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On small geometric invariants of
3-manifolds

Paul J. Kapitza

Abstract. A small geometric invariant is a nonnegative integer invari-
ant associated with a 3-manifold whose value is bounded above by the
Heegaard genus of the manifold.

Craggs has studied techniques to detect for a given 3-manifold M3,
whether the double 2M = Bd(M?× [−1, 1]) bounds a 4-manifold N that
has the same 3-deformation type as the complement of the interior of a 3-
ball in M and has a handle presentation with, in some sense, a minimal
number of 1-handles. Here, M? is obtained from M by removing an
open ball. He exhibits a pair of surgery obstructions, whose vanishing
is sufficient for the existence of this type of 4-manifold N and minimal
handle presentation.

We show that for the double of one of the Boileau–Zieschang mani-
folds, there is a certain handle presentation which, in the absence of the
obstructions studied by Craggs, is reducible to this minimal number of
1-handles and we provide an explicit construction. For this case, the
question of the existence of a minimal handle presentation is reduced to
a study of the obstructions defined by Craggs.

Contents

1. Introduction 384

1.1. Notation and conventions 385

1.2. Presentations and extended Nielsen equivalence 385

1.3. Historical remarks 387

1.4. Singular disk systems 388

1.5. Admissible disk systems 388

2. Algebraic co-k-collapsibility 390

2.1. Algebraic collapsibility 391

2.2. Algebraic co-k-collapsibility 395

3. Computation of the 2-handle presentation 398

4. The manifolds of Boileau–Zieschang 398

5. A handle presentation for a 4-manifold bounded by 2M1 400

Received June 15, 2010; revised March 29, 2011.
2000 Mathematics Subject Classification. Primary 57M20; Secondary 57M50, 57R65.
Key words and phrases. Heegaard genus, extended Nielsen genus, Boileau–Zieschang

manifolds.

ISSN 1076-9803/2011

383

http://nyjm.albany.edu/nyjm.html
http://nyjm.albany.edu/j/2011/Vol17.htm


384 PAUL J. KAPITZA

6. Derivation of an admissible system for M1 409

References 435

1. Introduction

A geometric invariant of a 3-manifold is a geometrically defined measure
which remains the same across the homeomorphism class of a manifold. The
Heegaard genus of a manifold is one such example.

Craggs [3] studies a geometric invariant for 3-manifolds M defined by
considering certain 4-manifolds N bounded by the double 2M of M . He
looks at handle presentations of N with handles of index at most 2, and
takes the minimum number of 1-handles over all such presentations. This
minimum number is bounded above by the Heegaard genus of M and so is
a small geometric invariant.

It is known that the rank of the fundamental group of an arbitrary 3-
manifold M3 and its associated Heegaard genus do not always agree. In
particular, the manifolds of Boileau and Zieschang [2] make up a collec-
tion of 3-manifolds for which the Heegaard genus is 3, but the rank of the
fundamental group is 2. See also Schultens and Weideman [11].

There have been efforts to show that for a given 3-manifold M , the 4
manifold N = M? × [−1, 1] has a minimal 2-handle presentation, where the
number of 1-handles is determined by the formal 3-deformation properties
of M?. Here M? is the result of removing the interior of a 3-ball from M .

Craggs [3] uses the extended Nielsen genus en(M) of the base manifold
M as a measure of the potential minimum number of 1-handles in any
handle presentation associated with an appropriate 4-manifold N bounded
by 2M . The extended Nielsen genus of a 3-manifold is bounded above by the
Heegaard genus of the 3-manifold, and in the case of the Boileau–Zieschang
manifolds it is less than the Heegaard genus. Thus, the extended Nielsen
genus is a small geometric invariant that is sometimes less than Heegaard
genus.

Craggs defines handle presentations for certain 4-manifolds bounded by
the double 2M of M to be minimal if the number of 1-handles is equal
to the extended Nielsen genus en(M) of M . The geometric realization of
en(M) as the number of 1-handles in a minimal handle presentation for M
associates in a natural way a pair of framed surgery obstructions {L, T } in
a cube with handles. If these obstructions are always trivial, then minimal
handle presentations always exist, and they provide a new small geometric
invariant that is generally not equal to Heegaard genus.

