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On the pre-image of a point under an
isogeny and Siegel’s theorem

Jonathan Reynolds

Abstract. Consider a rational point on an elliptic curve under an
isogeny. Suppose that the action of Galois partitions the set of its pre-
images into n orbits. It is shown that all but finitely many such points
have their denominator divisible by at least n distinct primes. This gen-
eralizes Siegel’s theorem and more recent results of Everest et al. For
multiplication by a prime l, it is shown that if n > 1 then either the
point is l times a rational point or the elliptic curve admits a rational
l-isogeny.
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1. Introduction

Let (E,O) denote an elliptic curve defined over a number field K with
Weierstrass coordinate functions x, y. Siegel [24] proved that there are only
finitely many P ∈ E(K) with x(P ) belonging to the ring of integers OK .
Given a finite set S of prime ideals of OK , the ring of S-integers in K is

OKS := {x ∈ K : ordp(x) ≥ 0 for all p /∈ S}.
Mahler [21] conjectured that there are finitely many P ∈ E(K) with x(P ) ∈
OKS and proved his conjecture for K = Q. Lang [19] gave a modernized
exposition and proved Mahler’s conjecture for number fields. A corollary
to this is that there are finitely many P ∈ E(K) with f(P ) ∈ OKS , where
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f ∈ K(E) is any function having a pole at O (see Corollary 3.2.2 in Chapter
IX of [26]). It is unknown how much further these S-integral points can be
generalized before finiteness fails. For example, in [13] Everest and Mahé
suggest that, in rank one subgroups, only the size of S has to be fixed and
not the primes in the set.

Everest, Miller and Stephens [14] proved under an additional hypothesis
for K = Q that there are finitely many multiples mP of a nontorsion point
P which have the denominator of x(mP ) divisible by a single prime not
belonging to a fixed set. These denominators generate an elliptic divisibility
sequence, a genus-1 analogue of more classical sequences such as Fibonacci
or Mersenne, and the hypothesis, which they called magnified, is that the
nontorsion point P has a preimage defined in a number field of degree less
than the degree of the isogeny (see Definition 2.1). The finiteness result
concerning primes in elliptic divisibility sequences was generalized to number
fields under an extra assumption that the pre-image lie in a Galois extension
[12]. In what follows this extra assumption is removed, there is no restriction
to rank one subgroups and, analogous to the results for integral points, S and
f are arbitrary (see Theorem 1.1). Moreover, using the division polynomia
ls of E, the magnified condition is replaced with a factorization criterion
which can be checked more readily (see Theorem 2.4). This leads to a proof
that the magnified condition often fails for prime degrees. In particular,
either the magnified point is l times a rational point or the elliptic curve
admits a rational l-isogeny for some prime l (see Theorem 1.2). Hence,
Theorem 1.1 supports the afore mentioned conjecture of Everest and Mahé
but Theorem 1.2 shows that Theorem 1.1 is unlikely to resolve the conjecture
in general.

1.1. Division polynomials. Let E be an elliptic curve defined over a field
K with Weierstrass coordinate functions x, y. For any integer m ∈ Z, the
mth division polynomial of E is the polynomial ψm ∈ K[x, y] ⊂ K(E) as
given on p. 39 of [1]. Moreover, ψ2

m ∈ K[x] and there exists θm ∈ K[x] with

[m]x =
θm

ψ2
m

.

Given P ∈ E(K), define δP
m ∈ K[x] by

δP
m =

{
θm − x(P )ψ2

m if P 6= O

ψ2
m otherwise.

The zeros of δP
m give the values of x(R) for which mR = P .

Theorem 1.1. Let K be a number field, S a finite set of prime ideals of
OK and f ∈ K(E) a function having a pole at O. Suppose that δP

m has n
factors over K for some P ∈ E(K). Then for all but finitely many such
points,

(1.1) {primes p /∈ S : ordp(f(P )) < 0}



ON THE PRE-IMAGE OF A POINT UNDER AN ISOGENY 165

contains at least n distinct primes.

By Siegel’s theorem, along with the generalizations of it by Mahler and
Lang, (1.1) contains at least one prime for all P ∈ E(K) of sufficiently
large height. So Theorem 1.1 extends Siegel’s result whenever δP

m factorizes
for some nontorsion point P . In Section 3 it shown that the finitely many
exceptional points are m times a U -integral point for some finite set U of
prime ideals of OL, where U and L are given explicitly. Quantitative results
for the number of exceptional points can be found using [16].

