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Clique minors in
Cartesian products of graphs

David R. Wood

Abstract. A clique minor in a graph G can be thought of as a set
of connected subgraphs in G that are pairwise disjoint and pairwise
adjacent. The Hadwiger number η(G) is the maximum cardinality of a
clique minor in G. It is one of the principle measures of the structural
complexity of a graph.

This paper studies clique minors in the Cartesian product G�H. Our
main result is a rough structural characterisation theorem for Cartesian
products with bounded Hadwiger number. It implies that if the product
of two sufficiently large graphs has bounded Hadwiger number then it
is one of the following graphs:
• a planar grid with a vortex of bounded width in the outerface,
• a cylindrical grid with a vortex of bounded width in each of the

two ‘big’ faces, or
• a toroidal grid.
Motivation for studying the Hadwiger number of a graph includes

Hadwiger’s Conjecture, which asserts that the chromatic number χ(G) ≤
η(G). It is open whether Hadwiger’s Conjecture holds for every Carte-
sian product. We prove that G�H (where χ(G) ≥ χ(H)) satisfies
Hadwiger’s Conjecture whenever:
• H has at least χ(G) + 1 vertices, or
• the treewidth of G is sufficiently large compared to χ(G).

On the other hand, we prove that Hadwiger’s Conjecture holds for all
Cartesian products if and only if it holds for all G�K2. We then show
that η(G�K2) is tied to the treewidth of G.

We also develop connections with pseudoachromatic colourings and
connected dominating sets that imply near-tight bounds on the Had-
wiger number of grid graphs (Cartesian products of paths) and Ham-
ming graphs (Cartesian products of cliques).
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1. Introduction

A clique minor in a graph G can be thought of as a set of connected sub-
graphs in G that are pairwise disjoint and pairwise adjacent. The Hadwiger
number η(G) is the maximum cardinality of a clique minor in G. It is one
of the principle measures of the structural complexity of a graph.

Robertson and Seymour [46] proved a rough structural characterisation
of graphs with bounded Hadwiger number. It says that such a graph can
be constructed by a combination of four ingredients: graphs embedded in a
surface of bounded genus, vortices of bounded width inside a face, the ad-
dition of a bounded number of apex vertices, and the clique-sum operation.
Moreover, each of these ingredients is essential. This result is at the heart of
Robertson and Seymour’s proof of Wagner’s Conjecture [47]: Every infinite
set of finite graphs contains two graphs, one of which is a minor of the other.

This paper studies clique minors in the (Cartesian) product G�H. Our
main result is a rough structural characterisation of products with bounded
Hadwiger number, which is less rough than the far more general result by
Robertson and Seymour. It says that for connected graphs G and H, each
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with at least one edge, G�H has bounded Hadwiger number if and only if
at least one of the following conditions are satisfied:

• G has bounded treewidth and H has bounded order,
• H has bounded treewidth and G has bounded order, or
• G has bounded hangover and H has bounded hangover,

where hangover is a parameter defined in Section 11. Basically, a graph with
bounded hangover is either a cycle or consists of a path of degree-2 vertices
joining two connected subgraphs of bounded order with no edge between the
subgraphs. This implies that if the product of two sufficiently large graphs
has bounded Hadwiger number then it is one of the following graphs:

• a planar grid (the product of two paths) with a vortex of bounded
width in the outerface,
• a cylindrical grid (the product of a path and a cycle) with a vortex

of bounded width in each of the two ‘big’ faces, or
• a toroidal grid (the product of two cycles).

The key case for the proof of this structure theorem is when G and H are
trees. This case is handled in Section 9. The proof for general graphs is
given in Sections 10 and 11.

Before proving our main results we develop connections with pseudoachro-
matic colourings (Section 4) and connected dominating sets (Sections 5 and
6) that imply near-tight bounds on the Hadwiger number of grid graphs
(products of paths; Sections 3, 4 and 6) and Hamming graphs (products of
cliques; Section 7). As summarised in Table 1, in each case, we improve

the best previously known lower bound by a factor of between Ω(n1/2) and

Ω(n3/2) to conclude asymptotically tight bounds for fixed d.

Table 1. Improved lower bounds on the Hadwiger number
of specific graphs.

graph d previous best new result reference

grid graph P dn even Ω(n(d−2)/2) Θ(nd/2) Theorem 3.2

grid graph P dn odd Ω(n(d−1)/2) Θ(nd/2) Theorem 4.4

Hamming graph Kd
n even Ω(n(d−2)/2) Θ(n(d+1)/2) Theorem 7.5

Hamming graph Kd
n odd Ω(n(d−1)/2) Θ(n(d+1)/2) Theorem 7.5

1.1. Hadwiger’s conjecture. Motivation for studying clique minors in-
cludes Hadwiger’s Conjecture, a far reaching generalisation of the 4-colour
theorem, which states that the chromatic number χ(G) ≤ η(G) for every
graph G. It is open whether Hadwiger’s Conjecture holds for every product.
The following classes of products are known to satisfy Hadwiger’s Conjecture
(where G and H are connected and χ(G) ≥ χ(H)):

• The product of sufficiently many graphs relative to their maximum
chromatic number satisfies Hadwiger’s Conjecture [9].
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• If χ(H) is not too small relative to χ(G), then G�H satisfies Had-
wiger’s Conjecture [7, 43].

See Section 12 for precise versions of these statements. We add to this list
as follows:

• If H has at least χ(G) + 1 vertices, then G�H satisfies Hadwiger’s
Conjecture (Theorem 12.4).
• If the treewidth of G is sufficiently large compared to χ(G), then
G�H satisfies Hadwiger’s Conjecture (Theorem 12.3).

On the other hand, we prove that Hadwiger’s Conjecture holds for all G�H
with χ(G) ≥ χ(H) if and only if Hadwiger’s Conjecture holds for G�K2.
We then show that η(G�K2) is tied to the treewidth of G. All these results
are presented in Section 12.

Clique minors in products have been previously considered by a number
of authors [61, 40, 32, 1, 38, 7, 43, 9]. In related work, Xu and Yang [59]
and Špacapan [53] studied the connectivity of products, Drier and Linial
[16] studied minors in lifts of graphs, and Goldberg [20] studied the Colin de
Verdière number of products. See [31, 30, 24] for more on graph products.

2. Preliminaries

All graphs considered in this paper are undirected, simple, and finite;
see [4, 13]. Let G be a graph with vertex V (G) and edge set E(G). Let
v(G) = |V (G)| and e(G) = |E(G)| respectively denote the order and size of
G. Let ∆(G) denote the maximum degree of G. The chromatic number of
G, denoted by χ(G), is the minimum integer k such that each vertex of G
can be assigned one of k colours such that adjacent vertices receive distinct
colours. Let Kn be the complete graph with n vertices. A clique of a graph
G is a complete subgraph of G. The clique number of G, denoted by ω(G),
is the maximum order of a clique of G. Let Pn be the path with n vertices.
By default, V (Kn) = [n] and Pn = (1, 2, . . . , n). A leaf in a graph is a vertex
of degree 1. Let Sn be the star graph with n leaves; that is, Sn = K1,n.

2.1. Vortices. Consider a graph H embedded in a surface; see [41]. Let
(v1, v2, . . . , vk) be a facial cycle in H. Consider a graph G obtained from
H by adding sets of vertices S1, S2, . . . , Sk (called bags), such that for each
i ∈ [k] we have vi ∈ Si ∩ V (H) ⊆ {v1, . . . , vk}, and for each vertex v ∈ ∪iSi,
if R(v) := {i ∈ [k], v ∈ Si} then for some i, j, either R(v) = [i, j] or R(v) =
[i, k] ∪ [1, j], and for each edge vw ∈ E(G) with v, w ∈ ∪iSi there is some
i ∈ [k] for which v, w ∈ Si. Then G is obtained from H by adding a vortex
of width maxi |Si|.

2.2. Graph products. LetG andH be graphs. The Cartesian (or square)
product of G and H, denoted by G�H, is the graph with vertex set

V (G�H) := V (G)× V (H) := {(v, x) : v ∈ V (G), x ∈ V (H)},
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where (v, x)(w, y) is an edge of G�H if and only if vw ∈ E(G) and x = y,
or v = w and xy ∈ E(H).

Assuming isomorphic graphs are equal, the Cartesian product is com-
mutative and associative, and G1 �G2 � · · ·�Gd is well-defined. We can
consider a Cartesian product G := G1 �G2 � · · ·�Gd to have vertex set

V (G) = {v = (v1, v2, . . . , vd) : vi ∈ V (Gi), i ∈ [d]},
where vw ∈ E(G) if and only if viwi ∈ E(Gi) for some i, and vj = wj for all
j 6= i; we say that the edge vw is in dimension i. For a graph G and integer
d ≥ 1, let Gd denote the d-fold Cartesian product

Gd := G�G� · · · �G︸ ︷︷ ︸
d

.

Since the Cartesian product is the focus of this paper, it will henceforth
be simply referred to as the product. Other graph products will be briefly
discussed. The direct product G×H has vertex set V (G)×V (H), where (v, x)
is adjacent to (w, y) if and only if vw ∈ E(G) and xy ∈ E(H). The strong
product G�H is the union of G�H and G×H. The lexicographic product
(or graph composition) G · H has vertex set V (G) × V (H), where (v, x) is
adjacent to (w, y) if and only if vw ∈ E(G), or v = w and xy ∈ E(H).
Think of G ·H as being constructed from G by replacing each vertex of G
by a copy of H, and replacing each edge of G by a complete bipartite graph.
Note that the lexicographic product is not commutative.

2.3. Graph minors. A graph H is a minor of a graph G if H can be
obtained from a subgraph of G by contracting edges. For each vertex v of
H, the connected subgraph of G that is contracted into v is called a branch
set of H. Two subgraphs X and Y in G are adjacent if there is an edge with
one endpoint in X and the other endpoint in Y . A Kn-minor of G is called
a clique minor. It can be thought of as n connected subgraphs X1, . . . , Xn

of G, such that distinct Xi and Xj are disjoint and adjacent. The Hadwiger
number of G, denoted by η(G), is the maximum n such that Kn is a minor
of G.

The following observation is used repeatedly.

Lemma 2.1. If H is a minor of a connected graph G, then G has an H-
minor such that every vertex of G is in some branch set.

Proof. Start with an H-minor of G. If some vertex of G is not in a branch
set, then since G is connected, some vertex v of G is not in a branch set
and is adjacent to a vertex that is in a branch set X. Adding v to X gives
an H-minor using more vertices of G. Repeat until every vertex of G is in
some branch set. �

In order to describe the principal result of this paper (Theorem 11.8),
we introduce the following formalism. Let α : X → R and β : X → R be
functions, for some set X . Then α and β are tied if there is a function f
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such that α(x) ≤ f(β(x)) and β(x) ≤ f(α(x)) for all x ∈ X . Theorem 11.8
presents a function that is tied to η(G�H).

2.4. Upper bounds on the Hadwiger number. To prove the tightness
of our lower bound constructions, we use the following elementary upper
bounds on the Hadwiger number.

Lemma 2.2. For every connected graph G with average degree at most
δ ≥ 2,

η(G) ≤
√

(δ − 2)v(G) + 3.

Proof. Let k := η(G). Say X1, . . . , Xk are the branch sets of Kk-minor in
G. By Lemma 2.1, we may assume that every vertex is in some branch set.
Since at least

(
k
2

)
edges have endpoints in distinct branch sets,

e(G) ≥
(
k

2

)
+

k∑

i=1

e(Xi) ≥
(
k

2

)
+

k∑

i=1

(
v(Xi)− 1

)
=

(
k

2

)
+ v(G)− k.

Since 2e(G) = δ v(G), we have k2− 3k− (δ− 2)v(G) ≤ 0. The result follows
from the quadratic formula. �

The following result, first proved by Ivančo [32], is another elementary
upper bound on η(G). It is tight for a surprisingly large class of graphs; see
Proposition 8.3. We include the proof for completeness.

Lemma 2.3 ([32, 54]). For every graph G,

η(G) ≤
⌊
v(G) + ω(G)

2

⌋
.

Proof. Consider a Kn-minor in G, where n := η(G). For j ≥ 1, let nj be
the number of branch sets that contain exactly j vertices. Thus

v(G)− n1 ≥
∑

j≥2

j · nj ≥ 2
∑

j≥2

nj = 2(n− n1).

Hence v(G)+n1 ≥ 2n. The branch sets that contain exactly one vertex form
a clique. Thus n1 ≤ ω(G) and v(G) + ω(G) ≥ 2n. The result follows. �

2.5. Treewidth, pathwidth and bandwidth. Another upper bound on
the Hadwiger number is obtained as follows. A tree decomposition of a graph
G consists of a tree T and a set {Tx ⊆ V (G) : x ∈ V (T )} of ‘bags’ of vertices
of G indexed by T , such that:

• For each edge vw ∈ E(G), there is some bag Tx that contains both
v and w.
• For each vertex v ∈ V (G), the set {x ∈ V (T ) : v ∈ Tx} induces a

nonempty (connected) subtree of T .
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The width of the tree decomposition is max{|Tx| : x ∈ V (T )} − 1. The
treewidth of G, denoted by tw(G), is the minimum width of a tree decom-
position of G. For example, G has treewidth 1 if and only if G is a forest. A
tree decomposition whose underlying tree is a path is called a path decom-
position, and the pathwidth of G, denoted by pw(G), is the minimum width
of a path decomposition of G. The bandwidth of G, denoted by bw(G),
is the minimum, taken over of all linear orderings (v1, . . . , vn) of V (G), of
max{|i− j| : vivj ∈ E(G)}. It is well-known [3] that for every graph G,

(1) η(G) ≤ tw(G) + 1 ≤ pw(G) + 1 ≤ bw(G) + 1.

3. Hadwiger number of grid graphs

In this section we consider the Hadwiger number of the products of paths,
so called grid graphs. First consider the n×m grid Pn�Pm. It has no K5-
minor since it is planar. In fact, η(Pn�Pm) = 4 for all n ≥ m ≥ 3. Similarly,
Pn�P2 has no K4-minor since it is outerplanar, and η(Pn�P2) = 3 for all
n ≥ 2.

Now consider the double-grid Pn�Pm�P2, where n ≥ m ≥ 2. For
i ∈ [n], let Ci be the i-th column in the base copy of Pn�Pm; that is,
Ci := {(i, y, 1) : y ∈ [m]}. For j ∈ [m], let Rj be the j-th row in the top
copy of Pn�Pm; that is, Rj := {(x, j, 2) : x ∈ [n]}. Since each Ri and
each Cj are adjacent, contracting each Ri and each Cj gives a Kn,m-minor.
Chandran and Sivadasan [9] studied the case n = m, and observed that a
Km-minor is obtained by contracting a matching of m edges in Km,m. In
fact, contracting a matching of m − 1 edges in Kn,m gives a Km+1-minor.
(In fact, η(Km,m) = m + 1; see [57] for example.) Now observe that R1 is
adjacent to R2 and C1 is adjacent to C2. Thus contracting each edge of
the matching R3C3, R4C4, . . . , RmCm gives a Km+2-minor, as illustrated in
Figure 1. Hence η(Pn�Pm�P2) ≥ m+ 2.

Now we prove a simple upper bound on η(Pn�Pm�P2). Clearly,

bw(Pn�Pm) ≤ m.
Thus, by Lemma 10.3 and (1),

η(Pn�Pm�P2) ≤ bw(Pn�Pm�P2) + 1 ≤ 2m+ 1.

Summarising,1

(2) m+ 2 ≤ η(Pn�Pm�P2) ≤ 2m+ 1.

We conjecture that the lower bound in (2) is the answer; that is,

η(Pn�Pm�P2) = m+ 2.

The above construction of a clique minor in the double-grid generalises
as follows.

1When n = m, Chandran and Sivadasan [9] claimed η(Pm �Pm �P2) ≤ 2m+2 without
proof.



634 DAVID R. WOOD

Figure 1. A Km+2-minor in Pm�Pm�P2.

Proposition 3.1. For all connected graphs G and H, each with at least one
edge,

η(G�H �P2) ≥ ω(G) + ω(H) + min{v(G)− ω(G), v(H)− ω(H)}
≥ min{v(G), v(H)}+ min{ω(G), ω(H)}
≥ min{v(G), v(H)}+ 2.

Proof. Let P be a maximum clique of G. Let Q be a maximum clique
of H. Without loss of generality, n := v(G) − ω(G) ≤ v(H) − ω(H). Say
V (G) − V (P ) = {v1, v2, . . . , vn} and V (H) − V (Q) = {w1, w2, . . . , wm},
where n ≤ m. Let V (P2) = {1, 2}.

For x ∈ V (G), let A〈x〉 be the subgraph of G�H �P2 induced by
{(x, y, 1) : y ∈ V (H)}. For y ∈ V (G), let B〈y〉 be the subgraph of
G�H �P2 induced by {(x, y, 2) : x ∈ V (G)}. Note that each subgraph
A〈x〉 is isomorphic to H, and is thus connected. Similarly, each subgraph
B〈y〉 is isomorphic to G, and is thus connected.

Distinct subgraphs A〈x〉 and A〈x′〉 are disjoint since the first coordinate
of every vertex in A〈x〉 is x. Distinct subgraphs B〈y〉 and B〈y′〉 are disjoint
since the second coordinate of every vertex in B〈x〉 is y. Subgraphs A〈x〉
and B〈y〉 are disjoint since the third coordinate of every vertex in A〈x〉 is
1, and the third coordinate of every vertex in B〈y〉 is 2.