We examine the thesis that one member of the Boileau–Zieschang family
bounds a 4-manifold with a minimal handle presentation. In this paper,
we construct a 4-manifold of the form M?× [−1, 1] whose associated handle
presentation exhibits an algebraic simplicity which agrees with the extended
Nielsen genus of M .
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Some of the material here is taken from the author’s Ph.D. thesis at
the University of Illinois, Urbana-Champaign. The author wishes to thank
Professor Robert Craggs for his help in directing the thesis and to a referee
for numerous helpful comments on a previous version of this paper.

1.1. Notation and conventions. Let K =
⋃
α eα be a finite connected

CW complex with characteristic maps φα : Dn → K. Here Dn is a topo-
logical ball of dimension n such that φα | Int(Dn) is a homeomorphism onto
eα, with φα(Bd(Dn)) ⊂ Kn−1, where Kn =

⋃
{eα | dim eα ≤ n} denotes

the n-skeleton of K.
An elementary n-expansion K ↗ L is defined for L = K ∪f Dn, where f

attaches to K all of the boundary of Dn, except one open (n − 1)-cell. An
elementary n-collapse is the inverse of an elementary n-expansion, denoted
as K ↘ L.

We work in the PL category. For a piecewise linear 3-manifold M3, a
Heegaard decomposition of M3of genus n is a triple, (M ;H,J), where M =
H ∪ J and H and J are handlebodies of genus n with H ∩ J = Bd(H) =
Bd(J). The genus of the decomposition is the genus of the handlebody J .
The Heegaard genus of M3, hg(M3), is the minimum value of n obtained
over all Heegaard decompositions of M3.

The manifold M3 exhibits the structure of a CW complex with cells iden-
tified with the piecewise linear cells of M in a piecewise linear cell decom-
position of M . Every cellular decomposition of M3 with one 0-cell and one
3-cell defines a Heegaard decomposition of M3. Taking M \N where N is a
regular neighborhood of the 1-skeleton of M results in a handlebody whose
genus is the number of 1-cells in the decomposition.

The cell complex obtained from a Heegaard decomposition of genus n
provides a handle decomposition of the form

M3 = h0 ∪

[
n⋃
i=1

h1i

]
∪

[
n⋃
j=1

h2j

]
∪ h3

where hlm is a three dimensional handle of index l, l = 0, . . . , 3 and n is the
genus of J .

If K is a 2-complex, a formal 3-deformation of K, denoted K
3
�↘ L, is a

sequence of polyhedra K = K0 → K1 → · · · → Kn = L, where Ki → Ki+1

results from an expansion (↗) or collapse (↘) of a piecewise linear cell of
dimension at most three. A complex K is collapsible if K ↘ {?} where {?}
denotes a 0-cell of K.

1.2. Presentations and extended Nielsen equivalence. Let X be a
finite set and R a set of words on X. A group G is defined by the sets X
and R if G ∼= F/N , where F is the free group on X and N is the normal
subgroup of F normally generated by R. A presentation P = 〈X |R〉 for
G consists of the ordered sets X = {x±1i | i = 1, . . . ,m}, the generators
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of P , and R = {r1, r2, . . . , rn}, the defining relators of P . A presentation
P = 〈X |R〉 presents a group G if G is isomorphic to the quotient group,
F/N where F is the free group on the generators x1, x2, . . . , xm, and N ⊂ F
is the smallest normal subgroup containing R. The group presented by P
is said to be finitely presented if there exists a presentation in which both
X and R are finite sets. The rank of the group G presented by P , rk(G), is
the minimum number of generators m for X = {x1, x2, . . . , xm} required to
present G.

For a 3-manifold M3, let K = K2 in M3 \B3 be defined by

K = e0 ∪

[
n⋃
i=1

e1i

]
∪

[
p⋃
j=1

e2j

]
in which ekα is a k-cell for k = 0, 1, 2 with characteristic maps φkα : Dk → K.
Associated with K is a group presentation of the form

PK = 〈x1, x2, . . . , xn | r1, r2, . . . , rp〉

where each generator xi is obtained from a 1-cell of K in K1 \ T (K) for
some chosen maximal tree T (K). For each relator rj there is a 2-cell e2j and

a characteristic map φ2j : D2 → K where φ2j | ∂D2 reads a word rj in the
symbols x1, x2, . . . , xn.