In addition to being conjectured finite [12, 14, 15], the number of prime
terms in an elliptic divisibility sequence coming from a minimal Weierstrass
equation is believed to be uniformly bounded [10, 20]. Similarly, the number
of terms without a primitive divisor is believed to be uniformly bounded
[11, 17, 18]. There are also links between primitive divisors and extensions
of Hilbert’s tenth problem [5, 9]. However, most results in these directions
have also used that δP

m factorizes for some m. Therefore it seems reasonable
to give a detailed study of this condition.

LetK be a number field and E/K an elliptic curve. If Lehmer’s conjecture
holds (see [25]), and ε > 0 is such that ĥ(Q) ≥ ε

[K(Q):K] for all Q ∈ E(K),
then for all R ∈ E(K) with mR = P we have

[K(R) : K] ≥ ε

ĥ(R)
=

ε

ĥ(P )
m2.

In other words, the number of factors of δP
m is bounded in terms of ĥ(P ), and

independent of m. Sookdeo [27] has used a similar argument in a dynamical
context. Since ε is unknown, Lehmer’s conjecture gives no way of knowing
whether or not δP

m is irreducible for all m. For prime degrees this issue is
resolved by the following:

Theorem 1.2. Let l be a prime, E an elliptic curve defined over a field K
with charK - l and P a K-rational point on E. Then either

(i) δP
l is irreducible, or

(ii) E admits a K-rational l-isogeny, or
(iii) [l]−1P contains a K-rational point.

Given an elliptic curve E/Q, the set of all curves E′ isogenous to E over
Q is finite (up to isomorphism) and is known as an isogeny class. Vélu’s
formulae [28] and the Weierstrass parameterization of the elliptic curve can
be used to find an isogeny class. This is best illustrated in an algorithm
developed by Cremona [7]. He has used his algorithm to produce tables of
isogeny classes [6]. For each curve in the class, nontorsion generators of the
Mordell–Weil group are also given. For a number field the primes which can
occur as orders of isogenies have been well studied [3]. Applying a famous
result of Mazur [22] gives:
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Corollary 1.3. Let K = Q and P ∈ E(Q). If δP
l factorizes for some prime

l then either P is l times a rational point, or l ≤ 19, or l=37, 43, 67, or
163.

The criterion in Corollary 1.3 can readily be checked using, for example,
MAGMA [2] and so gives a way to determine if δP

l is irreducible for all primes
l. What is known for composite m is discussed in Section 5; note that if
δP
m factorizes then δP

d does not necessarily factorize for some proper divisor
d > 1 of m, but counter-examples have only been found when m = 4.

Acknowledgement. The author thanks the referee for recommending var-
ious improvements in exposition.

2. The action of Galois on preimages

Let E be an elliptic curve defined over a field K with Weierstrass coor-
dinate functions x, y. Given a Galois extension L/K, σ ∈ Gal(L/K) and
R ∈ E(L), σ(R) is defined by σ(R) = (x(R)σ, y(R)σ).

Definition 2.1 ([12]). Let K be a field, E/K an elliptic curve, P ∈ E(K)
and φ : E′ → E an isogeny. Suppose that E′, φ and a point in φ−1(P ) are
all defined over a finite extension L/K. If [L : K] < deg φ then P is called
magnified.

Below (Theorem 2.4) it is shown that for a perfect field (which includes
the applications referenced above) the magnified condition is equivalent to
δP
m factorizing for some m.

Lemma 2.2. Assume that charK 6= 2 or K is perfect. Suppose that P ∈
E(K) is not a 2-torsion point, E′/K is an elliptic curve with Weierstrass
coordinate functions x′, y′ and φ : E′ → E is an isogeny defined over K with
φ(R) = P for some R ∈ E′(K). Then K(x′(R), y′(R)) = K(x′(R)).

Proof. Put L = K(x′(R)) and L′ = K(x′(R), y′(R)). Then [L′ : L] ≤ 2.
The assumptions on K make L′/L Galois. Suppose that [L′ : L] = 2 and
choose σ to be the generator of Gal(L′/L). Then T = σ(R) − R is in the
kernel of φ since σ(φ(R)) − φ(R) = O. But σ fixes x′(R) so R + T = ±R.
Since P is not a 2-torsion point it follows that σ(R) = R and L′ = L. �

Lemma 2.3. Assume that K is perfect. If P ∈ E(K) \E[2] is magnified by
an isogeny φ : E′ → E of degree m then it is magnified by [m].