Since the vertex (x, y, 1) in A〈x〉 is adjacent to the vertex (x, y, 1) in B〈y〉,
the A〈x〉 and B〈y〉 subgraphs are the branch sets of a complete bipartite
Kv(G),v(H)-minor in G�H �H. Moreover, for distinct vertices x and x′ in
the clique P , for any vertex y ∈ V (H), the vertex (x, y, 1) in A〈x〉 is adjacent
to the vertex (x′, y, 1) in A〈x′〉. Similarly, for distinct vertices y and y′ in the
clique Q, for any vertex x ∈ V (G), the vertex (x, y, 2) in B〈y〉 is adjacent
to the vertex (x, y′, 2) in B〈y′〉. For each i ∈ [n], let Xi be the subgraph
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induced by A〈vi〉∪B〈wi〉. Now X〈i〉 is connected, since the vertex (vi, wi, 1)
in A〈i〉 is adjacent to the vertex (vi, wi, 2) in B〈i〉.

We have shown that {A〈x〉 : x ∈ P} ∪ {B〈x〉 : x ∈ Q} ∪ {Xi : i ∈ [n]} is a
set of ω(G) +ω(H) +n connected subgraphs, each pair of which are disjoint
and adjacent. Hence these subgraphs are the branch sets of a clique minor
in G�H �P2. Therefore η(G�H �P2) ≥ ω(G) + ω(H) + n, as desired.
The final claims are easily verified. �

Now consider the Hadwiger number of the d-dimensional grid graph

P dn := Pn�Pn� · · ·�Pn︸ ︷︷ ︸
d

.

The best previously known bounds are due to Chandran and Sivadasan [9]
who proved that

nb(d−1)/2c ≤ η(P dn) ≤
√

2dnd/2 + 1.

In the case that d is even we now improve this lower bound by a Θ(n) factor,

and thus determine η(P dn) to within a factor of 4
√

2d (ignoring lower order
terms).

Theorem 3.2. For every integer n ≥ 2 and even integer d ≥ 4,

1
4n

d/2 −O(nd/2−1) ≤ η(P dn) <
√

2d− 2nd/2 + 3.

Proof. The upper bound follows from Lemma 2.2 since v(P dn) = nd and
∆(P dn) = 2d. Now we prove the lower bound. Let V (P dn) = [n]d, where two
vertices are adjacent if and only if they share d− 1 coordinates in common
and differ by 1 in the remaining coordinate. Let p := d

2 .
For j1, j2 ∈ bn2 c and j3, . . . , jp ∈ [n], let A〈j1, . . . , jp〉 be the subgraph of

P dn induced by

{(2j1, 2j2, j3, j4, . . . , jp, x1, x2, . . . , xp) : xi ∈ [n], i ∈ [p]};

let B〈j1, . . . , jp〉 be the subgraph of P dn induced by

{(2x1 − 1, x2, x3, . . . , xp, j1, j2, . . . , jp) : x1 ∈ bn2 c, xi ∈ [n], i ∈ [2, p]}
∪{(x1, 2x2 − 1, x3, x4 . . . , xp, j1, j2, . . . , jp) : x1 ∈ [n], x2 ∈ bn2 c,

xi ∈ [n], i ∈ [3, p]};

and let X〈j1, . . . , jp〉 be the subgraph of P dn induced by A〈j1, . . . , jp〉 ∪
B〈j1, . . . , jp〉.

Each A〈j1, . . . , jp〉 subgraph is disjoint from each B〈j′1, . . . , j′p〉 subgraph
since the first and second coordinates of each vertex in A〈j1, . . . , jp〉 are both
even, while the first or second coordinate of each vertex in B〈j′1, . . . , j′p〉 is
odd. Two distinct subgraphs A〈j1, . . . , jp〉 and A〈j′1, . . . , j′p〉 are disjoint
since the p-tuples determined by the first p coordinates are distinct. Simi-
larly, two distinct subgraphs B〈j1, . . . , jp〉 and B〈j′1, . . . , j′p〉 are disjoint since



636 DAVID R. WOOD

the p-tuples determined by the last p coordinates are distinct. Hence each
pair of distinct subgraphs X〈j1, . . . , jp〉 and X〈j′1, . . . , j′p〉 are disjoint.

Observe that A〈j1, . . . , jp〉 is isomorphic to P pn , and is thus connected.
In particular, every pair of vertices (2j1, 2j2, j3, j4, . . . , jp, x1, x2, . . . , xp) and
(2j1, 2j2, j3, j4, . . . , jp, x

′
1, x
′
2, . . . , x

′
p) in A〈j1, . . . , jp〉 are connected by a path

of length
∑

i |xi−x′i| contained in A〈j1, . . . , jp〉. To prove that B〈j1, . . . , jp〉
is connected, consider a pair of vertices

v = (x1, x2, . . . , xp, j1, j2, . . . , jp) and v′ = (x′1, x
′
2, . . . , x

′
p, j1, j2, . . . , jp)

in B〈j1, . . . , jp〉. If x1 is even then walk along any one of the dimension-1
edges incident to v. This neighbour is in B〈j1, . . . , jp〉, and its first coor-
dinate is odd. Thus we can now assume that x1 is odd. Similarly, we can
assume that x2, x′1, and x′2 are all odd. Then

(x1, x2, . . . , xp, j1, j2, . . . , jp) and (x′1, x
′
2, . . . , x

′
p, j1, j2, . . . , jp)

are connected by a path of length
∑

i |xi − x′i| contained in B〈j1, . . . , jp〉.
Thus B〈j1, . . . , jp〉 is connected. The vertex

(2j1, 2j2, j3, j4, . . . , jp, j1, j2, . . . , jp)

in A〈j1, . . . , jp〉 is adjacent to the vertex

(2j1 − 1, 2j2, j3, j4, . . . , jp, j1, j2, . . . , jp)

in B〈j1, . . . , jp〉. Thus X〈j1, . . . , jp〉 is connected. Each pair of subgraphs
X〈j1, . . . , jp〉 and X〈j′1, . . . , j′p〉 are adjacent since the vertex

(2j1, 2j2, j3, j4, . . . , jp, j
′
1, j
′
2, . . . , j

′
p)

in A〈j1, . . . , jp〉 is adjacent to the vertex

(2j1 − 1, 2j2, j3, j4, . . . , jp, j
′
1, j
′
2, . . . , j

′
p)

in B〈j′1, . . . , j′p〉.
Hence the X〈j1, . . . , jp〉 form a complete graph minor in P dn of order

nd/2−2bn2 c2 = 1
4n

d/2 −O(nd/2−1). �

Note that for particular values of n, the lower bound in Theorem 3.2 is
improved by a constant factor in Corollary 6.6 below.

4. Odd-dimensional grids and pseudoachromatic colourings

The ‘dimension pairing’ technique used in Section 3 to construct large
clique minors in even-dimensional grids does not give tight bounds for odd-
dimensional grids. To construct large clique minors in odd-dimensional grids
we use the following idea.

A pseudoachromatic k-colouring of a graph G is a function f : V (G)→ [k]
such that for all distinct i, j ∈ [k] there is an edge vw ∈ E(G) with f(v) = i
and f(w) = j. The pseudoachromatic number of G, denoted by ψ(G), is the
maximum integer k such that there is a pseudoachromatic k-colouring of G.
Pseudoachromatic colourings were introduced by Gupta [22] in 1969, and
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have since been widely studied. For example, many authors [60, 39, 29, 19]
have proved2 that

(3) ψ(Pn) >
√

2n− 2− 2.

Note that the only difference between a pseudoachromatic colouring and
a clique minor is that each colour class is not necessarily connected. We now
show that the colour classes in a pseudoachromatic colouring can be made
connected in a three-dimensional product.

Theorem 4.1. Let G, H and I be connected graphs. Let A, B and C be
connected minors of G, H and I respectively, such that each branch set in
each minor has at least two vertices. If v(B) ≥ v(C) then

η(G�H � I) ≥ min{ψ(A), v(B)} · v(C).

Proof. (The reader should keep the example of G = H = I = Pn and
A = B = C = Pbn/2c in mind.)

Let V (B) = {y1, . . . , yv(B)} and V (C) = {z1, . . . , zv(C)}. By contracting
edges in H, we may assume that there are exactly two vertices of H in each
branch set of B. Label the two vertices of H in the branch set corresponding
to each yj by y+

j and y−j . By contracting edges in I, we may assume that
there are exactly two vertices of I in each branch set of C. Label the two
vertices of I in the branch set corresponding to each zj by z+

j and z−j .

Let k := min{ψ(A), v(B)}. Let f : V (A) → [k] be a pseudoachromatic
colouring of A. Our goal is to prove that η(G�H � I) ≥ k · v(C).

By contracting edges in G, we may assume that there are exactly two
vertices of G in each branch set of A. Now label the two vertices of G in
the branch set corresponding to each vertex v of A by v+ and v− as follows.
Let T be a spanning tree of A. Orient the edges of T away from some root
vertex r. Arbitrarily label the vertices r+ and r− of G. Let w be a nonroot
leaf of T . Label each vertex of T −w by induction. Now w has one incoming
arc (v, w). Some vertex in the branch set of G corresponding to v is adjacent
to some vertex of G in the branch set corresponding to w. Label w+ and
w− so that there is an edge in G between v+ and w−, or between v− and
w+.

For v ∈ V (A) and j ∈ [v(C)] (and thus j ∈ [v(B)]), let P 〈v, j〉 be the
subgraph of G�H � I induced by

{(v+, y+
j , z) : z ∈ V (I)},

2For completeness, we prove that ψ(Pn) >
√

2n− 2 − 2. Let Pn = (x1, . . . , xn). Let
t be the maximum odd integer such that

(
t
2

)
≤ n − 1. Then t >

√
2n− 2 − 2. Denote

V (Kt) by {v1, . . . , vt}. Since t is odd, Kt is Eulerian. Orient the edges of Kt by following
an Eulerian cycle C = (e1, e2, . . . , e(t

2)
). For ` ∈

(
t
2

)
, let f(x`) = i, where e` = (vi, vj).

For ` ∈ [
(
t
2

)
+ 1, n], let f(x`) = 1. Consider distinct colours i, j ∈ [t]. Thus for some edge

e` of Kt, without loss of generality, e` = (vi, vj). Say e`+1 = (vj , vk) is the next edge
in C, where e`+1 means e1 if ` =

(
t
2

)
. Since ` ≤

(
t
2

)
≤ n − 1, we have ` + 1 ∈ [n]. By

construction, f(x`) = i and f(x`+1) = j. Thus f is a pseudoachromatic colouring.
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and let Q〈v, j〉 be the subgraph of G�H � I induced by

{(v−, y, z+
j ) : y ∈ V (H)}.

For i ∈ [k] (and thus i ≤ v(B)) and j ∈ [v(C)], let R〈i, j〉 be the subgraph
of G�H � I induced by

{(v, y−i , z−j ) : v ∈ V (G)},
and let X〈i, j〉 be the subgraph of G�H � I induced by

∪{P 〈v, j〉 ∪Q〈v, j〉 ∪R〈i, j〉 : v ∈ f−1(i)},
as illustrated in Figure 2. We now prove that the X〈i, j〉 are the branch sets
of a clique minor in G�H � I.

R〈i, j〉

Q〈u, j〉

P 〈u, j〉

Q〈v, j〉

P 〈v, j〉

Q〈w, j〉

P 〈w, j〉

G
I

H

Figure 2. The branch set X〈i, j〉 in Proposition 4.2, where
f−1(i) = {u, v, w}.

First we prove that each X〈i, j〉 is connected. Observe that each P 〈v, j〉 is
a copy of I and eachQ〈i, j〉 is a copy ofH, and are thus connected. Moreover,
the vertex (v+, y+

j , z
+
j ) in P 〈v, j〉 is adjacent to the vertex (v−, y+

j , z
+
j ) in

Q〈v, j〉. Thus P 〈v, j〉∪Q〈v, j〉 is connected. Now each R〈i, j〉 is a copy of G,
and is thus connected. For each v ∈ f−1(i), the vertex (v−, y−i , z

+
j ) which

is in Q〈v, j〉, is adjacent to (v−, y−i , z
−
j ) which is in R〈i, j〉. Thus X〈i, j〉 is

connected.
Now consider distinct subgraphs X〈i, j〉 and X〈i′, j′〉. We first prove that

X〈i, j〉 and X〈i′, j′〉 are disjoint. Distinct subgraphs P 〈v, j〉 and P 〈w, j′〉
are disjoint since the first two coordinates of every vertex in P 〈v, j〉 are
(v+, y+

j ), which are unique to (v, j). Similarly, distinct subgraphs Q〈v, j〉
and Q〈w, j′〉 are disjoint since the first and third coordinates of every vertex
in Q〈v, j〉 are (v−, z+

j ), which are unique to (v, j). Every P 〈v, j〉 is disjoint

from every Q〈w, j′〉 since the first coordinate of every vertex in P 〈v, j〉 is
positive, while the first coordinate of every vertex in Q〈w, j〉 is negative.
Observe that R〈i, j〉 and R〈i′, j′〉 are disjoint since the second and third
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coordinates of every vertex in R〈i, j〉 are (y−i , z
−
j ), which are unique to (i, j).

Also R〈i, j〉 is disjoint from every P 〈v, j′〉 ∪ Q〈v, j′〉 since the second and
third coordinate of every vertex in R〈i, j〉 are negative, while every vertex
in P 〈v, j′〉 ∪ Q〈v, j′〉 has a positive second or third coordinate. Therefore
distinct X〈i, j〉 and X〈i′, j′〉 are disjoint.

It remains to prove that distinct subgraphs X〈i, j〉 and X〈i′, j′〉 are adja-
cent. If i = i′ then the vertex (v+, y+

j , z
+
j′ ), which is in P 〈i, j〉, is adjacent to

the vertex (v−, y+
j , z

+
j′ ), which is in Q〈i′, j′〉. Now assume that i 6= i′. Then

f(v) = i and f(w) = i′ for some edge vw of A. By the labelling of vertices
in G, without loss of generality, there is an edge in G between v+ and w−.
Thus the vertex (v+, y+

j , z
+
j′ ), which is in P 〈v, j〉 ⊂ X〈i, j〉, is adjacent to the

vertex (w−, y+
j , z

+
j′ ), which is in Q〈w, j〉 ⊂ X〈i′, j′〉. In both cases, X〈i, j〉

and X〈i′, j′〉 are adjacent.
Hence the X〈i, j〉 are the branch sets of a clique minor in G�H � I.

Thus η(G�H � I) ≥ k · v(C). �

Now consider the Hadwiger number of the three-dimensional grid graph
Pn�Pn�Pn. Prior to this work the best lower and upper bounds on
η(Pn�Pn�Pn) were Ω(n) and O(n3/2) respectively [9, 43, 7]. The next
result improves this lower bound by a Θ(

√
n) factor, thus determining

η(Pn�Pn�Pn) to within a factor of 4 (ignoring lower order terms).

Proposition 4.2. For all integers n ≥ m ≥ 1,

1
2n
√
m−O(n+

√
m) < η(Pn�Pn�Pm) ≤ 2n

√
m+ 3.

Proof. The upper bound follows from Lemma 2.2 since Pn�Pn�Pm has
n2m vertices and maximum degree 6. Now we prove the lower bound. Pm
has a Pbm/2c-minor with two vertices in each branch set. By (3), ψ(Pbm/2c) >√
m− 3− 2. By Theorem 4.1 with G = Pm, A = Pbm/2c, H = I = Pn, and

B = C = Pbn/2c (and since ψ(Pbm/2c) ≤ bm2 c ≤ bn2 c = v(B)),

η(Pn�Pn�Pm) ≥ (
√
m− 3− 2)bn2 c = 1

2n
√
m−O(n+

√
m),

as desired. �

Here is another scenario when tight bounds for three-dimensional grids
can be obtained.

Proposition 4.3. For all integers n ≥ m ≥ 1 such that n ≤ 1
4m

2,

1
2m
√
n−O(m+

√
n) < η(Pn�Pm�Pm) ≤ 2m

√
n+ 3.

Proof. The upper bound follows from Lemma 2.2 since Pn�Pm�Pm has
m2n vertices and maximum degree 6. For the lower bound, apply Theo-
rem 4.1 with G = Pn, A = Pbn/2c, H = I = Pm, and B = C = Pbm/2c. By

(3), ψ(Pbn/2c) >
√
n− 3− 2. Thus

η(Pn�Pn�Pn) ≥ min{(
√
n− 3− 2), bm2 c} · bm2 c.
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Since n ≤ 1
4m

2,

η(Pn�Pn�Pn) ≥ (
√
n− 3− 2) · bm2 c = 1

2m
√
n−O(m+

√
n),

as desired. �

Now consider the Hadwiger number of P dn for odd d. Prior to this work

the best lower and upper bounds on η(P dn) were Ω(n(d−1)/2) and O(
√
dnd/2)

respectively [9, 7, 43]. The next result improves this lower bound by a Θ(
√
n)

factor, thus determining η(P dn) to within a factor of 2
√

2(d− 1) (ignoring
lower order terms).