A geometric presentation associated with K is a presentation

PK = 〈x1, x2, . . . , xn | r1, r2, . . . , rp〉

where ri reads the attaching map φi(Bd(e2i )) ⊂ K. The reduced presentation
for P = 〈x1, x2, . . . , xn | r1, r2, . . . , rp〉 is defined to be

|P | = 〈x1, x2, . . . , xn | s1, s2, . . . , sp〉
where P is a presentation and si ≡ |ri|, where |ri| denotes the freely reduced
form of ri. The reduced presentation associated with K is defined to be

|PK | = 〈x1, x2, . . . , xn | s1, s2, . . . , sp〉
where PK is the geometric presentation associated with K and si = |ri|,
where |ri| denotes the freely reduced form of ri. In this case, we will also
write |PK | = 〈x1, x2, . . . , xn | |r1|, |r2|, · · · , |rp|〉 to denote the corresponding
abstract presentation with freely reduced relators.

Given a presentation P = 〈x1, x2, . . . , xn| r1, r2, . . . , rp〉, one may con-
struct a presentation P ′ obtained from P by a finite sequence of elementary
extended Nielsen operations:

(1) For some 1 ≤ j ≤ p, add or delete the trivial relator xx−1 or x−1x
in rj , leaving rk unchanged for k 6= j.

(2) For some 1 ≤ j ≤ p, replace rj with r−1j , leaving rk unchanged for
k 6= j.

(3) For some 1 ≤ j ≤ p and some 1 ≤ k ≤ p, replace rj with rjrk, where
k 6= j, leaving ri unchanged for i 6= j.
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(4) For some 1 ≤ j ≤ p, replace rj with w−1rjw, where w is an element
in F (x1, x2, . . . , xn), leaving rk unchanged for k 6= j.

(5) For an automorphism, α : F (x1, x2, . . . , xn) → F (x1, x2, . . . , xn),
replace rj with α(rj) for j = 1, . . . , p.

(6) Add xn+1 to the set of generators and rp+1 = xn+1 to the set of
defining relators.

(7) Remove xn from the set of generators and the relator rk = xn from
the set of defining relators, when both occur and xn appears exactly
once among the relators.

Two presentations P and P ′ which are related by a finite sequence of
extended Nielsen operations are said to be extended Nielsen equivalent,

P
en∼ P ′. It is well known that if P

en∼ P ′ then P and P ′ present the same
group. The extended Nielsen operations can be shown to generate a subset
of the Tietze transformations for groups that accounts for all Tietze II oper-
ations. The extended Nielsen genus of a presentation P , denoted en(P ), is
defined to be the minimum number of generators in any presentation which
is extended Nielsen equivalent to P .

If K is a 2-complex, the extended Nielsen genus of K, en(K), is defined
to be en(PK), where PK is the standard reading of a presentation from a
2-complex K. For a 3-manifold M3, the extended Nielsen genus of M3,
en(M3)is the extended Nielsen genus of any 2-spine of M3. See Brown [1],
Kreher and Metzler [8], Young [15] and Wright [14] on the equivalence of ex-
tended Nielsen equivalence and formal 3-deformation in both the polyhedral
and the CW categories. These results imply that en(M3) is well-defined.

1.3. Historical remarks. Suppose that M3 is a 3-manifold with 2-com-
plex spine K, having a geometric presentation PK . It is known that

rk(M) ≤ en(M) ≤ hg(M).

Haken [6] and Waldhausen [12] conjecture that rk(M) = hg(M) for all
3-manifolds M . M. Boileau and H. Zieschang [2] exhibit a collection of
Seifert 3-manifolds for which 2 = rk(π1(M)) < hg(M) = 3, providing a
counterexample to the conjectures of Waldhausen and Haken.

In an explicit calculation, Montesinos [9] exhibits an extended Nielsen
equivalence between a geometric presentation for π1(M1, ?) and a presenta-
tion P ′1 that has 2 generators and 2 relators establishing that en(M1) ≤ 2.
Here, M1 is one of the family of manifolds exhibited by Boileau and Zi-
eschang. That en(M1) > 1 follows from the the fact that rk(π1(M1)) ≤
en(M1) . Therefore, when combined with the previous results we have that

2 = en(M1) = rk(M1) < hg(M1) = 3.

The following definitions come from Craggs [4]. Given a sequence of
polyhedra K = K0 → K1 → · · · → Kn = L, where Ki → Ki+1 is an
expansion or collapse of a piecewise linear cell, if there is some polyhedron
X (usually a manifold) such that K(i) ⊂ X for each i, then one says K
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deforms to L in X. If M is a manifold and K and L are in the interior
of M , then K deforms to L in M means that K and L have isotopically
embedded regular neighborhoods.