Proof. Suppose that E′, φ and Q ∈ φ−1(P ) are all defined over a finite
extension L/K with [L : K] < m. The dual φ̂ : E → E′ of φ is defined
over L. Let R ∈ φ̂−1(Q). Lemma 2.2 gives L(x(R), y(R)) = L(x(R)). Now
f = x′ ◦ φ̂ ∈ L(E) = L(x, y) is an even function. Hence, f ∈ L(x) and
f(x) = x′(Q) gives a polynomial in L[x] whose roots determine the values
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of x(R). Since #φ̂−1(Q) ≤ deg φ̂ = m and K is perfect, this polynomial
cannot have an irreducible factor of degree larger than m. Thus,

[L(x(R)) : K] = [L(x(R)) : L][L : K] < m2. �

Theorem 2.4. For K a perfect field and an elliptic curve E/K, P ∈ E(K)
is magnified if and only if δP

m factorizes over K for some m.

Proof. If P ∈ E[2] then 3P = P so δP
3 factorizes. So assume that P /∈ E[2].

By Lemma 2.3, P is magnified if and only if it is magnified by [m] for some
m > 1. The result now follows from Lemma 2.2. �

3. Proof of Theorem 1.1

Proof of Theorem 1.1. Suppose firstly that f is an x-coordinate function
relative to some Weierstrass equation for E. Fix a set of generators of
E(K)/mE(K) and for every Pj in the set, adjoin to K the coordinates of
the points in [m]−1Pj . Note that this finite extension L does not depend on
P and that the splitting field of δP

m is contained within it. Let U be a finite
set of prime ideals of OL containing:

• those which lie above the ideals in S,
• those at which the coefficients of the Weierstrass equation are not

integral,
• those which make x(T ) a U -integer for all nonzero T ∈ E[m], and
• those which make OLU a principal ideal domain.

By the Siegel–Mahler theorem we can assume that no R ∈ [m]−1P is U -
integral. Write x(R) = AR/B

2
R, where AR and BR are coprime in OLU .

Then

(3.1) x(P ) =
θm(x(R))
ψ2

m(x(R))
=

B2m2

R θm

(
AR

B2
R

)
B2

R

(
B

2(m2−1)
R ψ2

m

(
AR

B2
R

)) ,
where BR is coprime with the numerator. Let R and R′ be two distinct
points in [m]−1P . Then R′ = R+ T for some nonzero T ∈ E[m]. From the
addition formula it can be seen that BR and BR′ are coprime in OLU . Any
conjugate of a prime in the factorization of BR over OLU divides the denomi-
nator of some element in the orbit {σ(x(R)) : σ ∈ Gal (L/K)}. Hence, using
(3.1), the number of distinct prime ideals p /∈ S of OK with ordp(x(P )) < 0
is at least equal to the number of factors of δP

m over K.
Finally, suppose that f ∈ K(E) has a pole at O. We may assume that a

Weierstrass equation for E/K is of the the form y2 equal to a monic cubic
in K[x]. Now f ∈ K(C) = K(x, y) and [K(x, y) : K(x)] = 2 give

f(x, y) =
φ(x) + ψ(x)y

η(x)
,
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where φ(x), ψ(x), η(x) ∈ K[x]. Now ordO(φ) = ordO(xdeg φ) = −2 deg φ.
Similarly, ordO(ψ) = −2 degψ and ordO(η) = −2 deg η. Since O is a pole of
f ,

ordO(f) = ordO(φ+ ψy)− ordO(η) < 0.
But ordO(φ + ψy) ≥ min{ordO(φ), ordO(ψ) + ordO(y)} and ordO(y) = −3,
thus

(3.2) 2 deg η < max{2 deg φ, 2 degψ + 3}.
Enlarge S so that:

• OKS is a a principal ideal domain;
• the coefficients of the Weierstrass equation are S-integers;
• φ(x), ψ(x), η(x) ∈ OKS [x] and their leading coefficients are S-units.