Theorem 4.4. For every integer n ≥ 1 and odd integer d ≥ 3,

1
2n

d/2 −O(n(d−1)/2) < η(P dn) ≤
√

2(d− 1)nd/2 + 3.

Proof. The upper bound follows from Lemma 2.2 since v(P dn) = nd and
∆(P dn) = 2d. Now we prove the lower bound. Let G := Pn and A := Pbn/2c.

By (3), ψ(A) >
√
n− 3 − 2. Let H := P

(d−1)/2
n . Every grid graph with

m vertices has a matching of bm2 c edges. (Proof : induction on the number

of dimensions.) Thus H has a minor B with b1
2n

(d−1)/2c vertices, and two
vertices in each branch set. By Theorem 4.1 with I = H and C = B (and

since ψ(Pbn/2c) ≤ bn2 c ≤ b1
2n

(d−1)/2c),
η(P dn) ≥ (

√
n− 3− 2)b1

2n
(d−1)/2c = 1

2n
d/2 −O(n(d−1)/2),

as desired. �

5. Star minors and dominating sets

Recall that St is the star graph with t leaves. Consider the Hadwiger
number of the product of St with a general graph.

Lemma 5.1. For every connected graph G and for every integer t ≥ 1,

η(G�St) ≥ min{v(G), t+ 1}.
Proof. Let k := min{v(G), t+1}. Let V (G) := {v1, v2, . . . , vn} and V (St) :=
{r}∪ [t], where r is the root. For i ∈ [k−1], let Xi be the subgraph of G�St
induced by {(vi, r)} ∪ {(vj , i) : j ∈ [n]}, Since G is connected, and (vi, r)
is adjacent to (vi, i), each Xi is connected. Let Xk be the subgraph con-
sisting of the vertex (vk, r). For distinct i, j ∈ [k] with i < j (and thus
i ∈ [k − 1] ⊆ [t]), the subgraphs Xi and Xj are disjoint, and vertex (vj , i),
which is in Xi, is adjacent to (vj , r), which is in Xj . Thus X1, . . . , Xk are
the branch sets of a Kk-minor in G�St, as illustrated in Figure 3 when G
is a path. �

Note that the lower bound in Lemma 5.1 is within a constant factor of the
upper bound in Lemma 2.2 whenever e(G) = Θ(v(G)) = Θ(t). In particular,
if G is a tree with at least t+ 1 vertices, then

t+ 1 ≤ η(G�St) ≤ η(G�Kt+1) ≤ t+ 2,
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Figure 3. A K5-minor in P5 �S4.

where the upper bound is proved in Theorem 10.1 below. When G is another
star, Ivančo [32] determined the Hadwiger number precisely. We include the
proof for completeness.

Lemma 5.2 ([32]). For all integers n ≥ m ≥ 2,

η(Sn�Sm) = m+ 2.

Proof. Let V (Sn) := {r}∪ [n], where r is the root vertex. Observe that for
all i ∈ [n] and j ∈ [m], vertex (i, j) has degree 2; it is adjacent to (r, j) and
(i, r). In every graph except K3, contracting an edge incident to a degree-
2 vertex does not change the Hadwiger number. Thus replacing the path
(r, j)(i, j)(i, r) by the edge (r, j)(i, r) does not change the Hadwiger number.
Doing so gives K1,m,n. Ivančo [32] proved that η(K1,m,n) = m + 2. Thus
η(Sn�Sm) = m+ 2. In fact, Ivančo [32] determined the Hadwiger number
of every complete multipartite graph (a result rediscovered by the author
[57]). �

For every graph G, let star(G) be the maximum integer t for which St is
minor of G. Since a vertex and its neighbours form a star, star(G) ≥ ∆(G).
Thus Lemmas 5.1 and 5.2 imply:

Corollary 5.3. For all connected graphs G and H,

η(G�H) ≥min{star(G) + 1, v(H)} ≥ min{∆(G) + 1, v(H)}, and

η(G�H) ≥min{star(G), star(H)}+ 2 ≥ min{∆(G),∆(H)}+ 2.

As an aside, we now show that star minors are related to radius and
bandwidth. Let G be a connected graph. The radius of G, denoted by
rad(G), is the minimum, taken over all vertices v of G, of the maximum
distance between v and some other vertex ofG. Each vertex v that minimises
this maximum distance is a centre of G.
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Lemma 5.4. For every connected graph G with at least one edge,

v(G) ≤ star(G) · rad(G) + 1,(a)

bw(G) ≤ 2 · star(G)− 1.(b)

Proof. First we prove (a). Let v be a centre of G. For i ∈ [0, rad(G)], let
Vi be the set of vertices at distance i from v. Thus the Vi are a partition
of V (G), and |V0| = 1. For each i ∈ [rad(G)], contracting V0, . . . , Vi−1

into a single vertex and deleting Vi+1, . . . , Vrad(G) gives a S|Vi|-minor. Thus
star(G) ≥ |Vi|. Hence v(G) =

∑
i |Vi| ≤ 1 + rad(G) · star(G).

Now we prove (b). Let (v1, . . . , vn) be a linear ordering of V (G) such
that if va ∈ Vi and vb ∈ Vj with i < j, then a < b. Consider an edge
vavb ∈ E(G). Say va ∈ Vi and vb ∈ Vj . Without loss of generality, i ≤ j.
By construction, j ≤ i+ 1. Thus b− a ≤ |Vi|+ |Vi+1| − 1 ≤ 2 · star(G)− 1.
Hence bw(G) ≤ 2 · star(G)− 1. �

Note that Lemma 5.4(a) is best possible for G = P2n+1, which has
star(G) = 2 and rad(G) = n, or for G = Kn, which has star(G) = n− 1 and
rad(G) = 1. Corollary 5.7 and Lemma 5.4 imply that the product of graphs
with small radii or large bandwidth has large Hadwiger number; we omit
the details.

Star minors are related to connected dominating sets (first defined by
Sampathkumar and Walikar [49]). Let G be a graph. A set of vertices S ⊆
V (G) is dominating if each vertex in V (G)− S is adjacent to a vertex in S.
The domination number of G, denoted by γ(G), is the minimum cardinality
of a dominating set of G. If S is dominating and G[S] is connected, then S
and G[S] are connected dominating. Only connected graphs have connected
dominating sets. The connected domination number of a connected graph
G, denoted by γc(G), is the minimum cardinality of a connected dominating
set of G. Finally, let `(G) be the maximum number of leaves in a spanning
tree of G (where K1 is considered to have no leaves, and K2 is considered to
have one leaf). Hedetniemi and Laskar [28] proved that γc(G) = v(G)−`(G).
We extend this result as follows.

Lemma 5.5. For every connected graph G,

star(G) = v(G)− γc(G) = `(G).

Proof. Let T be a spanning tree of G with `(G) leaves. Let S be the set of
nonleaf vertices of T . Thus S is a connected dominating set of G, implying
γc(G) ≤ v(G)− `(G) and `(G) ≤ v(G)− γc(G).

Say S is a connected dominating set in G of order γc(G). Contracting
G[S] gives a Sv(G)−γc(G)-minor in G. Thus star(G) ≥ v(G)− γc(G).

Now suppose that X0, X1, . . . , Xstar(G) are the branch sets of a Sstar(G)-
minor in G, where X0 is the root. By Lemma 2.1, we may assume that every
vertex of G is in some Xi. Let Ti be a spanning tree of each G[Xi]. Each Ti
has at least two leaves, unless v(Ti) ≤ 2. Let T be the tree obtained from
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∪iTi by adding one edge between T0 and Ti for each i ∈ [star(G)]. Each such
Ti contributes at least one leaf to T . Thus T has at least star(G) leaves,
implying `(G) ≥ star(G). �

Corollary 5.6. For every tree T 6= K2, star(T ) equals the number of leaves
in T .

Corollary 5.3 and Lemma 5.5 imply:

Corollary 5.7. For all connected graphs G and H,

η(G�H) ≥min{v(G)− γc(G) + 1, v(H)} and

η(G�H) ≥min{v(G)− γc(G), v(H)− γc(H)}+ 2.

We now show that a connected dominating set in a product can be con-
structed from a dominating set in one of its factors.

Lemma 5.8. For all connected graphs G and H,

γc(G�H) ≤ (v(G)− 1) · γ(H) + v(H).

Proof. Let S be a minimum dominating set in H. Let v be an arbitrary
vertex in G. Consider the set of vertices in G�H,

T := {(x, y) : x ∈ V (G)− {v}, y ∈ S} ∪ {(v, y) : y ∈ V (H)}.
Then |T | = (v(G)− 1) · γ(H) + v(H). First we prove that T is dominating.
Consider a vertex (x, y) of G�H. If y ∈ S then (x, y) ∈ T . Otherwise, y
is adjacent to some vertex z ∈ S, in which case (x, y) is adjacent to (x, z),
which is in T . Thus T is dominating. Now we prove that T is connected.
Since G is connected, for each vertex x of G, there is a path P (x, v) between
x and v in G. Consider distinct vertices (x, y) and (x′, y′) in G�H. Since
H is connected there is a path Q(y, y′) between y and y′ in H. Thus

{(s, y) : s ∈ P (x, v)} ∪ {(v, t) : t ∈ Q(y, y′)} ∪ {(s, y′) : s ∈ P (x′, v)}
is a path between (x, y) and (x′, y′) in G�H, all of whose vertices are in T .
Thus T is a connected dominating set. �

Corollary 5.7 (with G = A�B and H = C) and Lemma 5.8 (with G = A
and H = B) imply:

Corollary 5.9. For all connected graphs A,B,C,

η(A�B�C) ≥ min{v(A) · v(B)− (v(A)− 1) · γ(B)− v(B) + 1, v(C)}.
There are hundreds of theorems about domination in graphs that may

be used in conjunction with the above results to construct clique minors
in products; see the monograph [27]. Instead, we now apply perhaps the
most simple known bound on the order of dominating sets to conclude tight
bounds on η(Gd) whenever d ≥ 4 is even and G has bounded average degree.
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Theorem 5.10. Let G 6= K1 be a connected graph with n vertices and
average degree δ. Then for every even integer d ≥ 4,

1
2n

d/2 − nd/2−1 + 2 ≤ η(Gd) ≤
√
δd− 2nd/2 + 3.

Proof. The upper bound follows from Lemma 2.2 since Gd has average
degree δd ≥ 4. Now we prove the lower bound. Ore [42] observed that for
every connected graph H 6= K1, the smaller colour class in a 2-colouring
of a spanning tree of H is dominating in H. Thus γ(H) ≤ 1

2v(H). This

observation with H = Gd/2−1 gives

γ(Gd/2−1) ≤ 1
2v(Gd/2−1) = 1

2n
d/2−1.

By Lemma 5.8,

γc(G
d/2) ≤ (v(G)− 1) · γ(Gd/2−1) + v(Gd/2−1)

≤ (n− 1)(1
2n

d/2−1) + nd/2−1

= 1
2n

d/2 + 1
2n

d/2−1.

By Corollary 5.7,

η(Gd) ≥ v(Gd/2)− γc(Gd/2) + 2

≥ nd/2 −
(

1
2n

d/2 + 1
2n

d/2−1
)

= 1
2n

d/2 − 1
2n

d/2−1 + 2,

as desired. �

6. Dominating sets and clique minors in even-dimensional
grids

The results in Section 5 motivate studying dominating sets in grid graphs.
First consider the one-dimensional case of Pn. It is well-known and easily
proved that γ(Pn) = dn3 e. Thus, by Lemma 5.8, for every connected graph
G,

γc(G�Pn) ≤ (v(G)− 1)dn3 e+ n.

In particular,

γc(Pm�Pn) ≤ (m− 1)dn3 e+ n

≤ (m− 1)(n+2
3 ) + n

= 1
3(nm+ 2m+ 2n− 2).

Hence Corollary 5.7 with G = Pn�Pm implies the following bound on the
Hadwiger number of the 4-dimensional grid:

η(Pn�Pm�Pn�Pm) ≥ nm− 1
3(nm+ 2m+ 2n− 2) + 2

= 2
3(nm−m− n+ 4).

This result improves upon the bound in Theorem 3.2 by a constant factor.
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Dominating sets in 2-dimensional grid graphs are well studied [12, 56, 11,
26, 25, 10, 34, 33, 18, 51, 17]. Using the above technique, these results imply
bounds on the Hadwiger number of the 6-dimensional grid. We omit the
details, and jump to the general case.

We first construct a dominating set in a general grid graph.

Lemma 6.1. Fix integers d ≥ 1 and n1, n2, . . . , nd ≥ 1. Let S be the set of
vertices

S :=

{
(x1, x2, . . . , xd) : xi ∈ [ni], i ∈ [d],

∑

i∈[d]

i · xi ≡ 0 (mod 2d+ 1)

}
.

For j ∈ [d], let Bj be the set of vertices

Bj :=

{
(x1, . . . , xj−1, 1, xj+1, . . . , xd) : xi ∈ [ni], i ∈ [d]− {j},

∑

i∈[d]−{j}

i · xi ≡ 0 (mod 2d+ 1)

}
,

and let Cj be the set of vertices

Cj :=

{
(x1, . . . , xj−1, nj , xj+1, . . . , xd) : xi ∈ [ni], i ∈ [d]− {j},

∑

i∈[d]−{j}

i · xi ≡ −j(nj + 1) (mod 2d+ 1)

}
,

Let T := ∪j(S ∪Bj ∪ Cj). Then T is dominating in Pn1 �Pn2 � · · ·�Pnd
.

Proof. Consider a vertex x = (x1, x2, . . . , xd) not in S. We now prove that
x has neighbour in S, or x is in some Bj ∪Cj . Now xi ∈ [ni] for each i ∈ [d],
and for some r ∈ [2d],

d∑

i=1

i · xi ≡ r (mod 2d+ 1).

First suppose that r ∈ [d]. Let j := r. Thus

j · (xj − 1) +
∑

i∈[d]−{j}

i · xi ≡ 0 (mod 2d+ 1).

Hence, if xj 6= 1 then (x1, . . . , xj−1, xj − 1, xj+1, . . . , xd) is a neighbour of x
in S, and x is dominated. If xj = 1 then x is in Bj ⊂ T .

Now assume that r ∈ [d+ 1, 2d]. Let j := 2d+ 1− r ∈ [d]. Thus r ≡ −j
(mod 2d+ 1), and

j · (xj + 1) +
∑

i∈[d]−{j}

i · xi ≡ 0 (mod 2d+ 1).

Hence, if xj 6= nj then (x1, . . . , xj−1, xj + 1, xj+1, . . . , xd) is a neighbour of
x in S, and x is dominated. If xj = nj then x is in Cj ⊂ T .
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Thus every vertex not in T has a neighbour in S ⊂ T , and T is dominating.
�

We now determine the size of the dominating set in Lemma 6.1.

Lemma 6.2. For integers r ≥ 2, d ≥ 1, c, and n1, . . . , nd ≥ 1, define

Q(n1, . . . , nd; c; r) :=

{
(x1, x2, . . . , xd) :xi ∈ [ni], i ∈ [d],

∑

i∈[d]

i · xi ≡ c (mod r)

}
.

If each ni ≡ 0 (mod r) then for every integer c,

|Q(n1, . . . , nd; c; r)| =
1

r

∏

i∈[d]

ni.

Proof. We proceed by induction on d. First suppose that d = 1. Without
loss of generality, c ∈ [r]. Then

Q(n1; c; r) = {x ∈ [n1] : x ≡ c (mod r)} = {r · y + c : y ∈ [0, n1
r − 1]}.

Thus |Q(n1; c; r)| = n1
r , as desired. Now assume that d ≥ 2. Thus

|Q(n1, . . . , nd; c; r)|

=

∣∣∣∣
{

(x1, x2, . . . , xd) : xi ∈ [ni], i ∈ [d],
∑

i∈[d]

i · xi ≡ c (mod r)

}∣∣∣∣

=
∑

xd∈[nd]

∣∣∣∣
{

(x1, x2, . . . , xd) : xi ∈ [ni], i ∈ [d− 1],

∑

i∈[d−1]

i · xi ≡ (c− d · xd) (mod r)

}∣∣∣∣

=
∑

xd∈[nd]

|Q(n1, . . . , nd−1; c− d · xd; r)|.

By induction,

|Q(n1, . . . , nd; c; r)| =
∑

xd∈[nd]

1

r

∏

i∈[d−1]

ni =
1

r

∏

i∈[d]

ni,

as desired. �

Lemma 6.3. Let G := Pn1 �Pn2 � · · ·�Pnd
for some integers d ≥ 1 and

n1, n2, . . . , nd ≥ 1, where each ni ≡ 0 (mod 2d+ 1). Then

γ(G) ≤ v(G)

2d+ 1

(
1 +

∑

j∈[d]

2

nj

)
.
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Proof. Using the notation in Lemma 6.1, by Lemma 6.2 applied three times,

|S| = 1

2d+ 1

∏

i∈[d]

ni =
v(G)

2d+ 1
,

and for each j ∈ [d],

|Bj |, |Cj | =
1

2d+ 1

∏

i∈[d]−{j}

ni =
v(G)

(2d+ 1)nj
.

Thus

|T | ≤ |S|+
∑

j∈[d]

|Bj |+ |Cj | =
v(G)

2d+ 1

(
1 +

∑

j∈[d]

2

nj

)
,

as desired. �

If n1, . . . , nd are large compared to d, then Lemma 6.3 says that γ(G) ≤
v(G)
2d+1 + o(v(G)). This bound is best possible since γ(H) ≥ v(H)

∆(H)+1 for every

graph H (and G has maximum degree 2d).
From the dominating set given in Lemma 6.3 we construct a connected

dominating set as follows.