Craggs [4] studies the question, for which 2-complexes K in a 3-manifold
M do the corresponding 2-complexes K × {0} ⊂ M × [0, 1] 3-deform in
M × [0, 1], keeping 1-skeletons fixed, to a 2-complex L ⊂M × [0, 1] so that
the associated presentation PL is obtained from the presentation PK by
freely reducing relator words? He addresses the following: If M? 3-deforms
in M? × [−1, 1] to a 2-spine complex L such that |PL| has m 1-cells and k
2-cells reading generators, does L 3-deform in M × [−1, 1] to a 2-complex
with m− k 1-cells?

A related question as to whether the 2-complex K × {0} ⊂ M? × [−1, 1]
3-deforms in M?× [−1, 1] to a 2-complex L having at most en(K) 1-cells has
been addressed by Craggs [4] concerning the family of manifolds {Mn}∞n=1.

Material necessary for later calculations is contained in the following sec-
tions. Section 1.4 describes the basic objects involved, the singular disk sys-
tems. Section 1.5 reviews material on singular systems with an admissibility
requirement on the collection of singular disks in the system. Admissible
systems provide a connection between modifications of singular systems and
3-deformations in M? × [−1, 1].

1.4. Singular disk systems. The definitions and results which follow con-
cerning singular and admissible disk systems are due to Craggs.

Definition 1.1. A singular disk system in H is a pair (D, g) where

D =

n⋃
i=1

Di

is a finite disjoint union of disks and g : D → H is a proper map such that:

(1) g−1(Bd((H))) ⊂ Bd(D).
(2) The singular set of g is a finite collection of proper disjoint arcs⋃

{Ai1 , Ai2} such that each pair corresponds to a transverse double
arc intersection.

A singular system is said to be ordinary if g is nonsingular.

Figure 1 illustrates a singular disk system consisting of the 2-cells D =
D1 ∪D2. The map g : D → H identifies the arcs A1 ⊂ D1 and A2 ⊂ D2 in
the image.

1.5. Admissible disk systems.

Definition 1.2. A singular system (D, g) in H is said to be an admissible
system if there exists a continuous map ε : D → {−1, 0, 1} such that:

(1) The map (g, ε) : D → H × [−1, 1] defined by (g, ε)(x) = (g(x), ε(x))
is an embedding.

(2) If a given disk Di ∈ D contains a singular arc, then ε(Di) 6= 0.
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(D ,A )1

(D ,A )
2

1

2

Bd(H)

1 2g(A )=g(A )

Figure 1. Singular disk system.

The quantity ε(Di) is called the label of the disk Di. We will write
εi = ε(Di) and place Dεi

i = (g(Di), ε(Di)). In particular, if a singular disk
system (D, g) becomes an admissible disk system with the addition of some
map ε : D → {−1, 0, 1}, then the admissible system will be denoted by the
triple (D, g, ε).

In an admissible disk system (D, g, ε) in H, there is a natural partition
of the 2-manifold D into three disjoint submanifolds: D+, D− and D0,
corresponding to those disks in D for which ε = +1, −1, 0 respectively.

Suppose (M ;H,J) is a decomposition where (D, g, ε) and (D′, g′, ε′) are
two admissible singular disk systems on H. Then (D′, g′, ε′) results from
(D, g, ε) by an admissible sequence of operations if (D′, g′, ε′) is obtained
from (D, g, ε) by a finite sequence of the following operations and their in-
verses:

(1) (Bookkeeping): Replace (D, g, ε) with the system (D′, g′, ε′) where
h : M → M is a homeomorphism that takes H onto itself and
g′ = g ◦ h.

(2) (Level Switch): For Dε
i = (g(Di), ε(Di)) where g | Di is nonsingular,

replace ε(Di) by ε′(Di) ∈ {−1, 0, 1}.
(3) (Full Isotopy): Let ht : H×I → H be an isotopy such that h0 = 1H .

Replace (D, g, ε) with the system (D′, g′, ε′) where g′ = h1 ◦ g.
(4) (Split Isotopy): Replace (D, g, ε) with the system (D′, g′, ε′) where

for some isotopy ht : H × I → H and η ∈ {−1, 1} the following
condition holds:
g′ | Di = (h1 ◦ g) | Di if ε(Di) = η and g′ | Di = g|Di for ε(Di) 6= η.

