicz theorem (cf. [Hat, 4.33]). Choose a
G-equivariant proper birational morphism A : X’ — X such that:

e X' is smooth, E! s = h™Y(E7)red is a G-strict sunple normal crossing
divisor on X’ and h is an isomorphism over X — - Ep.
e There exists a G-equivariant proper morphism X' =Y.
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Thus we get a commutative diagram

T Erp El,
)
X X X'
-
X£G<717

and a G-equivariant map p : E}. — Er.
Claim 11.5. p induces a G-equivariant homotopy equivalence
I(Er) ~ T(ET)

and hence a homotopy equivalence I'(EY,) /G =~ I'(Er)/G.

The claim is a consequence of the following general fact:

Theorem 11.6. Let G be a group. Let ¢ : X' — X be a G-equivariant
proper morphism of smooth projective G-schemes over k such that ¢ is an
1somorphism over a dense open subset U C X and such that E = X — U
(resp. E' = X' — ¢~ Y(U)) is a G-strict simple normal crossing divisor on
X (resp. X'). Then the induced map T'(E') — T'(FE) is a G-equivariant
homotopy equivalence.

The case G = e is Stepanov’s theorem [St] and its generalizations [Pa,
Theorem 1.1] and [ABW1, Theorem 7.5]. The G-equivariant version is
proved by the exactly same argument by replacing the weak factorization
theorem of Wlodarczyk [W1] with its equivariant version [AKMW, Theorem
0.3.1 and Remark (2)]. O

By Claim 11.5 we may assume that there exist a morphism ¢ : X /G — Y.
Take a proper birational morphism h : Y' — X /G such that Y is smooth,
Ey = h=Y(Er/G)1eq is a simple normal crossing divisor on Y’ and h is an
isomorphism on Y’ — EY%. Thus we get a commutative diagram:

7T_1(S) =T «— FEr

\ \
x < X
(11.1) b N
xX/G < v <& X/)6 &y
T T T T

S <~ Es <« Er/G <« E&.

From the diagram we get maps of C'W-complexes:

D(EL) o D(Br) /G 25 T(Ey).
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The composite of these maps is a homotopy equivalence by Theorem 11.6.
Hence the assertion on the fundamental groups follows if one shows the
surjectivity of the induced maps

w1 (T(ES)) 25 m(D(Er) /G) 25 7 (T (Es)).

Noting Y = X /G — Y have geometrically connected fibers by Zariski’s
main theorem, the assertion follows from Proposition 10.6, Corollary 10.7
and Proposition 10.5.

It remains to show the assertion on the homology groups. Recall that we
are given a commutative diagram

ﬂ'il(S>red =7 — X 5(; < Er = fﬁl(T)red

(11.2) l lﬁ lﬁ

§ — X/G +1- Y Es =g 1(S)red
where the assumption is the same as in the beginning of this section. Note
that we are now given 7 : X — Y which extends 7 : X — X /G. It induces a

map ¢ : Ep/G — Eg and we are ought to show that it induces isomorphisms
on the homology groups

H,(T(Er)/G) — Ho(T(Es)) (a € Z).

Since S (and hence T') is assumed projective over k, we may choose X, X

and Y projective over k. By Example 1.6, the homology groups of the dual
complexes are described as the weight homology groups:

H,(T(BE7)/G, M) ~ HY (Br,G; M), H,(T(Es), M)~ HY (Eg; M),

where M is any coefficient module. Thus the desired assertion follows from
the following claim which holds over a field k of arbitrary characteristic.

Claim 11.7. Let the assumption be as (11.2) and assume that X, X and

Y are projective over k. Assume the condition (%) of Theorem 1.4. For a
A-module M, the map (Er,G) — (Es,e) in Ceqi, induces an isomorphism

H, (Er,G; M) ~ HY (Es; M).
Proof. We have a commutative diagram with exact rows
HY (X, G M) — HY (X = Br,G; M) —= H)Y (Br,G; M) —= HY (X, G; M)

| | i

HY (Y3 M) HY (Y = Eg; M) — H)Y (Eg; M) — H)Y (Y; M).

The second vertical isomorphism follows from Theorem 1.7 noting
(X —Ep)/G~Y — Eg.
By Theorem 1.4(i) this implies the desired isomorphism of the claim. ]
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