Lemma 6.4. Let G := Pn1 �Pn2 � · · ·�Pnd
for some integers d ≥ 1 and

n1 ≥ n2 ≥ · · · ≥ nd ≥ 1, where each ni ≡ 0 (mod 2d+ 1). Then

γc(G) <
v(G)

2d− 1

(
1 +

2d− 2

nd
+

∑

j∈[d−1]

2

nj

)
.

Proof. Let G′ := Pn1 �Pn2 � · · ·�Pnd−1
. By Lemma 6.3 applied to G′,

γ(G′) ≤ v(G′)

2d− 1

(
1 +

∑

j∈[d−1]

2

nj

)
.

By Lemma 5.8 with H = G′,

γc(G) ≤ (nd − 1) · γ(G′) + v(G′).
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Thus,

γc(G) ≤ (nd − 1)
v(G′)

2d− 1

(
1 +

∑

j∈[d−1]

2

nj

)
+ v(G′)

=
v(G)

2d− 1

(
1 +

∑

j∈[d−1]

2

nj

)
− v(G′)

2d− 1

(
1 +

∑

j∈[d−1]

2

nj

)
+ v(G′)

<
v(G)

2d− 1

(
1 +

∑

j∈[d−1]

2

nj

)
− v(G′)

2d− 1
+ v(G′)

=
v(G)

2d− 1

(
1 +

∑

j∈[d−1]

2

nj

)
+

v(G′) (2d− 2)

2d− 1

=
v(G)

2d− 1

(
1 +

2d− 2

nd
+

∑

j∈[d−1]

2

nj

)
,

as desired. �

Note that Gravier [21] proved an analogous result to Lemma 6.4 for the
total domination number of multi-dimensional grids. Lemma 6.4 leads to the
following bounds on the Hadwiger number of even-dimensional grids. These
lower and upper bounds are within a multiplicative factor of approximately
2
√
d, ignoring lower order terms.

Theorem 6.5. Let G := P 2
n1

�P 2
n2

� · · ·�P 2
nd

for some integers d ≥ 1 and
n1 ≥ n2 ≥ · · · ≥ nd ≥ 1, where each ni ≡ 0 (mod 2d+ 1). Then

√
v(G)

(
1− 1

2d− 1

)(
1− 1

nd
− 1

d− 1

∑

j∈[d−1]

1

nj

)
+ 2 ≤ η(G)

≤
√

(4d− 2) v(G) + 3.

Proof. The upper bound follows from Lemma 2.2 since ∆(G) = 4d. For
the lower bound, let G′ := Pn1 �Pn2 � · · ·�Pnd

. By Lemma 6.4 applied to
G′,

γc(G
′) <

v(G′)

2d− 1

(
1 +

2d− 2

nd
+

∑

j∈[d−1]

2

nj

)
.

By Corollary 5.7 applied to G′,

η(G) ≥ v(G′)− γc(G′) + 2.
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Thus

η(G) ≥ v(G′)− v(G′)

2d− 1

(
1 +

2d− 2

nd
+

∑

j∈[d−1]

2

nj

)
+ 2

= v(G′)

(
1− 1

2d− 1
− 2d− 2

(2d− 1)nd
− 1

2d− 1

∑

j∈[d−1]

2

nj

)
+ 2

=
√
v(G)

(
2d− 2

2d− 1
− 2d− 2

(2d− 1)nd
− 2

2d− 1

∑

j∈[d−1]

1

nj

)
+ 2

=
√
v(G)

(
1− 1

2d− 1

)(
1− 1

nd
− 1

d− 1

∑

j∈[d−1]

1

nj

)
+ 2,

as desired. �

Corollary 6.6. For all even integers d ≥ 4 and n ≥ 1 such that n ≡ 0
(mod 2d+ 1),

nd/2
(

1− 1

d− 1

)(
1− 2

n

)
+ 2 ≤ η(P dn) ≤

√
2(d− 1)nd/2 + 3.

7. Hadwiger number of products of complete graphs

In this section we consider the Hadwiger number of the product of com-
plete graphs. First consider the case of two complete graphs. Chandran and
Raju [7, 43] proved that η(Kn�Km) = Θ(n

√
m) for n ≥ m. In particular,

1
4(n−√m)(

√
m− 2) ≤ η(Kn�Km) ≤ 2n

√
m.

Since Pb
√
mc�Pb√mc�Kn is a subgraph of Kn�Km, Lemma 10.7 below

immediately improves this lower bound to

η(Kn�Km) ≥ bn2 cb
√
mc.

It is interesting that Kn�Km and Pb
√
mc�Pb√mc�Kn have the same Had-

wiger number (up to a constant factor). Chandran et al. [6] improved both
the lower and upper bound on η(Kn�Km) to conclude the following elegant
result.

Theorem 7.1 ([6]). For all integers n ≥ m ≥ 1,

η(Kn�Km) = (1− o(1))n
√
m.

Theorem 7.1 is improved for small values of m in the following three
propositions.

Proposition 7.2. For every integer n ≥ 1,

η(Kn�K2) = n+ 1.



650 DAVID R. WOOD

Proof. Say V (Kn) = [n] and V (K2) = {v, w}.
First we prove η(Kn�K2) ≥ n + 1. For i ∈ [n], let Xi be the subgraph

of Kn�K2 induced by the vertex (i, v). Let Xn+1 be the subgraph of
Kn�K2 induced by the vertices (1, w), . . . , (n,w). Then X1, . . . , Xn+1 are
branch sets of a Kn+1-minor in Kn�K2. Thus η(Kn�K2) ≥ n+ 1.

It remains to prove the upper bound η(Kn�K2) ≤ n+1. Let X1, . . . , Xk

be the branch sets of a complete minor in Kn�K2, where k = η(Kn�K2).
If every Xi has at least two vertices then k ≤ n since Kn�K2 has 2n
vertices. Otherwise some Xi has only one vertex, which has degree n in
Kn�K2. Thus k ≤ n+ 1, as desired. �

Proposition 7.3. For every integer n ≥ 1,

η(Kn�K3) = n+ 2.

Proof. A Kn+2-minor in Kn�K3 is obtained by contracting the first row
and contracting the second row. Thus η(Kn�K3) ≥ n+ 2.

It remains to prove the upper bound η(Kn�K3) ≤ n+ 2. We proceed by
induction on n. The base case n = 1 is trivial. Let X1, . . . , Xk be the branch
sets of a Kk-minor, where k = η(Kn�K3). Without loss of generality, each
Xi is an induced subgraph.

Suppose that some column C intersects at most one branch set Xi. Delet-
ing C and Xi gives a Kk−1-minor in Kn−1 �K3. By induction, k−1 ≥ n+1.
Thus k ≥ n + 2, as desired. Now assume that every column intersects at
least two branch sets.

If some branch set has only one vertex v, then k ≤ 1 + deg(v) = n+ 2, as
desired. Now assume that every branch set has at least two vertices.

Suppose that some branch set Xi has vertices in distinct rows. Since Xi is
connected, Xi has at least two vertices in some column C. Now C intersects
at least two branch sets, Xi and Xj . Thus Xj intersects C in exactly one
vertex v. Consider the subgraph Xj − v. It has at least one vertex. Every
neighbour of v that is in Xj is in the same row as v. Since Xj is an induced
subgraph, the neighbourhood of v in Xj is a nonempty clique. Thus v is
not a cut-vertex in Xj , and Xj − v is a nonempty connected subgraph.
Hence deleting C and Xi gives a Kk−1-minor in Kn−1 �K3. By induction,
k − 1 ≥ n + 1. Thus k ≥ n + 2, as desired. Now assume that each branch
set is contained in some row.

If every branch set has at least three vertices, then k ≤ 1
3 |V (Kn�K3)| = n,

as desired. Now assume that some branch set Xi has exactly two vertices
v and w. Now v and w are in the same row. There are at most n−2

2 other
branch sets in the same row, since every branch set has at least two vertices
and is contained in some row. Moreover, N(v) ∪ N(w) contains only four
vertices that are not in the same row as v and w. Thus k−1 ≤ n−2

2 +4. That

is, k ≤ n+8
2 , which is at most n+2 whenever n ≥ 4. Now assume that n ≤ 3.

Since every branch set has at least two vertices, k ≤ 1
2 |V (Kn�K3)| = 3n

2 ,
which is at most n+ 2 for n ≤ 4. �
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Proposition 7.4. For every integer n ≥ 1,

b3
2nc ≤ η(Kn�K4) ≤ 3

2n+ 7.

Proof. First we prove the lower bound. Let p := bn2 c. Each vertex is
described by a pair (i, x) where i ∈ [2p] and x ∈ {a, b, c, d}. Distinct vertices
(i, x) and (j, y) are adjacent if and only if i = j or x = y. As illustrated
in Figure 4, for i ∈ [p], let Xi be the path (2i − 1, a)(2i − 1, b)(2i, b)(2i, c),
let Yi be the edge (2i− 1, c)(2i− 1, d), and let Zi be the edge (2i, a)(2i, d).
Thus each Xi, Yi, and Zi is connected, and each pair of distinct subgraphs
are disjoint. Moreover, the vertex (2i− 1, a) in Xi is adjacent to the vertex
(2j−1, a) in Xj . The vertex (2i, c) in Xi is adjacent to the vertex (2j−1, c)
in Yj . The vertex (2i−1, a) in Xi is adjacent to the vertex (2j, a) in Zj . The
vertex (2i− 1, c) in Yi is adjacent to the vertex (2j − 1, c) in Yj . The vertex
(2i−1, d) in Yi is adjacent to the vertex (2j, d) in Zj . And the vertex (2i, a)
in Zi is adjacent to the vertex (2j, a) in Zj . Hence {Xi, Yi, Zi : i ∈ [p]} are
the branch sets of a K3p-minor. Therefore η(K2p�K4) ≥ 3p. In the case
that n is odd, one column is unused, implying η(K2p�K4) ≥ 3p + 1. It
follows that η(Kn�K4) ≥ b3

2nc for all n.

X1

Y1

Z1

Figure 4. A K16-minor in K11 �K4.

Now we prove the upper bound. (We make no effort to improve the
constant 7.) Suppose on the contrary that η(Kn�K4) > 3

2n + 7 for some

minimum n. Thus η(Kn′�K4) ≤ 3
2n
′+7 for all n′ < n. Consider the branch

sets of a Kp-minor in Kn�K4, where p > 3
2n + 7. By Lemma 2.1, we may

assume that every vertex is in some branch set.
Suppose that some branch set consists of at most three vertices all in a

single row. These vertices have at most n+ 6 neighbours in total, implying
p − 1 ≤ n + 6, which is a contradiction. Now assume that no branch set
consists of at most three vertices all in a single row. In particular, no branch
set is a singleton.

Suppose that some column C contains exactly three vertices in a single
branch set X. Let y be the vertex in C \X. Let Y be the branch set that
contains y. The neighbourhood of y in Y is contained in a single row R,
and is thus a clique. Hence Y − y is connected and nonempty. Since y is
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the only vertex in Y ∩ C, some neighbour y′ of y in Y is in R. If, for some
branch set Z that does not intersect C, some Y Z-edge is incident to y, then
Z intersects R, implying there is an edge from y′ to Z. Therefore deleting
C gives a Kp−1-minor (including the branch set Y − y). Hence

3
2(n− 1) + 7 ≥ η(Kn−1 �K4) ≥ p− 1 > 3

2n+ 6,

which is a contradiction. Now assume that no column contains exactly three
vertices in a single branch set.

Say there are q branch sets, each with exactly two or three vertices. Thus

4n ≥ 2q + 4(p− q) > −2q + 4(3
2n+ 7),

implying q > n+ 14. Each branch set X with exactly two or three vertices
contains exactly two vertices in some column C (since no branch set consists
of at most three vertices all in a single row, and no column contains exactly
three vertices in a single branch set). We say that C belongs to X. Since
q ≥ n + 10, there are distinct columns C1, . . . , C10 that each belong to at
least two branch sets.

Say Ci is type-1 if the vertices in the first and second rows (of Ci) are in
the same branch set (which implies that the vertices in the third and fourth
rows are in the same branch set). Say Ci is type-2 if the vertices in the first
and third rows are in the same branch set (which implies that the vertices
in the second and fourth rows are in the same branch set). Say Ci is type-3
if the vertices in the first and fourth rows are in the same branch set (which
implies that the vertices in the second and third rows are in the same branch
set).

At least four of C1, . . . , C10 have the same type. Without loss of generality,
C1, C2, C3, C4 are all type-1. Let X be the branch set that contains the
vertices in the first and second rows of C1. In the case that |X| = 3, let
D be the column that contains the vertex in X \ C1. Note that D 6= Ci
for all i ∈ {2, 3, 4} (since C1 and Ci have the same type and |X| ≤ 3). For
i ∈ {2, 3, 4}, let Yi be the branch set that contains the vertices in the third
and fourth rows of Ci. Note that Y2, Y3 and Y4 are distinct (since exactly
one column belongs to each Yi). Since |X| ≤ 3, each vertex in X is in the
first or second row. For each i ∈ {2, 3, 4}, since Ci belongs to two branch
sets and |X| ≤ 3, we have X ∩ Ci = ∅. Similarly, each vertex in Yi is in the
third or fourth row, and Yi ∩C1 = ∅. Since there is an edge between X and
Yi, it must be that |X| = 3, and each Yi contains a vertex in the third or
fourth row of D. That is, two vertices are contained in three branch sets.
This contradiction completes the proof. �

Now we consider the Hadwiger number of the product of d complete
graphs. Here our lower and upper bounds are within a factor of 2

√
d (ig-

noring lower order terms).
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Theorem 7.5. For all integers d ≥ 2 and n1 ≥ n2 ≥ · · · ≥ nd ≥ 2,⌊n1

2

⌋ ∏

i∈[2,d]

b√nic ≤ η(Kn1 �Kn2 � · · ·�Knd
) <

(√
dn1

∏

i∈[2,d]

√
ni

)
+ 3.

Proof. Let G := Kn1 �Kn2 � · · ·�Knd
. Since v(G) =

∏
i ni and ∆(G) =∑

i(ni − 1), Lemma 2.2 implies the upper bound,

η(G) <

√(∑

i∈[d]

(ni − 1)
)( ∏

i∈[d]

ni

)
+ 3

<
(√

dn1

∏

i∈[d]

√
ni

)
+ 3

=
(√

dn1

∏

i∈[2,d]

√
ni

)
+ 3.

For the lower bound, let p := bn1
2 c and ki := b√nic for each i ∈ [2, d].

Let m1 := 2p and mi := k2
i for each i ∈ [2, d]. Observe that each ni ≥ mi.

Thus it suffices to construct the desired minor in Km1 �Km2 � · · ·�Kmd
.

Let V (Km1) = [2p], and for each i ∈ [2, d], let

V (Kmi) = {(ai, bi) : ai, bi ∈ [ki]}.
Each vertex is described by a vector (r, a2, b2, . . . , ad, bd) where r ∈ [m1] and
ai, bi ∈ [ki]. Distinct vertices (r, a2, b2, . . . , ad, bd) and (s, x2, y2, . . . , xd, yd)
are adjacent if and only if:

(1) ai = xi and bi = yi for each i ∈ [2, d], or
(2) r = s, and for some i ∈ [2, d], for every j 6= i, we have aj = xj and

bj = yj .

In case (1) the edge is in dimension 1, and in case (2) the edge is in dimension
i.

For all r ∈ [p], i ∈ [2, d], and ji ∈ [ki], let A〈r, j2, . . . , jd〉 be the subgraph
induced by

{(2r, a2, j2, a3, j3, . . . , ad, jd) : ai ∈ [ki], i ∈ [2, d]},
let B〈r, j2, . . . , jd〉 be the subgraph induced by

{(2r − 1, j2, b2, j3, b3, . . . , jd, bd) : bi ∈ [ki], i ∈ [2, d]},
and X〈r, j2, . . . , jd〉 the subgraph induced by the vertices of A〈r, j2, . . . , jd〉∪
B〈r, j2, . . . , jd〉.

Observe that any two vertices in A〈r, j2, . . . , jd〉 are connected by a path
of at most d − 1 edges (in dimensions 2, . . . , d). Thus A〈r, j2, . . . , jd〉 is
connected. Similarly, B〈r, j2, . . . , jd〉 is connected. Moreover, the dimension-
1 edge

(2r, j2, j2, j3, j3, . . . , jd, jd)(2r − 1, j2, j2, j3, j3, . . . , jd, jd)

connects A〈r, j2, . . . , jd〉 and B〈r, j2, . . . , jd〉. Hence X〈r, j2, . . . , jd〉 is con-
nected.
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Consider a pair of distinct subgraphs X〈r, j2, . . . , jd〉 and X〈s, `2, . . . , `d〉.
By construction they are disjoint. Moreover, the dimension-1 edge

(2r, `2, j2, `3, j3, . . . , `d, jd)(2s− 1, `2, j2, `3, j3, . . . , `d, jd)

connects A〈r, j2, . . . , jd〉 and B〈s, `2, . . . , `d〉. Hence the X〈r, j2, . . . , jd〉 are

branch sets of a clique minor of order p
∏d
i=2 ki. Therefore

η(G) ≥ p
d∏

i=2

ki =
⌊n1

2

⌋ d∏

i=2

b√nic,

as desired. �

The d-dimensional Hamming graph is the product

Hd
n := Kn�Kn� . . .�Kn︸ ︷︷ ︸

d

.