(5) (Admissible Disk Slide): Replace (D, g, ε) with the system (D′, g′, ε′)
by sliding g(Dj) over g(Dk) along an arc β where, considered as a
singular system, (D′, g′) results from (D, g) by a slide of g(Dj) over
g(Dk) and either εj = εk or at least one of these quantities is 0.

(6) (Stabilization): Replace (D, g, ε) with the system (D′′, g′′, ε′′) where
D ⊂ D′′ and g = g′′ | D. In this operation, D′′ \ D = B2 is a
nonsingular disk containing a properly embedded arc β. Let N be
a regular neighborhood of β in H ⊂ (M ;H,J) and delete one of
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the two components of B2 \ β to produce the system (D′′, g′′, ε′′) on
(M ;H ′, J ′), where the genus (H ′) = genus(J ′) = genus(J + 1).

There is a natural association via Craggs [4] between admissible systems
and 2-complexes in M?× [−1, 1], in which each admissible operation induces
an extended Nielsen transformation of the corresponding 2-complex group
presentation.

2. Algebraic co-k-collapsibility

In this section, a property of the words {r1, r2, . . . , rp} which are associ-
ated with a presentation of a collapsible complex K is examined. A form
for the relators associated with a collapsible complex is presented in terms
of the associated presentation.

The remainder of this section is taken from Whitehead [13]. In what
follows, G = F (x1, x2, . . . , xn) is a free group, W (x1, x2, . . . , xn) is a word
on the symbols X = {x1, x2, . . . , xn} ∪ {x−11 , x−12 , . . . , x−1n } and x and y are
elements of X.

Definition 2.1. An elementary transformation on a word

W = W (x1, x2, . . . , xn)

is either an insertion into W or a deletion from W of a pair of successive
letters of the form xx−1 for x ∈ X.

Definition 2.2. A simple transformation of the first type on a set of words
{W1, . . . ,Wk} in G is a replacement of the form x→ xy and x−1 → y−1x−1

for each occurrence of x or x−1 in {W1, . . . ,Wk}. A simple transformation
of the second type on a set of words {W1, . . . ,Wk} ⊂ G is an elementary
transformation applied to some word in {W1, . . . ,Wk}.

A simple transformation on a set of words {W1, . . . ,Wk} ⊂ G is either a
simple transformation of the first or second type.

Definition 2.3. A simple set of words is a set {W1, . . . ,Wk} of distinct
words derived from an independent set of generators {x1, x2, . . . , xn} by a
sequence of simple transformations.

The following results on simple sets and simple transformations will be
used in later sections.

Lemma 2.4. If {W1, . . . ,Wk} is a simple set of words on X, then every
subset is also a simple set. Also, if k < n, any simple set {W1, . . . ,Wk} may
be extended to a simple set {W1, . . . ,Wn}.

Given a simple transformation, say xi → xixj of the first type, there is
an associated automorphism of G. For fixed i, j, 1 ≤ i, j ≤ n, i 6= j and for
all k 6= i define the map αij : G→ G by

αij(xi) = xixj

αij(xk) = xk, k 6= i.
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For a word W ∼= xε1i1x
ε2
i2
. . . xεlil in G, extend αij to W ∈ G by defining

αij(W ) ∼= αij(xi1)ε1αij(xi2)ε2 . . . αij(xil)
εl
.

Associating the simple transformations with automorphisms of G applied to
the set of words {W1, . . . ,Wk} in this way yields the following result.

Theorem 2.5. The collection {W1, . . . ,Wk} is a simple set of words on
the generating set X if and only if the elements of W correspond to an
independent set of generators in some automorphism of G.

2.1. Algebraic collapsibility. Consider the 2-complex K

K = e0 ∪

[
n⋃
i=1

e1i

]
∪

[
p⋃
j=1

e2j

]

in which ekα is a k-cell for k = 0, 1, 2 together with the characteristic maps

φkα : Dk → K where φkα |
◦
Dk is a homeomorphism onto ekα.