Write (x(P ), y(P )) =
(
AP /B

2
P , CP /B

3
P

)
, where APCP and BP are coprime

in OKS . The condition (3.2) gives that BP divides the denominator and is
coprime the numerator of f(P ) in OKS . Thus the result follows from the
case f = x above. �

4. Proof of Theorem 1.2

The condition that charK - m ensures that multiplication by m is sep-
arable and that #[m]−1P = m2 (see 4.10 and 5.4 in Chapter III of [26]).
Hence, for P /∈ E[2] the splitting of field of δP

m is Galois over K. Note
that (Z/mZ)2 is isomorphic to E[m] and bijective with [m]−1P . The ac-
tions of Galois on E[m] and on [m]−1P are described by homomorphisms
Gal(K̄/K) → GL2(Z/mZ) and Gal(K̄/K) → AGL2(Z/mZ). Let Gm and
Gm be the images of these maps. Consider the homomorphism αm : Gm →
Gm given by αm((A, v)) = A, where A ∈ GL2(Z/mZ) and v ∈ (Z/mZ)2.

Lemma 4.1. Let E be an elliptic curve defined over a field K with charK 6=
2 and let P be a K-rational point on E. Then either

(i) δP
2 is irreducible,

(ii) P is a 2-torsion point,
(iii) [2]−1P has a K-rational point, or
(iv) P is the image of a K-rational point under a K-rational 2-isogeny.

Proof. Let 2R = P . Suppose that P is not a 2-torsion point. Using
Lemma 2.2, let L = K(x(R), y(R)) = K(x(R)). If δP

2 factorizes then we
may choose R so that [L : K] ≤ 2. If [L : K] = 1 then we are in case (iii). If
[L : K] = 2 then choose σ ∈ Gal(L/K) to be nontrivial. Then T = σ(R)−R
is a 2-torsion point since σ(2R)−2R = O. Also T ∈ E(K) since σ(T ) = −T .
Using this torsion point, we can construct an elliptic curve E′/K and a 2-
isogeny φ : E → E′ with kerφ = {O, T} (see 8.2.1 of [4]). Moreover, both φ
and its dual φ̂ : E′ → E are defined over K. Put φ(R) = Q. It follows that
σ(Q) = φ(σ(R)) = φ(R+ T ) = φ(R). Hence Q ∈ E′(K) and φ̂(Q) = P . �

Note that, for l = 2, Lemma 4.1 is stronger than Theorem 1.2.
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Proof of Theorem 1.2. If P ∈ E[2] then we are in case (ii) or (iii). So
assume that P /∈ E[2]. If # kerαl > 1 then there exists a non zero l-
torsion point T and σ ∈ Gal(K̄/K) with σ(R) = R + T for all R ∈ [l]−1P .
Hence τστ−1(R) = R + τ(T ) for any τ ∈ Gal(K̄/K). If τ(T ) ∈ 〈T 〉 for all
τ ∈ Gal(K̄/K) then we are in case (ii) (see 4.12 and 4.13 in Chapter III of
[26]). Otherwise, Galois acts transitively on [l]−1P and we are in case (i).

Thus, it remains to consider the case where αl : Gl → Gl is an isomorphism
and, by Lemma 4.1, l > 2. So αl has an inverse A→ (v → Av+ bA) and the
map βl : Gl → E[l] given by βl(A) = bA is a crossed homomorphism because
βl(AB) = AbB + bA. The map βl is said to be principal if for some fixed
v ∈ (Z/lZ)2, βl(A) = Av − v for all A ∈ Gl. The group H1(Gl, E[l]) is the
quotient of the group of crossed homomorphisms Gl → E[l] and the group
of principal ones. If l does not divide #Gl then the orders of Gl and E[l]
are coprime, so it follows that H1(Gl, E[l]) = 0. So assume that l | #Gl and
apply Proposition 15 of [23]. Either Gl is contained in a Borel subgroup and
so we are in case (ii) since then the span of some point of order l is fixed by
Galois, or Gl contains Hl = SL2(Z/lZ). For the second possibility construct
an inflation-restriction sequence as in the proof of Lemma 4 in [8]. Note
that Hl is normal since it is the kernel of the determinant on Gl. There is
an exact sequence

0 → H1(Gl/Hl, E[l]Hl) → H1(Gl, E[l]) → H1(Hl, E[l]).