Chandran and Sivadasan [9] proved the following bounds on the Hadwiger
number of Hd

n:

nb(d−1)/2c ≤ η(Hd
n) ≤ 1 +

√
dn(d+1)/2.

Theorem 7.5 improves this lower bound by a Θ(n) factor; thus determining

η(Hd
n) to within a 2

√
d factor (ignoring lower order terms):

1
2n

(d+1)/2 −O(nd/2) ≤ η(Hd
n) < 1 +

√
dn(d+1)/2.

8. Hypercubes and lexicographic products

The d-dimensional hypercube is the graph

Qd := K2�K2� · · ·�K2︸ ︷︷ ︸
d

.

Hypercubes are both grid graphs and Hamming graphs. The Hadwiger
number of Qd was first studied by Chandran and Sivadasan [8]. The best
bounds on η(Qd) are due to Kotlov [38], who proved that

(4) η(Qd) ≥
{

2(d+1)/2, d odd,

3 · 2(d−2)/2, d even,

and

η(Qd) ≤ 5
2 +

√
2d(d− 3) + 25

4 .

Kotlov [38] actually proved the following more general result which readily
implies (4) by induction:

Proposition 8.1 ([38]). For every bipartite graph G, the strong product
G�K2 is a minor of G�K2 �K2.

Proposition 8.1 is generalised by the following result with H = K2 (since
G ·K2

∼= G�K2). See [58] for a different generalisation.
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Proposition 8.2. For every bipartite graph G and every connected graph
H, the lexicographic product G ·H is a minor of G�H �H.

Proof. Properly colour the vertices of G black and white. For all vertices
(v, p) of G ·H, let X〈v, p〉 be the subgraph of G�H �H induced by the set

{
{(v, p, q) : q ∈ V (H)}, if v is black,

{(v, q, p) : q ∈ V (H)}, if v is white.

We claim the X〈v, p〉 form the branch sets of a G ·H-minor in G�H �H.
First observe that each X〈v, p〉 is isomorphic to H, and is thus connected.

Consider distinct vertices (v, p) and (v′, p′) of G ·H, where v is black.
Suppose on the contrary that some vertex (w, a, b) of G�H �H is in

both X〈v, p〉 and X〈v′, p′〉. Since (w, a, b) is in X〈v, p〉, we have a = p. By
construction, w = v = v′. Thus v′ is also black, and since (w, a, b) is in
X〈v′, p′〉, we have a = p′. Hence p = p′, which contradicts that (v, p) and
(v′, p′) are distinct. Hence X〈v, p〉 and X〈v′, p′〉 are disjoint.

Suppose that (v, p) and (v′, p′) are adjacent in G · H. It remains to
prove that X〈v, p〉 and X〈v′, p′〉 are adjacent in G�H �H. By definition,
vv′ ∈ E(G), or v = v′ and pp′ ∈ E(H). If vv′ ∈ E(G), then without
loss of generality, v is black and v′ is white, implying that (v, p, p′), which
is in X〈v, p〉, is adjacent to (v′, p, p′), which is in X〈v′, p′〉. If v = v′ and
pp′ ∈ E(H), then for every q ∈ V (H), the vertex (v, p, q), which is in X〈v, p〉,
is adjacent to (v, p′, q), which is in X〈v′, p′〉. �

Proposition 8.2 motivates studying η(G ·H). We now show that when G
is a complete graph, η(G ·H) can be be determined precisely.

Proposition 8.3. For every graph H,

η(Kn ·H) =
⌊n

2

(
v(H) + ω(H)

)⌋
.

Proof. Let C be a maximum clique in H. Consider the set of vertices

X := {(u, y) : u ∈ V (Kn), y ∈ C}
in Kn ·H. Thus |X| = n · ω(H) and X is a clique in Kn ·H. In fact, X is a
maximum clique, since every set of n · ω(H) + 1 vertices in Kn ·H contains
ω(H) + 1 vertices in a single copy of H. Thus ω(Kn ·H) = n ·ω(H). Hence
the upper bound on η(Kn ·H) follows from Lemma 2.3.

It remains to prove the lower bound on η(Kn · H). Delete the edges of
H that are not in C. This operation is allowed since it does not increase
η(Kn · H). So H now consists of C and some isolated vertices. Observe
that (Kn ·H) −X is isomorphic to the balanced complete n-partite graph
with v(H) − ω(H) vertices in each colour class. Every balanced complete
multipartite graph with r vertices has a matching of b r2c edges [52]. Thus
(Kn ·H)−X has a matching M of bn2 (v(H)−ω(H))c edges. No edge in M is
incident to a vertex in X. For every edge (v, x)(v′, x′) in M and vertex (u, y)
of Kn ·H, since v 6= v′, without loss of generality, v 6= u. Thus vu ∈ E(Kn)
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and (v, x) is adjacent to (u, y) in Kn ·H. Hence contracting each edge in M
gives a K|X|+|M |-minor in Kn ·H. Therefore

η(Kn ·H) ≥ |X|+ |M | = n · ω(H) +
⌊n

2

(
v(H)− ω(H)

)⌋

=
⌊n

2

(
v(H) + ω(H)

)⌋
. �

We now show that Propositions 8.2 and 8.3 are closely related to some
previous results in the paper.

Proposition 8.2 withG = K2 implies that K2·H is a minor of H �H �K2.
Proposition 8.3 implies η(K2 ·H) = v(H) + ω(H). Thus η(H �H �K2) ≥
v(H) + ω(H), which is only slightly weaker than Proposition 3.1.

Proposition 8.2 with G = Kn,n implies that Kn,n · H is a minor of
Kn,n�H �H for every connected graph H. Since Kn+1 is a minor of Kn,n,
we have Kn+1 ·H is a minor of Kn,n�H �H. Proposition 8.3 implies that

η(Kn,n�H �H) ≥
⌊
n+ 1

2

(
v(H) + ω(H)

)⌋
.

Since Kn,n ⊂ K2n,

η(K2n�H �H) ≥
⌊
n+ 1

2

(
v(H) + ω(H)

)⌋
.

With H = Kd
m we have

η(K2n�K2d
m ) ≥

⌊
n+ 1

2

(
md +m

)⌋
,

which is equivalent to Theorem 7.5 with n1 = n and n2 = · · · = n2d+1 = m
(ignoring lower order terms). In fact for small values of m, this bound is
stronger than Theorem 7.5. For example, with n = 1 and m = 3 we have

η(K2 �K2d
3 ) ≥ 3d + 3,

whereas Theorem 7.5 gives no nontrivial bound on η(K2 �K2d
3 ).

9. Rough structural characterisation theorem for trees

In this section we characterise when the product of two trees has a large
clique minor. Section 5 gives such an example: Corollaries 5.3 and 5.6 imply
that if one tree has many leaves and the other has many vertices then their
product has a large clique minor. Now we give a different example. As
illustrated in Figure 5(a), let Bn be the tree obtained from the path P2n+1

by adding one leaf adjacent to the vertex in the middle of P2n+1.
Now Bn only has three leaves, but Seese and Wessel [50] implicitly proved

that the product of Bn and a long path (which only has two leaves) has a
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Figure 5. (a) The tree Bn. (b) A balance of order min{|A|, |B|}.

large clique minor.3 In Theorem 9.1 below we prove an explicit bound
of η(Pm�Bn) ≥ min{n,√m}, which is illustrated in Figure 6. In fact,
this bound holds for a more general class of trees than Bn, which we now
introduce.

b5

b4

b3

b2

b1

a1
a2
a3
a4
a5

r s

v1,1 v2,5 v3,1 v4,5 v5,1v1,5 v2,1 v3,5 v4,1 v5,5

X1 X2 X3 X4 X5

Figure 6. Kn is a minor of Pn2 �Bn.

As illustrated in Figure 5(b), a balance of order n is a tree T that has
an edge rs, and disjoint sets A,B ⊆ V (T ) − {r, s}, each with at least n
vertices, such that A ∪ {r} and B ∪ {r} induce connected subtrees in T .
We say A and B are the branches, r is the root, and s is the support of T .
For example, the star St is a balance of order b t−1

2 c, and Bn is a balance

3Seese and Wessel [50] observed that since the complete graph has a drawing in the
plane with all the crossings collinear, Bn �Pm contains clique subdivisions of unbounded
order, and thus η(Bn �Pm) is unbounded. On the other hand, Seese and Wessel [50]
proved that if T is the tree obtained from the path (v1, . . . , vm) by adding one leaf adjacent
to v2, then η(Pn �T ) ≤ 7. This observation disproved an early conjecture by Robertson
and Seymour about the structure of graphs with an excluded minor, and lead to the
development of vortices in Robertson and Seymour’s theory; see [46, 36].



658 DAVID R. WOOD

of order n. Theorem 9.1 below implies that η(Pm�T ) ≥ min{√m,n} for
every balance T of order n. The critical property of a long path is that it
has many large disjoint subpaths.

Theorem 9.1. Let G be a tree that has n disjoint subtrees each of order at
least n. Then for every balance T of order n,

η(G�T ) ≥ n.
Proof. Let A and B be the branches, let r be the root, and let s be the
support of T . Contract edges in T until A and B each have exactly n
vertices. Orient the edges of T away from r. Label the vertices of A by
{a1, a2, . . . , an} such that if −−→aiaj ∈ E(A) then i < j. Label the vertices of B

by {b1, b2, . . . , bn} such that if
−−→
bibj ∈ E(B) then j < i. For each i ∈ [n], let

Ti be the path between ai and bi in T (which thus includes r).
Contract edges in G until it is the union of n disjoint subtrees G1, . . . , Gn,

each with exactly n vertices. For every pair of vertices v, w ∈ V (G), let
G〈v, w〉 be the path between v and w in G. Orient the edges of G away
from an arbitrary vertex in G1. Let G∗ be the oriented tree obtained from
G by contracting each Gi into a single vertex zi. Note that for each i ∈ [2, n],
each vertex zi has exactly one incoming arc in G∗. Fix a proper 2-colouring
of G∗ with colours black and white, where z1 is coloured white. Label the
vertices in each subtree Gi by {vi,1, . . . , vi,n}, such that for each arc (vi,j , vi,`)
in Gi, we have ` < j if zi is black, and j < ` if zi is white.

For each i ∈ [n], let Hi be the subgraph of G�T induced by

{(vi,j , s) : j ∈ [n]}.
For all i, j ∈ [n], let Ti,j be the subgraph of G�T induced by

{(vj,i, y) : y ∈ V (Ti)}.
For all i, j ∈ [n], let ci,j be the vertex ai if zj is white, and bi if zj is black.

For all i ∈ [n] and j ∈ [2, n], let Ui,j be the subgraph of G�T induced by

{(x, ci,j) : x ∈ G〈vk,i, vj,i〉},
where (zk, zj) is the incoming arc at zj in G∗.

For each i ∈ [n], let Xi be the subgraph of G�T induced by
⋃

j∈[n]

(Ti,j ∪ Ui,j ∪Hi).

We now prove that X1, . . . , Xn are the branch sets of a Kn-minor.
First we prove that each Xi is connected. Observe that each Hi is iso-

morphic to Gi, and is thus connected. Each Ti,j is isomorphic to the path
Ti, and is thus connected. Moreover, the endpoints of Ti,j are (vj,i, ai) and
(vj,i, bi). Each Ui,j is isomorphic to the path G〈vj′,i, vj,i〉, and is thus con-
nected. Moreover, the endpoints of Ui,j are (vj′,i, ci,j) and (vj,i, ci,j). Thus
if zj is white (and thus zj′ is black), then the endpoints of Ui,j are (vj′,i, ai)
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and (vj,i, ai). And if zj is black (and thus zj′ is white), then the endpoints
of Ui,j are (vj′,i, bi) and (vj,i, bi). Hence the induced subgraph

Ti,1 ∪ Ui,1 ∪ Ti,2 ∪ Ui,2 ∪ Ti,3 ∪ Ui,3 ∪ · · · ∪ Ti,n ∪ Ui,n
is a path (illustrated in Figure 6 by alternating vertical and horizontal seg-
ments). Furthermore, the vertex (vi,i, s) in Hi is adjacent to the vertex
(vi,i, r) in Ti,i. Thus Xi is connected.

Now we prove that the subgraphs Xi and Xi′ are disjoint for all distinct
i, i′ ∈ [n]. First observe that Hi and Hi′ are disjoint since the first coordinate
of every vertex in Hi is some vi,j . Similarly, for all j, j′ ∈ [n], the subgraphs
Ti,j and Ti′,j′ are disjoint since the first coordinate of every vertex in Ti,j is
vj,i. For all j, j′ ∈ [n], the subgraphs Ui,j and Ui′,j′ are disjoint since the
second coordinate of every vertex in Ui,j is ai or bi. For all j ∈ [n], Hi is
disjoint from Ti′,j ∪Ui′,j since the second coordinate of Hi is s. It remains to
prove that Ti,j and Ui′,j′ are disjoint. Suppose on the contrary that for some
j, j′ ∈ [n], some vertex (x, y) is in Ti,j ∩ Ui′,j′ . Without loss of generality,
zj′ is black. Say (zk, zj′) is the incoming arc at zj′ in G∗. So zk is white.
Since (x, y) ∈ Ti,j , we have x = vj,i and y ∈ V (Ti). Since (x, y) ∈ Ui′,j′ ,
x is in the path G〈vk,i′ , vj′,i′〉. Since zj′ is black, y = bi′ . Now vj,i (which
equals x) is in the path G〈vk,i′ , vj′,i′〉. Thus by the labelling of vertices in Gk
and Gj′ , we have i′ < i ≤ n. By comparing the second coordinates, observe
that bi′ ∈ V (Ti). Thus i′ > i by the labelling of the vertices in B. This
contradiction proves that Ti,j and Ui′,j′ are disjoint for all j, j′ ∈ [n]. Hence
Xi and Xi′ are disjoint.

Finally, observe that for distinct i, i′ ∈ [n], the vertex (vi,i′ , s) in Hi ⊂ Xi

is adjacent to the vertex (vi,i′ , r) in Ti′,i ⊂ Xi′ . Therefore the Xi are branch
sets of a Kn-minor. �

We conjecture that the construction in Theorem 9.1 is within a constant
factor of optimal; that is, Pm�Bn = Θ(min{√m,n}).

Theorem 9.1 motivates studying large disjoint subtrees in a given tree.
Observe that a star does not have two disjoint subtrees, both with at least
two vertices. Thus a star cannot be used as the tree G in Theorem 9.1 with
n ≥ 2. On the other hand, a path on n2 vertices has n disjoint subpaths,
each with n vertices. Of the trees with the same number of vertices, the
star has the most leaves and the path has the least. We now prove that the
every tree with few leaves has many large disjoint subtrees.4

4As an aside we now describe a polynomial-time algorithm that for a given tree T ,
finds the maximum number of disjoint subtrees in T , each with at least n vertices. It is
convenient to consider a generalisation of this problem, where each vertex v is assigned a
positive weight w(v), and each subtree is required to have total weight at least n. Let v be
a leaf of T . Let T ′ := T − v. Define a new weight function w′(z) := w(z) for every vertex
z of T − v. First suppose that w(v) ≥ n. Then T has k disjoint subtrees each of total
w-weight at least n if and only if T ′ has k− 1 disjoint subtrees each of total w′-weight at
least n. (In which case T [{v}] becomes one of the k subtrees.) Now assume that w(v) < n.
Let x be the neighbour of v in T . Redefine w′(x) := w(x) + w(v). Then T has k disjoint
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Theorem 9.2. Let T be a tree with at least one edge, and let n be a positive
integer, such that

v(T ) ≥ n2 + (star(T )− 2)(n− 1) + 1.

Then T has n disjoint subtrees, each with at least n vertices.

The proof of Theorem 9.2 is based on the following lemma.

Lemma 9.3. Fix a positive integer n. Let T be a tree with at least one
edge, where each vertex of T is assigned a weight w(v) ∈ Z+, such that
every leaf has weight at most n and every other vertex has weight 1. Let
W (T ) :=

∑
v∈V (T )w(v) be the total weight. Then there is a vertex-partition

of T into at least

f(T ) :=

⌊
W (T )− (star(T )− 2)(n− 1)

n

⌋

disjoint subtrees, each with total weight at least n.

Proof. We proceed by induction on f(T ). If f(T ) ≤ 0 then there is nothing
to prove. First suppose that f(T ) = 1. Then

W (T ) ≥ (star(T )− 2)(n− 1) + n ≥ n
since star(T ) ≥ 2. Thus T itself has total weight at least n, and we are done.
Now assume that f(T ) ≥ 2.

Suppose that T = K2 with vertices x and y, both of which are leaves.

Thus star(T ) = 2 and f(T ) = bw(x)+w(y)
n c. Now f(T ) ≥ 2 and w(x), w(y) ≤

n. Thus f(T ) = 2 and w(x) = w(y) = n. Hence T [{x}] and T [{y}] is a
vertex-partition of T into two disjoint subtrees, each with weight at least n,
and we are done. Now assume that v(T ) ≥ 3.

Suppose that w(v) = n for some leaf v. Let T ′ := T − v. By induction,
there is a vertex-partition of T ′ into f(T ′) disjoint subtrees, each with total
weight at least n. These subtrees plus T [{v}] are a vertex-partition of T
into 1 + f(T ′) disjoint subtrees, each with total weight at least n. Now
W (T ′) = W (T )− n, and s(T ′) ≤ star(T ) since v is not a leaf in T ′, and the
neighbour of v is the only potential leaf in T ′ that is not a leaf in T . Thus

1 + f(T ′) =

⌊
n+W (T ′)− (s(T ′)− 2)(n− 1)

n

⌋

≥
⌊
W (T )− (star(T )− 2)(n− 1)

n

⌋

= f(T ),

and we are done. Now assume that w(v) ≤ n− 1 for every leaf v.

subtrees each of total w-weight at least n if and only if T ′ has k disjoint subtrees each
of total w′-weight at least n. (A subtree X of T ′ containing x is replaced by the subtree
T [V (X) ∪ {v}].) Thus in each case, from an inductively computed optimal solution in T ′

(for the weight function w′), we can compute an optimal solution in T (for the weight
function w).
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Let T ′ be the tree obtained from T by deleting each leaf. Since T 6= K2,
T ′ has at least one vertex. Suppose that T ′ has exactly one vertex. That is,
T is a star. Thus W (T ) ≤ 1 + star(T ) · (n− 1) since every leaf has weight at
most n− 1. Thus

f(T ) =

⌊
W (T )− (star(T )− 2)(n− 1)

n

⌋
≤
⌊

2n− 1

n

⌋
= 1,

which is a contradiction.
Now assume that T ′ has at least two vertices. In particular, T ′ has a leaf

v. Note that the neighbour of v in T ′ is not a leaf in T , as otherwise T ′

would only have one vertex. Now v is not a leaf in T (since it is in T ′). Thus
v is adjacent to at least one leaf in T . Let x1, x2, . . . , xd be the leaves of T
that are adjacent to v.

First suppose that
∑

iw(xi) ≤ n− 1. Let T ′′ := T − {x1, . . . , xd}. Then
v is a leaf in T ′′. Redefine w(v) := 1 +

∑
iw(xi). By induction, there is a

vertex-partition of T ′′ into f(T ′′) disjoint subtrees, each of total weight at
least n. Observe that W (T ) = W (T ′′) and s(T ′′) = star(T )−d+1 ≤ star(T ).
Thus

f(T ′′) =

⌊
W (T ′′)− (s(T ′′)− 2)(n− 1)

n

⌋

≥
⌊
W (T )− (star(T )− 2)(n− 1)

n

⌋

= f(T ).

Adding x1, . . . , xd to the subtree of T ′′ containing v gives a vertex-partition
of T into at least f(T ) disjoint subtrees, each with total weight at least n.

Now assume that
∑

iw(xi) ≥ n. Let T ′′′ := T − {v, x1, . . . , xd}. Now
s(T ′′′) ≤ star(T ) − d + 1, since w1, . . . , wd are leaves in T that are not in
T ′′′, and the neighbour of v in T ′′ is the only vertex in T ′′′ that possibly is
a leaf in T ′′′ but not in T . Observe that W (T ′′′) ≥ W (T ) − 1 − d(n − 1)
since v has weight 1 and each wi has weight at most n − 1. By induction,
there is partition of V (T ′′′) into at least f(T ′′′) disjoint subtrees, each with
total weight at least n. These subtrees plus T [{v, x1, . . . , xd}] are a vertex-
partition of T into at least 1+f(T ′′′) disjoint subtrees, each with total weight
at least n. Now

1 + f(T ′′′) = 1 +

⌊
W (T ′′′)− (s(T ′′′)− 2)(n− 1)

n

⌋

≥
⌊
n+W (T )− 1− d(n− 1)− (star(T )− d+ 1− 2)(n− 1)

n

⌋

=

⌊
W (T )− (star(T )− 2)(n− 1)

n

⌋

= f(T ).

This completes the proof. �
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Lemma 9.4. For every positive integer n, every tree T with at least one
edge has ⌊

v(T )− (star(T )− 2)(n− 1)

n

⌋

disjoint subtrees, each with at least n vertices. Moreover, for all integers
s, n ≥ 2 and N ≥ sn, there is a tree T with v(T ) = N and star(T ) = s, such
that T has at most

⌊
v(T )− (star(T )− 2)(n− 1)

n

⌋

disjoint subtrees, each with at least n vertices.

Proof. Lemma 9.3 with each leaf assigned a weight of 1 implies the first
claim. It remains to construct the tree T . Fix a path P with N − s(n− 1)
vertices. Let v and w be the endpoints of P . As illustrated in Figure 7, let
T be the tree obtained from P by attaching d s2e pendant paths to v, each
with n − 1 vertices, and by attaching b s2c pendant paths to w, each with
n− 1 vertices. Thus T has N vertices and s leaves.

b

b

b

b

b

b
⌈ s
2

⌉ ⌊ s
2

⌋

n− 1 n− 1

v w

Figure 7. The tree T in Lemma 9.4.

Let A be the subtree of T induced by the union of v and the pendant
paths attached at v. Let B be the subtree of T induced by the union of w
and the pendant paths attached at w. Let X1, . . . , Xt be a set of disjoint
subtrees in T , each with at least n vertices. If some Xi intersects A then v
is in Xi. At most one subtree Xi contains v. Thus at most one subtree Xi

intersects A. Similarly, at most one subtree Xj intersects B. The remaining
t− 2 subtrees are contained in P − {v, w}. Thus

t− 2 ≤ N − s(n− 1)− 2

n
.

It follows that tn ≤ N − (s− 2)(n− 1), as desired. �
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Proof of Theorem 9.2. The assumption in Theorem 9.2 implies that

v(T )− (star(T )− 2)(n− 1)

n
≥ n+

1

n
.

Hence ⌊
v(T )− (star(T )− 2)(n− 1)

n

⌋
≥ n.

The result thus follows from Lemma 9.4. �

For every tree T , let bal(T ) be the maximum order of a balance subtree
in T . The next lemma shows how to construct a balance of large order. For
each vertex r of T , let Tr be the component of T − r with the maximum
number of vertices.

Lemma 9.5. Let r be a vertex in a tree T with degree d ≥ 3. Then every
balance in T rooted at r has order at most v(T ) − v(Tr) − 2. On the other
hand, there is a balance in T rooted at r of order at least 1

3(v(T )−v(Tr)−1).

Proof. Consider a balance rooted at r. The largest component of T − r is
contained in at most one branch. Thus the other branch has at most v(T )−
v(Tr)−2 vertices. Hence the order of the balance is at most v(T )−v(Tr)−2.

Now we prove the second claim. Let Y1, . . . , Yd be the components of
T − r. Say v(Y1) ≥ · · · ≥ v(Yd). Then v(Tr) = v(Y1). Let s be the neighbour
of r in Yd.

First suppose that d = 3. Then Y1 and Y2 are the branches of a balance
rooted at r with support s, and order v(Y2). Now 2v(Y2) ≥ v(Y2) + v(Y3) =
v(T )− v(Y1)− 1. Thus the order of the balance, v(Y2), is at least

1
2(v(T )− v(Y1)− 1) > 1

3(v(T )− v(Y1)− 1).

Now assume that d ≥ 4. If A and B are a partition of [d − 1], then
∪{Yi : i ∈ A} and ∪{Yi : i ∈ B} are the branches of a balance rooted at r
with support s. The order of the balance is

min

{∑

i∈B
v(Yi),

∑

i∈A
v(Yi)

}
.

A greedy algorithm5 gives such a partition with

min

{∑

i∈B
v(Yi),

∑

i∈A
v(Yi)

}
≥ 1

2

(
− v(Y1) +

∑

i∈[d−1]

v(Yi)
)

= 1
2(v(T )− v(Y1)− v(Yd)− 1).

5Given integers m1 ≥ m2 ≥ · · · ≥ mt ≥ 1 that sum to m, construct a partition of [t]
into sets A and B as follows. For i ∈ [t], let Ai :=

∑
j∈[i]∩Amj and Bi :=

∑
j∈[i]∩B mj .

Initialise A := {m1} and B := ∅. Then for i = 2, 3, . . . , t, if Ai−1 ≤ Bi−1 then add
i to A; otherwise add i to B. Thus |A1 − B1| = m1 and by induction, |Ai − Bi| ≤
max{|Ai−1 − Bi−1| −mi,mi} ≤ max{m1 −mi,mi} ≤ m1. Thus |At − Bt| ≤ m1. Hence
At and Bt are both at least 1

2
(m−m1).
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Since Yd is the smallest of Y2, . . . , Yd, the order of the balance is at least

1
2(v(T )− v(Y1)− v(T )−v(Y1)−1

d−1 − 1) = d−2
2(d−1)(v(T )− v(Y1)− 1)

≥ 1
3(v(T )− v(Y1)− 1),

as desired. �

Which trees T have small bal(T )? First note that bal(P ) = 0 for every
path P . A path P in a tree T is clean if every internal vertex of P has
degree 2 in T . Let p(T ) be the maximum number of vertices in a clean path
in T . The hangover of T , denoted by hang(T ), is the minimum, taken over
all clean paths P in T , of the maximum number of vertices in a component
of T − E(P ). We now prove that bal(T ) and hang(T ) are tied.

Lemma 9.6. For every tree T ,

bal(T ) + 1 ≤ hang(T ) ≤ 3 bal(T ) + 1.

Proof. First we prove the lower bound. Let P be a longest clean path in
T . Since every internal vertex in P has degree 2 in T , every balance in T
is rooted at a vertex r in one of the components of the forest obtained by
deleting the internal vertices and edges of P from T . For every such vertex
r, T − r has a component of at least v(T ) − hang(T ) − 1 vertices. That is,
v(Tr) ≥ v(T )− hang(T )− 1. By Lemma 9.5, every balance rooted at r has
order at most v(T )− v(Tr)− 2 ≤ hang(T )− 1. Thus bal(T ) ≤ hang(T )− 1.

Now we prove the upper bound. If T is a path then bal(T ) = hang(T ) = 0,
and we are done. Now assume that T has a vertex of degree at least 3.
Let r be a vertex of degree at least 3 in T such that v(Tr) is minimised.
Let x be the closest vertex in Tr to r such that deg(x) 6= 2. Let P be
the path between r and x in T . Thus P is clean. If x is a leaf, then
v(Tx) = v(T )− 1 ≥ v(Tr). If deg(x) ≥ 3 then v(Tx) ≥ v(Tr) by the choice of
r. In both cases v(Tx) ≥ v(Tr), which implies that r is in Tx. Thus deleting
the internal vertices and edges of P gives a forest with two components, one
with v(T )− v(Tr) vertices, and the other with v(T )− v(Tx) vertices. Hence
hang(T ) ≤ max{v(T )− v(Tr), v(T )− v(Tx)} = v(T )− v(Tr). By Lemma 9.5,
there is a balance in T rooted at r of order at least 1

3(v(T ) − v(Tr) − 1) ≥
1
3(hang(T )− 1). Hence bal(T ) ≥ 1

3(hang(T )− 1). �

We now prove that if the product of sufficiently large trees has bounded
Hadwiger number then both trees have bounded hangover.

Lemma 9.7. Fix an integer c ≥ 1. Let T1 and T2 be trees, such that
v(T1) ≥ 2c2 − c+ 2, v(T2) ≥ c+ 1, and η(T1 �T2) ≤ c. Then

hang(T2) ≤ 3c+ 1.

By symmetry, if in addition v(T2) ≥ 2c2 − c+ 2 then

hang(T1) ≤ 3c+ 1.
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Proof. If star(T1) ≥ c, then η(T1 �T2) ≥ min{v(T2), star(T1)+1} ≥ c+1 by
Corollary 5.3, contradicting the assumption. Now assume that star(T1) ≤
c− 1.

Let n := c+ 1. Then

v(T1) ≥ (c+ 1)2 + (c− 3)c+ 1 ≥ n2 + (star(T1)− 2)(n− 1) + 1.

Thus Theorem 9.2 is applicable to T1 with n = c + 1. Hence T1 has c + 1
disjoint subtrees, each with at least c+ 1 vertices.

If bal(T2) ≥ c+1, then by Theorem 9.1, η(T1 �T2) ≥ min{c+1, bal(T2)} =
c + 1, which contradicts the assumption. Thus bal(T2) ≤ c, and by Lem-
ma 9.6, hang(T2) ≤ 3c+ 1. �

We now prove a converse result to Lemma 9.7. It says that the product
of two trees has small Hadwiger number whenever one of the trees is small
or both trees have small hangover.

Lemma 9.8. Let T1 and T2 be trees, such that for some integer c ≥ 1,

• v(T1) ≤ c or v(T2) ≤ c, or
• hang(T1) ≤ c and hang(T2) ≤ c.

Then η(T1 �T2) ≤ c′ for some c′ depending only on c.

Proof. First suppose that v(T1) ≤ c. Then η(T1 �T2) ≤ η(Kc�T2) = c+1
by Theorem 10.1 below. Similarly, if v(T2) ≤ c then η(T1 �T2) ≤ c+ 1.

Otherwise, by assumption, hang(T1) ≤ c and hang(T2) ≤ c. For i ∈ [2],
let Pi be a clean path with p(Ti) vertices in Ti. Now P1 �P2 is a planar
p(T1) × p(T2) grid subgraph H in T1 �T2. We now show that T1 �T2 can
be obtained from H by adding a vortex in the outerface of H.

Let F be the set of vertices on the outerface of H in clockwise order.
Consider a vertex v = (v1, v2) ∈ F , where v1 ∈ V (P1) and v2 ∈ V (P2).
For i ∈ [2], let Ai(v) be the component of Ti − E(Pi) that contains vi. As
illustrated in Figure 8, define S(v) to be the set {(a, b) : a ∈ A1(v), b ∈
A2(v)} of vertices in T1 �T2. Every vertex of G − H is in S(v) for some
vertex v ∈ F . In addition, each vertex v ∈ F is in S(v). For every edge e
of T1 �T2 where both endpoints of e are in ∪{S(v) : v ∈ F}, the endpoints
of e are in one bag or in bags corresponding to consecutive vertices in F .
For each vertex v ∈ F , if w is clockwise from v in F , then define S′(v) :=
S(v) ∪ S(w). Hence for every edge xy of T1 �T2 where both endpoints of
e are in ∪{S(v) : v ∈ F}, the endpoints of e are both in S′(v) for some
vertex v ∈ F . Now |S(v)| = |A1(v)| · |A2(v)| ≤ hang(T1)2 ≤ c2. Thus
{S′(v) : v ∈ F} is a vortex of width at most 2c2.

It is well-known that every graph obtained from a graph embedded in a
surface of bounded genus by adding a vortex of bounded width has bounded
Hadwiger number. Thus η(T1 �T2) is at most some constant depending only
on c. Recently, Joret and Wood [35] proved a tight bound on the Hadwiger
number of such a graph; it implies that η(T1 �T2) ≤ O(c2). �
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T1

T2

Figure 8. The sets S(v) in the proof of Lemma 9.8.

Lemmas 9.7 and 9.8 imply the following rough structural characterisation
theorem for the products of trees.

Theorem 9.9. For trees T1 and T2 each with at least one edge, the function
η(T1 �T2) is tied to min

{
v(T1), v(T2), max{hang(T1), hang(T2)}

}
.

Theorem 9.9 can be informally stated as: η(T1 �T2) is bounded if and
only if:

• v(T1) or v(T2) is bounded, or
• hang(T1) and hang(T2) are bounded.

Theorem 9.9 is generalised for products of arbitrary graphs in Theorem 11.8
below.

10. Product of a general graph and a complete graph

Here, we study the Hadwiger number of the product of a general graph and
a complete graph. Miller [40] stated without proof that η(T �Kn) = n+ 1
for every tree T and integer n ≥ 2. We now prove this claim.

Theorem 10.1. For every tree T with at least one edge and integer n ≥ 1,

η(T �Kn) = n+ 1.

Proof. Since K2 �Kn is a subgraph of T �Kn, η(T �Kn) ≥ n+ 1 follows
from Proposition 7.2. It remains to prove the upper bound η(T �Kn) ≤
n + 1. Let X1, . . . , Xk be the branch sets of a complete minor in T �Kn,
where k = η(T �Kn). For each i ∈ [k], let Ti be the subtree of T consisting
of the edges vw ∈ E(T ) such that (v, j) or (w, j) is in Xi for some j ∈ [n].
Since Xi is connected, Ti is connected. Since Xi and Xj are adjacent, Ti



CLIQUE MINORS IN CARTESIAN PRODUCTS OF GRAPHS 667

and Tj share an edge in common. By the Helly property of trees, there is an
edge vw of T in every subtree Ti. Let Y be the set of vertices {(v, j), (w, j) :
j ∈ [n]}. Thus, by construction, every Xi contains a vertex in Y . Since
|Y | = 2n, if every Xi has at least two vertices in Y , then k ≤ n, and we
are done. Now assume that some Xi has only one vertex in Y . Say (v, j)
is the vertex in Xi ∩ Y . Let Tv and Tw be the subtrees of T obtained
by deleting the edge vw, where v ∈ V (Tv) and w ∈ V (Tw). Thus Xi is
contained in Tv �Kn. Let Z be the set of neighbours of (v, j) in Y . That
is, Z = {(v, `) : ` ∈ [n] − {j}} ∪ {(w, j)}. Suppose on the contrary that
some branch set Xp (p 6= i) has no vertex in Z. Then Xp is contained in
Tw�Kn minus the vertex (w, j). Thus Xi and Xp are not adjacent. This
contradiction proves that every branch set Xp (p 6= i) has a vertex in Z.
Since |Z| = n, k ≤ n+ 1, as desired. �

Theorem 10.1 is generalised through the notion of treewidth.