For l > 2 the first cohomology group is trivial since E[l]Hl is trivial. By [8,
Lemma 3], the third cohomology group is also trivial. Hence H1(Gl, E[l]) =
0 and so βl must be principal. But then −v = −Av + βl(A) for all A ∈ Gl

gives a fixed point for the action on [l]−1P so we are in case (iii). �

5. Multiplication by a composite

Let αm be as in Section 4. A result for all composite m is:

Theorem 5.1. Let m > 1 be a composite integer, E an elliptic curve defined
over a field K with charK - m and P a K-rational point on E. Then either

(i) δP
m is irreducible,

(ii) δP
d factorizes, where d > 1 is a proper divisor of m,

(iii) E admits a K-rational l-isogeny for some prime l | m, or
(iv) αm is an isomorphism.

Proof. If # kerαm > 1 then there exists a nonzero m-torsion point T and
σ ∈ Gal(K̄/K) with σ(R) = R+T for all R ∈ [m]−1P . If T has order d1 then
write d1 = ld2 where l is prime. Now σd2R = R + d2T for all R ∈ [m]−1P .
Hence τσd2τ−1(R) = R + τ(d2T ) for any τ ∈ Gal(K̄/K). Assume that
τ(d2T ) is not a multiple of d2T for some τ ∈ Gal(K̄/K); otherwise we are
in case (iii). Then we can always find a Galois element which will take R
to R + T1, where T1 is any l-torsion point. Assume that P /∈ E[2] and
δP
m factorizes over K. Let R1, R2 ∈ [m]−1P correspond to roots of two
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different factors. By assumption for any T1 ∈ E[l], R2 + T1 corresponds to
a root of the same polynomial. Thus, ρ(R1) − R2 is not a l-torsion point
for any ρ ∈ Gal(K̄/K). So ρ(lR1) 6= lR2 for any ρ ∈ Gal(K̄/K). Since
lR1, lR2 ∈ [m/l]−1P , Galois does not act transitively on [m/l]−1P and so
we are in case (ii). �

Let Dm be the square-free polynomial whose roots are the x-coordinates
of the points of order m on E. Then the action of Galois on E[m] is given
by the Galois group of Dm. Note that, for m = 4, all of the cases in
Theorem 5.1 are necessary. For example, taking the curve “117a4” with
P = (8, 36) we see that (iv) is false because the Galois groups of δP

4 and D4

have different orders; moreover, only (iii) is true. For the curve “55696ba1”
and the generator Cremona gives, by checking that the curve has a trivial
isogeny class, we see that only (iv) is true. When m has two coprime proper
divisors we have:

Theorem 5.2. Suppose that m > 1 is composite and m = d1d2 where d1, d2

are coprime proper divisors. If δP
m factorizes then either δP

d1
or δP

d2
factorizes.

Proof. There exists x, y ∈ Z such that xd1 + yd2 = 1. Consider the homo-
morphism Gm → Gd1 × Gd2 given by ρ → (ρ, ρ). If ρ is in the kernel of this
map then ρ(d2R) = d2R and ρ(d1R) = d1R for all R ∈ [m]−1P . But then
xρ(d1R) + yρ(d2R) = ρ(R) = R for all R ∈ [m]−1P . So Gm

∼= Gd1 × Gd2 .
Assume that P /∈ E[2] and δP

d1
is irreducible. Then for any R ∈ [m]−1P and

T ∈ E[d1] there exists σ ∈ Gd1 with σ(d2R) = d2R + T . Define (σ, Id) by
(σ, Id)(R) = n2σ(d2R) + n1(d1R). Since Gm

∼= Gd1 × Gd2 , (σ, Id) ∈ Gm. For
any R ∈ [m]−1P , (σ, Id)(R) = R+ n2T . So, since d1 and n2 are coprime, R
andR+T must correspond to roots of the same polynomial. Suppose that δP

m

factorizes and let R1, R2 ∈ [m]−1P correspond to roots of two different fac-
tors. Then ρ(R1)−R2 /∈ E[d1] or ρ(d1R1) 6= ρ(d1R2) for all ρ ∈ Gal(K̄/K).
Since d1R1, d1R2 ∈ [d2]−1P it follows that δP

d2
factorizes. �

Hence the case where m is a composite prime power remains. Although
no further results could be proven it is perhaps worth noting that, in all
of Cremona’s data, an example where (i) and (ii) are false in Theorem 5.1
could not be found when 4 < m ≤ 25.
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