Theorem 10.2. For every graph G and integer n ≥ 1,

η(G�Kn) ≤ tw(G�Kn) + 1 ≤ n(tw(G) + 1).

Moreover, for all integers k ≥ 2 and n ≥ 2 there is a graph G with tw(G) = k
and

η(G�Kn) = tw(G�Kn) + 1 = n(k + 1).

Proof. First we prove the upper bound.6 Let (T, {Tx ⊆ V (G) : x ∈ V (T )})
be a tree decomposition of G with at most tw(G) + 1 vertices in each bag.
Replace each bag Tx by {(v, i) : v ∈ Tx, i ∈ [n]}. We obtain a tree decom-
position of G�Kn with at most n(tw(G) + 1) vertices in each bag. Thus
tw(G�Kn) ≤ n(tw(G) + 1)− 1. Every graph H satisfies η(H) ≤ tw(H) + 1.
The result follows.

Now we prove the lower bound. Let G be the graph with vertex set

V (G) := {v1, . . . , vk+1} ∪ {xi,j,p : i, j ∈ [k + 1], p ∈ [n]},
where {v1, . . . , vk+1} is a clique, and each xi,j,p is adjacent to vi and vj . A
tree decomposition T ofG is constructed as follows. Let Tr := {v1, . . . , vk+1},
and for all i, j ∈ [k + 1] and p ∈ [n], let Ti,j,p := {xi,j,p, vi, vj}, where Tr is
adjacent to every Ti,j,p and there are no other edges in T . Thus T is a star
with n(k+ 1)2 leaves, and (T, {Tx : x ∈ V (T )}) is a tree decomposition of G
with at most k + 1 vertices in each bag. Thus tw(G) ≤ k. Since G contains
a clique of k + 1 vertices, tw(G) = k.

Now consider G�Kn. For i, j ∈ [k + 1] and p ∈ [n], let A〈i, j, p〉 be the
subgraph of G�Kn induced by {(xi,j,p, q) : q ∈ [n]}. Thus A〈i, j, p〉 is a
copy of Kn. For i ∈ [k+ 1] and p ∈ [n], let X〈i, p〉 be the subgraph induced
by ∪{A〈i, j, p〉 : j ∈ [k + 1]} plus the vertex (vi, p). We claim that the
X〈i, p〉 are the branch set of clique minor in G�Kn. First we prove that
each X〈i, p〉 is connected. For all j ∈ [k + 1], vi is adjacent to xi,j,p in G.

6This upper bound even holds for strong products.
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Thus (vi, p) is adjacent to (xi,j,p, p), which is in A〈i, j, p〉 ⊂ X〈i, p〉. Thus
X〈i, p〉 consists of k+ 1 copies of Kn plus one vertex adjacent to each copy.
In particular, X〈i, p〉 is connected. Now consider distinct subgraphs X〈i, p〉
and X〈j, q〉. The first coordinate of every vertex in X〈i, p〉 is either vi,p or
xi,i′,p for some i′ ∈ [k + 1]. Thus X〈i, p〉 and X〈j, q〉 are disjoint. Now the
vertex xi,j,p is adjacent to the vertex vj,q in G. Thus the vertex (xi,j,p, q),
which is in A〈i, j, p〉 ⊂ X〈i, p〉, is adjacent to the vertex (vj,q, q), which is in
X〈j, q〉. Thus X〈i, p〉 and X〈j, q〉 are adjacent. Hence the X〈i, p〉 are the
branch set of clique minor in G�Kn, and η(G�Kn) ≥ n(k + 1). We have
equality because of the above upper bound. �

We have the following similar upper bound for the bandwidth of a prod-
uct.

Lemma 10.3. For every graph G and integer n ≥ 1,

bw(G�Kn) ≤ n · bw(G).

Proof. Say V (Kn) = {w1, . . . , wn}. Let (v1, . . . , vp) be a vertex ordering of
G, such that max{|i − j| : vivj ∈ E(G)} = bw(G). Order the vertices of
G�Kn,

(v1, w1), . . . , (v1, wn); (v2, w1), . . . , (v2, wn); . . . ; (vp, w1), . . . , (vp, wn).

In this ordering, an edge (vi, wj)(vi, w`) of G�Kn has length at most n−1,
and an edge (vi, w`)(vj , w`) of G�Kn has length n · |i−j| ≤ n ·bw(G) (since
vivj ∈ E(G)). Thus bw(G�Kn) ≤ n · bw(G) (since n · bw(G) ≥ n− 1). �

We now set out to prove a lower bound on η(G�Kn) in terms of the
treewidth of G. We start by considering the case n = 2, which is of particular
importance in Section 12 below. Robertson and Seymour [45] proved that
every graph with large treewidth has a large grid minor. The following
explicit bound was obtained by Diestel et al. [14]; also see [13, Theorem
12.4.4].

Lemma 10.4 ([14]). For all integers k,m ≥ 1 every graph with tree-width

at least k4m2(k+2) contains Pk�Pk or Km as a minor. In particular, every

graph with tree-width at least k4k4(k+2) contains a Pk�Pk-minor.

In what follows all logarithms are binary.

Lemma 10.5. For every graph G with at least one edge,

η(G�K2) > (1
4 log tw(G))1/4.

Proof. Let ` be the real-valued solution to tw(G) = `4(`+1)3 . Thus ` ≥ 1,
and

log tw(G) = 4(`+ 1)3(log `) < 4(`+ 1)4.

That is, (1
4 log tw(G))1/4 < ` + 1. Let k := b`c. Thus k ≥ 1 and tw(G) ≥

k4(k+1)3 . Hence Lemma 10.4 is applicable with m = k+ 1. Thus G contains
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Pk�Pk or Kk+1 as a minor. If G contains a Pk�Pk-minor, then G�K2

contains a Kk+2-minor by (2). Otherwise G contains a Kk+1 minor, and by
Proposition 7.2, G�K2 contains a Kk+2-minor. In both cases

η(G�K2) ≥ k + 2 > `+ 1 > (1
4 log tw(G))1/4,

as desired. �

Lemma 10.5 and Theorem 10.2 imply that η(G�K2) is tied to the tree-
width of G. In particular,

(5) (1
4 log tw(G))1/4 < η(G�K2) ≤ 2 tw(G) + 2.

This result is similar to a theorem by Behzad and Mahmoodian [2], who
proved that G�K2 is planar if and only if G is outerplanar. Equation (5)
says that G�K2 has bounded η if and only if G has bounded treewidth.

We now extend Lemma 10.5 for general complete graphs.

Lemma 10.6. For every graph G with at least one edge and every integer
n ≥ 1,

η(G�Kn) > bn2 c
(

1
16 log tw(G)

)1/6
.

Proof. Let ` be the real-valued solution to tw(G) = `4`
4(`+2). Thus ` ≥ 1.

Thus
log tw(G) = 4`4(`+ 2)(log `) ≤ 12`6.

That is, ( 1
16 log tw(G))1/6 ≤ `. Let k := b`c. Thus ` ≥ k ≥ 1 and tw(G) ≥

k4k4(k+2). By Lemma 10.4, G contains a Pk�Pk-minor. By Lemma 10.7
below,

η(G�Kn) ≥ bn2 c(k + 1) > bn2 c` ≥ bn2 c
(

1
16 log tw(G)

)1/6
,

as desired. �

Lemma 10.6 and Theorem 10.2 imply that η(G�Kn)/n is tied to the
treewidth of G. In particular,

(
1
16 log tw(G)

)1/6
<
η(G�Kn)

n
≤ tw(G) + 1.

It remains to prove Lemma 10.7.

Lemma 10.7. For all integers n ≥ 1 and k ≥ 1

(k + 1)bn2 c ≤ η(Pk�Pk�Kn) < k(n+ 1
2) + 3.

Proof. Since Pk�Pk�Kn has k2n vertices and maximum degree n + 3,
Lemma 2.2 implies the upper bound,

η(Pk�Pk�Kn) ≤
√

(n+ 1)k2n+ 3 < k(n+ 1
2) + 3.

Now we prove the lower bound. Let p := bn2 c. Each vertex is described
by a triple (x, y, r) where x, y ∈ [k] and r ∈ [n]. Distinct vertices (x, y, r)
and (x′, y′, r′) are adjacent if and only if x = x′ and y = y′, or x = x′ and
|y − y′| = 1 and r = r′, or y = y′ and |x− x′| = 1 and r = r′.
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For r ∈ [p], let T0,r be the subgraph induced by {(1, y, 2r − 1) : y ∈ [k]},
and let T1,r be the subgraph induced by {(x, 1, 2r) : x ∈ [k]}. For i ∈ [2, k]
and r ∈ [p], let Ti,r be the subgraph of Pk�Pk�Kn induced by

{(i, y, 2r − 1) : y ∈ [k]} ∪ {(x, i, 2r) : x ∈ [k]}.
For all r ∈ [p], both T0,r and T1,r are paths, and for i ∈ [2, k], Ti,r consists

of two adjacent paths. In particular, each Ti,r is connected. Observe that
each pair of distinct subgraphs Ti,r and Tj,s are disjoint.

There is an edge from (1, 1, 2r − 1) in T0,r to (1, 1, 2s) in T1,s. For all
i ∈ [2, k], there is an edge from (1, i, 2r) in Ti,r to (1, i, 2s− 1) in T0,s, there
is an edge from (i, 1, 2r−1) in Ti,r to (i, 1, 2s) in T1,s, and for all i, j ∈ [2, k],
there is an edge from (j, i, 2r) in Ti,r to (j, i, 2s− 1) in Tj,s.

Hence the Ti,j are the branch sets of a K(k+1)m-minor. Therefore

η(Pk�Pk�Kn) ≥ (k + 1)p = (k + 1)
⌊
n
2

⌋
. �

11. Rough structural characterisation theorem

In this section we give a rough structural characterisation of pairs of
graphs whose product has bounded Hadwiger number. The proof is based
heavily on the corresponding result for trees in Section 9. Thus our first
task is to extend a number of definitions for trees to general graphs.

For a connected graph G, let bal(G) be the maximum order of a balance
subgraph in G. A path P in G is semi-clean if every internal vertex of P has
degree 2 in G. Let p′(G) be the maximum number of vertices in a semi-clean
path in G. A path P is clean if it is semi-clean, and every edge of P is a
cut in G. Let p(G) be the maximum number of vertices in a clean path in
G. Note that p(G) ≥ 1 since a single vertex is a clean path. In fact, if G
is 2-connected, then the only clean paths are single vertices, and p(G) = 1.
On the other hand, since every edge in a tree T is a cut, our two definitions
of a clean path are equivalent for trees, and p′(T ) = p(T ).

The hangover of a connected graph G, denoted by hang(G), is defined as
follows. If G is a path or a cycle then hang(G) := 0. Otherwise, hang(G) is
the minimum, taken over all clean paths P in G, of the maximum number
of vertices in a component of G − E(P ). First note the following trivial
relationship between hang(G) and p(G):

(6) 1
2(v(G)− p(G) + 2) ≤ hang(G) ≤ v(G)− p(G) + 1.

To prove a relationship between bal(G) and hang(G) below, we reduce the
proof to the case of trees using the following lemma.

Lemma 11.1. Every connected graph G has a spanning tree T such that

p(T ) ≤ p′(G) + 6.

Proof. Define a leaf-neighbour in a tree to be a vertex of degree 2 that is
adjacent to a leaf (a vertex of degree 1).
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Choose a spanning tree T of G that firstly maximises the number of leaves
in T , and secondly maximises the number of leaf-neighbours in T .

If p(T ) ≤ 7 then the claim is vacuous since p′(G) ≥ 1. Now assume that
p(T ) ≥ 8. Let (v1, . . . , vk) be a clean path in T with k = p(T ). Below we
prove that degG(vi) = 2 for each i ∈ [4, k − 3]. This shows that the path
(v4, . . . , vk−3) is semi-clean in G, implying p′(G) ≥ p(T )− 6, as desired.

Suppose on the contrary that degG(vi) ≥ 3 for some i ∈ [4, k − 3]. Let w
be a neighbour of vi in G besides vi−1 and vi+1. Without loss of generality,
the path between vi and w in T includes vi+1.

Case 1. degT (w) ≥ 2: Let T ′ be the spanning tree of G obtained from T
by deleting the edge vivi+1 and adding the edge viw. Now degT (vi+1) = 2
(since i + 1 ≤ k − 1). Thus vi+1 becomes a leaf in T ′. Since degT (vi) =
degT ′(vi) = 2, vi is a leaf in neither T nor T ′. Since degT (w) ≥ 2 and
degT ′(w) ≥ 3, w is a leaf in neither T nor T ′. The degree of every other
vertex is unchanged. Hence T ′ has one more leaf than T . This contradicts
the choice of T .

Now assume that degT (w) = 1. Let x be the neighbour of w in T .

Case 2. degT (w) = 1 and degT (x) = 2: Let T ′ be the spanning tree of G
obtained from T by deleting the edge wx and adding the edge viw. Since
degT (vi) = 2 and degT ′(vi) = 3, vi is a leaf in neither T nor T ′. Since
degT (w) = degT ′(w) = 1, w is a leaf in both T and T ′. Since degT (x) = 2
and degT ′(x) = 1, x becomes a leaf T ′. The degree of every other vertex is
unchanged. Hence T ′ has one more leaf than T . This contradicts the choice
of T .

Case 3. degT (w) = 1 and degT (x) ≥ 3: Let T ′ be the spanning tree of
G obtained from T by deleting the edge vivi+1 and adding the edge viw.
Since degT (vi) = degT ′(vi) = 2, vi is a leaf in neither T nor T ′. Now
degT (vi+1) = 2 (since i+ 1 ≤ k− 1). Thus vi+1 is a leaf in T ′ but not in T .
Since degT (w) = 1 and degT ′(w) = 2, w is a leaf in T but not in T ′. The
degree of every other vertex is unchanged. Hence T ′ has the same number
of leaves as T .

Suppose, for the sake of contradiction, that there is a leaf-neighbour p in
T that is not a leaf-neighbour in T ′. Since vi+1 and w are the only vertices
with different degrees in T and T ′, p is either vi+1 or w, or p is a neighbour
of vi+1 or w in T or T ′. That is, p ∈ {vi+1, w, x, vi, vi+2}. Now degT (p) = 2
since p is a leaf-neighbour in T . Thus p 6= w and p 6= x. Every neighbour
of vi and vi+1 in T has degree 2 in T (since i − 1 ≥ 2 and i + 2 ≤ k − 1).
Thus p 6= vi and p 6= vi+1. Finally, p 6= vi+2 since the neighbours of vi+2

in T , namely vi+1 and vi+3, are both not leaves (since there is a path in
T from vi+3 to x that avoids vi+2). This contradiction proves that every
leaf-neighbour in T is also a leaf-neighbour in T ′.

Now consider the vertex vi+2. In both T and T ′, the only neighbours of
vi+2 are vi+1 and vi+3 (since i+ 2 ≤ k− 1). Both vi+1 and vi+3 have degree
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2 in T , but vi+1 is a leaf in T ′. Thus vi+2 is a leaf-neighbour in T ′, but not
in T .

Hence T ′ has more leaf-neighbours than T . This contradicts the choice of
T , and completes the proof. �

Lemma 9.6 proves that bal(T ) and hang(T ) are tied for trees. We now
prove an analogous result for general graphs.

Lemma 11.2. For every connected graph G,

hang(G) ≤ 8 bal(G) + 9.

Proof. If G is a path or cycle, then hang(G) = 0 and the result is vacuous.
Now assume that G is neither a path nor a cycle. By Lemma 11.1, G has a
spanning tree T such that p(T ) ≤ p′(G) + 6. By Lemma 9.6,

bal(G) ≥ bal(T ) ≥ 1
3(hang(T )− 1).

By the lower bound in (6),

bal(G) ≥ 1
3(1

2(v(T )− p(T ) + 2)− 1) = 1
6(v(G)− p(T ))

≥ 1
6(v(G)− p′(G)− 6).

Thus we are done if 1
6(v(G) − p′(G) − 6) ≥ 1

8(hang(G) − 9). Now assume
that

1
6(v(G)− p′(G)− 6) ≤ 1

8(hang(G)− 9).

By the upper bound in (6),

1
6(v(G)− p′(G)− 6) ≤ 1

8(v(G)− p(G) + 1− 9).

That is,

v(G) + 3p(G) ≤ 4p′(G).(7)

If p(G) ≥ p′(G), then v(G) ≤ p′(G), which implies that G is a path. Now
assume that p(G) ≤ p′(G) − 1. Thus there is a nonclean semi-clean path
P in G of length p′(G). Since P is not clean and G is connected and not
a cycle, there is a cycle C in G with at least p′(G) vertices, such that one
vertex r in C is adjacent to a vertex s not in C. It follows that G has a
balance rooted at r with support s, and with order at least b1

2(p′(G)− 1)c.
Thus bal(G) ≥ 1

2p
′(G)− 1. That is, 8 bal(G) + 8 ≥ 4p′(G). By (7),

8 bal(G) + 8 ≥ v(G) + 3p(G) ≥ v(G) ≥ hang(G),

as desired. �

We now prove an analogue of Lemma 9.7 for general graphs.

Lemma 11.3. Fix an integer c ≥ 1. Let G and H be graphs, such that
v(G) ≥ 2c2 − c+ 2, v(H) ≥ c+ 1, and η(G�H) ≤ c. Then

hang(H) ≤ 8c+ 9.
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By symmetry, if in addition v(H) ≥ 2c2 − c+ 2 then

hang(G) ≤ 8c+ 9.

Proof. If star(G) ≥ c, then by Corollary 5.3,

η(G�H) ≥ min{v(H), star(G) + 1} ≥ c+ 1,

which contradicts the assumption. Now assume that star(G) ≤ c− 1.
Let T be a spanning tree of G. Let n := c+ 1. Then

v(T ) = v(G) ≥ (c+ 1)2 + (c− 3)c+ 1 ≥ n2 + (star(G)− 2)(n− 1) + 1

≥ n2 + (star(T )− 2)(n− 1) + 1.

Thus Theorem 9.2 is applicable to T with n = c + 1. Hence T has c + 1
disjoint subtrees, each with at least c+ 1 vertices.

If bal(H) ≥ c+ 1, then by Theorem 9.1,

η(G�H) ≥ min{c+ 1, bal(H)} = c+ 1,

which contradicts the assumption. Thus bal(H) ≤ c. Hence, by Lemma 11.2,
hang(H) ≤ 8c+ 9. �

We now prove that the product of graphs with bounded hangover have a
specific structure.

Lemma 11.4. Fix an integer c ≥ 1. For all graphs G and H, if hang(G) ≤ c
and hang(H) ≤ c, then G�H is one of the following graphs:

• a planar grid (the product of two paths) with a vortex of width at
most 2c2 in the outerface,
• a cylindrical grid (the product of a path and a cycle) with a vortex

of width at most 2c in each of the two ‘big’ faces, or
• a toroidal grid (the product of two cycles).

Proof. If G and H are cycles then G�H is a toroidal grid. If neither G nor
H are cycles then by the same argument used in the proof of Lemma 9.8,
G�H is obtained from a planar p(G)×p(H) grid by adding a vortex in the
outerface with width at most 2c2. If G is a cycle and H is not a cycle, then
by a similar argument used in the proof of Lemma 9.8, G�H is obtained
from a cylindrical v(Cn)× p(H) grid by adding a vortex in each of the two
‘big’ faces with width at most 2c. �

Lemmas 11.3 and 11.4 imply the following characterisation of large graphs
with bounded Hadwiger number that was described in Section 1.

Theorem 11.5. Fix an integer c ≥ 1. For all graphs G and H with v(G) ≥
2c2 − c + 2 and v(H) ≥ 2c2 − c + 2, if η(G�H) ≤ c then G�H is one of
the following graphs:

• a planar grid (the product of two paths) with a vortex of width at
most 2(8c+ 9)2 in the outerface,
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• a cylindrical grid (the product of a path and a cycle) with a vortex
of width at most 16c+ 18 in each of the two ‘big’ faces, or
• a toroidal grid (the product of two cycles).

Theorem 11.5 is similar to a result by Behzad and Mahmoodian [2], who
proved that if G and H are connected graphs with at least 3 vertices, then
G�H is planar if and only if both G and H are paths, or one is a path and
the other is a cycle.

We now prove the first part of our rough structural characterisation of
graph products with bounded Hadwiger number.

Lemma 11.6. Let G and H be connected graphs, each with at least one
edge, such that η(G�H) ≤ c for some integer c. Then for some integers
c1, c2, c3 depending only on c:

• tw(G) ≤ c1 and v(H) ≤ c2, or
• tw(H) ≤ c1 and v(G) ≤ c2, or
• hang(G) ≤ c3 and hang(H) ≤ c3.

Proof. Let c1 := 24c4 , c2 := 2c2 − c+ 1, and c3 := 8c+ 9.
First suppose that tw(G) > c1 or tw(H) > c1. Without loss of generality,

tw(G) > c1. Then by Lemma 10.5, η(G�H) ≥ η(G�K2) > (1
4 log c1)1/4 =

c, which is a contradiction. Now assume that tw(G) ≤ c1 and tw(H) ≤ c1.
Thus, if v(H) ≤ c2 or v(G) ≤ c2, then the first or second condition is

satisfied, and we are done. Now assume that v(H) > c2 and v(G) > c2.
By Lemma 11.3, hang(G) and hang(H) are both at most 8c + 9 = c3, as
desired. �

Now we prove the converse of Lemma 11.6.

Lemma 11.7. Let G and H be connected graphs, each with at least one
edge, such that for some integers c1, c2, c3,

• tw(G) ≤ c1 and v(H) ≤ c2, or
• tw(H) ≤ c1 and v(G) ≤ c2, or
• hang(G) ≤ c3 and hang(H) ≤ c3.

Then η(G�H) ≤ c where c depends only on c1, c2, c3.

Proof. Suppose that tw(G) ≤ c1 and v(H) ≤ c2. Theorem 10.2 implies that

η(G�H) ≤ η(G�Kc2) ≤ c2(tw(G) + 1) ≤ c2(c1 + 1),

and we are done. Similarly, if tw(H) ≤ c1 and v(G) ≤ c2, then η(G�H) ≤
c2(c1 + 1), and we are done. Otherwise, hang(G) ≤ c3 and hang(H) ≤ c3.
By Lemma 11.4, G�H is either a toroidal grid (which has no K8 minor), or
G�H is a planar graph plus vortices of width at most 2c2 in one or two of the
faces. As in the proof of Lemma 9.8, it follows that η(G�H) ≤ O(c2). �

Lemmas 11.6 and 11.7 imply the following rough structural characterisa-
tion of graph products with bounded Hadwiger number.
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Theorem 11.8. The function η(G�H) is tied to

min
{

max{tw(G), v(H)}, max{v(G), tw(H)}, max{hang(G), hang(H)}
}
.

Theorem 11.8 can be informally stated as: η(G�H) is bounded if and
only if:

• tw(G) and v(H) is bounded, or
• v(G) and tw(H) is bounded, or
• hang(G) and hang(H) are bounded.

12. On Hadwiger’s conjecture for Cartesian products

In 1943, Hadwiger [23] made the following conjecture:

Hadwiger’s Conjecture. For every graph G,

χ(G) ≤ η(G).

This conjecture is widely considered to be one of the most significant open
problems in graph theory; see the survey by Toft [55]. Yet it is unknown
whether Hadwiger’s conjecture holds for all nontrivial products. (We say
G�H is nontrivial if bothG andH are both connected and have at least one
edge.) The chromatic number of a product is well understood. In particular,
Sabidussi [48] proved that χ(G�H) = max{χ(G), χ(H)}. Thus Hadwiger’s
Conjecture for products asserts that

max{χ(G), χ(H)} ≤ η(G�H).

Hadwiger’s Conjecture is known to hold for various classes of products.
For example, Chandran and Sivadasan [9] proved that the product of suffi-
ciently many graphs (relative to their maximum chromatic number) satisfies
Hadwiger’s Conjecture. The best bounds are by Chandran and Raju [7, 43],
who proved that for some constant c, Hadwiger’s Conjecture holds for the
nontrivial product G1 �G2 � · · ·�Gd whenever

max
i
χ(Gi) ≤ 22(d−c)/2

.

In a different direction, Chandran and Raju [7, 43] proved that if χ(G) ≥
χ(H) and χ(H) is not too small relative to χ(G), then G�H satisfies
Hadwiger’s Conjecture. In particular, there is a constant c, such that if
χ(G) ≥ χ(H) ≥ c log3/2 χ(G) then G�H satisfies Hadwiger’s Conjecture.
Similarly, they also implicitly proved that

min{χ(G), χ(H)} ≤ η(G�H),

and concluded that if χ(G) = χ(H) then Hadwiger’s Conjecture holds for
G�H. We make the following small improvement to this result.

Lemma 12.1. For all connected graphs G and H, both with at least one
edge,

min{χ(G), χ(H)} ≤ η(G�H)− 1.
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Moreover, if G 6= K2 and H 6= K2 then

min{χ(G), χ(H)} ≤ η(G�H)− 2.

Proof. We have χ(G) ≤ ∆(G) + 1 and χ(H) ≤ ∆(H) + 1. Thus by Corol-
lary 5.3,

min{χ(G), χ(H)} ≤ min{∆(G),∆(H)}+ 1 ≤ η(G�H)− 1.

Now assume that G 6= K2 and H 6= K2.

Case 1. G ∈ {Cn,Kn} and η(H) = 2 for some n ≥ 3: Then H is a tree and
min{χ(G), χ(H)} = 2. On the other hand, η(G�H) ≥ η(K3 �K2) = 4 by
Proposition 7.2.

Case 2. G = Kn and η(H) ≥ 3 for some n ≥ 3: Then min{χ(G), χ(H)} ≤ n
and η(G�H) ≥ η(Kn�K3) = n+ 2 by Proposition 7.3.

Case 3. G = Cn and η(H) ≥ 3 for some n ≥ 3: Then min{χ(G), χ(H)} ≤ 3,
and η(G�H) ≥ η(C3 �C3) = 5 by a result of Archdeacon et al. [1]. (In
fact, Archdeacon et al. [1] determined η(Cn�Cm) for all values of n and
m, as described in Table 2. Miller [40] had previously stated without proof
that η(Cn�K2) = 4 for all n ≥ 3.)

Case 4. Both G and H are neither complete graphs nor cycles. By Brooks’
Theorem [5], χ(G) ≤ ∆(G) and χ(H) ≤ ∆(H), so min{χ(G), χ(H)} ≤
min{∆(G),∆(H)}. By Corollary 5.3, η(G�H) ≥ min{∆(G),∆(H)} + 2.
Thus min{χ(G), χ(H)} ≤ η(G�H)− 2. �

Table 2. The Hadwiger number of Cn�Cm, where C2 =
K2; see [1].

n = 2 n = 3 n = 4 n = 5 n ≥ 6
m = 2 3 4 4 4 4
m = 3 4 5 5 5 6
m = 4 4 5 6 6 7
m = 5 4 5 6 7 7
m ≥ 6 4 6 7 7 7

Theorem 12.2. Hadwiger’s Conjecture holds for a nontrivial product G�H
whenever |χ(G)− χ(H)| ≤ 2. Moreover, if |χ(G)− χ(H)| ≤ 1 then

χ(G�H) ≤ η(G�H)− 1.

Proof. Without loss of generality, χ(G) − 2 ≤ χ(H) ≤ χ(G). Thus, by
Sabidussi’s Theorem [48], it suffices to prove that χ(G) ≤ η(G�H). If
H = K2 then χ(G) ≤ 4 by assumption. Hadwiger [23] and Dirac [15]
independently proved Hadwiger’s Conjecture whenever χ(G) ≤ 4. Thus
η(G�H) ≥ η(G) + 1 ≥ χ(G) + 1, as desired. This proves the ‘moreover’
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claim in this case. Now assume that H 6= K2. Thus by Lemma 12.1,
χ(G) ≤ χ(H) + 2 ≤ η(G�H), as desired, and if χ(G) ≤ χ(H) + 1 then
χ(G) ≤ η(G�H)− 1, as desired. �

The following two theorems establish Hadwiger’s Conjecture for new class-
es of products. The first says that products satisfy Hadwiger’s Conjecture
whenever one graph has large treewidth relative to its chromatic number.

Theorem 12.3. Hadwiger’s Conjecture is satisfied for the nontrivial product

G�H whenever χ(G) ≥ χ(H) and G has treewidth tw(G) ≥ 24χ(G)4.

Proof. Since H has at least one edge, η(G�H) ≥ η(G�K2). By Lem-

ma 10.5, η(G�H) > (1
4 log tw(G))1/4, which is at least χ(G) by assumption.

Hence η(G�H) > χ(G) = χ(G�H) by Sabidussi’s Theorem [48]. That is,
G�H satisfies Hadwiger’s Conjecture. �

We now show that products satisfy (a slightly better bound than) Had-
wiger’s Conjecture whenever the graph with smaller chromatic number is
relatively large.

Theorem 12.4. Let G and H be connected graphs with v(H)− 1 ≥ χ(G) ≥
χ(H). Then

χ(G�H) ≤ η(G�H)− 1.

Proof. By Sabidussi’s Theorem [48] it suffices to prove that η(G�H) ≥
χ(G) + 1.

Case 1. G = Kn for some n ≥ 3: Then by Proposition 7.2,

η(G�H) ≥ η(Kn�K2) = n+ 1 = χ(G) + 1 = χ(G�H) + 1.

Case 2. G = Cn for some n ≥ 3: Then by Proposition 7.2,

η(G�H) ≥ η(K3 �K2) = 4 ≥ χ(G) + 1 = χ(G�H) + 1.

Case 3. G is neither a complete graph nor a cycle: Then by Brooks’ Theorem
[5] and Corollary 5.3,

η(G�H) ≥ min{v(H),∆(G) + 1} ≥ min{v(H), χ(G) + 1}
= χ(G) + 1

= χ(G�H) + 1,

as desired. �

Note that Theorem 12.4 is best possible, since Theorem 10.1 implies
that for G = Kn and H any tree (no matter how big), χ(G�H) = n =
η(G�H)− 1.

Theorems 12.2 and 12.4 both prove (under certain assumptions) that
χ(G�H) ≤ η(G�H) − 1, which is stronger than Hadwiger’s Conjecture
for general graphs. This should not be a great surprise, since if Hadwiger’s
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Conjecture holds for all graphs, then the same improved result holds for all
nontrivial products G�H with χ(G) ≥ χ(H):

χ(G�H) = χ(G) ≤ η(G) ≤ η(G�K2)− 1 ≤ η(G�H)− 1.

Whether Hadwiger’s Conjecture holds for all nontrivial products reduces
to the following particular case.

Theorem 12.5. Let G be a graph. Then Hadwiger’s Conjecture holds for
every nontrivial product G�H with χ(G) ≥ χ(H) if and only if Hadwiger’s
Conjecture holds for G�K2.

Proof. The forward direction is immediate. Suppose that Hadwiger’s Con-
jecture holds for G�K2; that is, χ(G�K2) ≤ η(G�K2). Let H be a
graph with at least one edge and χ(G) ≥ χ(H). Then χ(G�H) = χ(G) =
χ(G�K2) by Sabidussi’s Theorem [48]. Since K2 is a subgraph of H,
η(G�H) ≥ η(G�K2). In summary,

χ(G�H) = χ(G) = χ(G�K2) ≤ η(G�K2) ≤ η(G�H).

Hence Hadwiger’s Conjecture holds for G�H. �

Theorem 12.5 motivates studying η(G�K2) in more detail. By (5),
η(G�K2) is tied to tw(G), the treewidth of G. By a minimum-degree-
greedy algorithm, χ(G) ≤ tw(G) + 1. Thus it is tempting to conjecture that
the lower bound on η(G�K2) from Lemma 10.5 can be strengthened to

(8) η(G�K2) ≥ tw(G) + 1.

This would imply that for all graphs G and H both with at least one edge
and χ(G) ≥ χ(H),

χ(G�H) = χ(G) ≤ tw(G) + 1 ≤ η(G�K2) ≤ η(G�H) ;

that is, Hadwiger’s Conjecture holds for every nontrivial product. However,
(8) is false. Kloks and Bodlaender [37] proved that a random cubic graph
on n vertices has tw(G) ≥ Ω(n) but η(G�K2) ≤ O(

√
n) by Lemma 2.2.

We finish with some comments about Hadwiger’s Conjecture for d-dimen-
sional products. In what follows G1, . . . , Gd are graphs, each with at least
one edge, such that χ(G1) ≥ · · · ≥ χ(Gd). Thus χ(G1 �G2 � · · ·�Gd) =
χ(G1) by Sabidussi’s Theorem [48]. Observe that Theorem 12.5 generalises
as follows: Hadwiger’s Conjecture holds for allG1 �G2 � · · ·�Gd if and only
if it holds for G1 �Qd−1. (Recall that Qd is the d-dimensional hypercube.)
Finally we show that if Hadwiger’s Conjecture holds for all graphs, then a
significantly stronger result holds for d-dimensional products. By (4) and
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Theorem 7.1,

η(G1 �G2 � · · ·�Gd) ≥ η(Kη(G1) �Qd−1)

≥ η(Kη(G1) �K2d/2)

≥ (2d/4 − o(1)) η(G1)

≥ (2d/4 − o(1))χ(G1)

= (2d/4 − o(1))χ(G1 �G2 � · · ·�Gd).

This shows that if Hadwiger’s Conjecture holds for all graphs, then the
multiplicative factor of 1 in Hadwiger’s Conjecture can be improved to an
exponential in d for d-dimensional products.

Note added in proof

Lemma 10.5 can be restated as: if tw(G) ≥ 24`4 then η(G�K2) ≥ `.
This exponential bound was recently improved by Reed and Wood [44] to
the following polynomial bound: for some constant c, if tw(G) ≥ c`4

√
log `

then η(G�K2) ≥ `. Subsequently, the bounds in (5), in Theorem 12.3, and
in the proof of Lemma 11.6 can be improved.
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