For i = 1, . . . , n let xi be the generator associated with e1i . Then for
j = 1, . . . , p, the attaching map associated with the 2-cell e2j yields a word

rj on the symbols X = {x1, x2, . . . , xn} ∪ {x−11 , x−12 , . . . , x−1n }.
Let PK = 〈x1, x2, . . . , xn | r1, r2, . . . , rp〉 be the geometric presentation

associated with K and suppose that K collapses to a 2-complex K(1) by an

elementary collapse. In particular, suppose that K
e
↘ K(1) by a collapse

across the 1-cell e11 which removes the 2-cell e21 whose associated reading is
given by r1. Denote the resulting geometric presentation associated with
K(1) in terms of PK by writing

PK(1) = 〈x̂1, x2, . . . , xn | r̂1, r2, . . . rp〉

where x̂ indicates the removal of quantity x.
Corresponding to the elementary collapse K ↘ K(1) across the 1-cell e11,

the set of words {r1, r2, . . . , rp} in PK has the following properties:

(1) The symbol x1 or x−11 occurs exactly once in the relator r1.

(2) For 2 ≤ j ≤ p, no rj contains an occurrence of x1 or x−11 .

In the case where K ↘ {?} the set of words {r1, r2, . . . , rp} in PK will be
called an algebraically collapsible set of words. In Section 2.2, the case where
K ↘ L for a subcomplex L ⊂ K is examined.

To formalize this situation, we introduce the following terminology.
Let W be a collection of words on {x1, x2, . . . , xn} ∪ {x−11 , x−12 , . . . , x−1n }.

For each 1 ≤ i ≤ n, let νi : W → Z be the function defined by setting νi(r)
equal to the number of occurrences of {x±1i } in r ∈W .

We will use the following subscript notation for a nonempty set of words
{r1, r2, . . . , rp} on the set X. For ∆ : {1, . . . , p} → {1, . . . , p} an element of
the symmetric group Sp let (j) denote the image under ∆ of the element
j ∈ {1, . . . , p}. That is, define (j) = ∆(j) for ∆ ∈ Sp. For the set of
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generators {x1, x2, . . . , xn} and for i ∈ {1, . . . , n} let [i] = Γ(i) for Γ ∈ Sn
be the image of i under Γ.

With these conventions, the notation ν[i](r(j)) refers to the number of
occurrences of the generator x[i] in the word r(j) under some pair of permu-
tations ∆ and Γ as defined above.

Definition 2.6. An ordered collection of words {r1, r2, . . . , rn} on

X = {x1, x2, . . . , xn} ∪ {x−11 , x−12 , . . . , x−1n }

is called algebraically collapsible if after free reduction, there exist permuta-
tions Γ ∈ Sn and ∆ ∈ Sn such that

ν[i](r(j)) =

{
1 for i = j

0 for i < j.

A presentation P = 〈x1, x2, . . . , xn | r1, r2, . . . , rn〉 is called algebraically
collapsible if {r1, r2, . . . , rn} is an algebraically collapsible collection of words
on X.

In general, we will assume that when given a collection {r1, r2, . . . , rn}
of words, any free reduction is performed prior to testing the collection by
Definition 2.6.

Example 2.7. The collection of words {r1, r2, r3} on generators {x1, x2, x3}
given by the assignments r1 = x1, r2 = x−11 x3x

3
2 and r3 = x2x

−1
1 is alge-

braically collapsible. Let Γ = (1 3) ∈ S3 and ∆ = (1 2 3) ∈ S3. Then

ν[1](r(1)) = 1, ν[1](r(2)) = ν[1](r(3)) = 0

ν[2](r(2)) = 1, ν[2](r(3)) = 0

ν[3](r(3)) = 1.

Theorem 2.8. Let {r1, r2, . . . , rn} be a collection of words on the alphabet
X. Then {r1, r2, . . . , rn} is algebraically collapsible if and only if there exist
Γ ∈ Sn and ∆ ∈ Sn where Γ(j) = [j], ∆(i) = (i) such that

r(i) = uix
±1
[i] vi 1 ≤ i ≤ n

where ui = ui(x[i+1], . . . , x[n]) and vi = vi(x[i+1], . . . , x[n]).

Proof. Suppose {r1, r2, . . . , rn} is algebraically collapsible. Then there exist
Γ ∈ Sn and ∆ ∈ Sn so that

ν[i](r(j)) =

{
1 i = j

0 i < j
1 ≤ i, j ≤ n.

For 1 ≤ i ≤ n, ν[i](r(i)) = 1 so that r(i) is of the form r(i) = uix[i]
±1vi

where ui = ui(x[1], . . . , x̂[i], . . . , x[n]) and vi = vi(x[1], . . . , . . . , x̂[i], . . . , x[n]).
Since ν[m](r(i)) = 0 for m = 1, . . . , i − 1 then ui = ui(x[i+1], . . . , x[n]) and
vi = vi(x[i+1], . . . , x[n]).
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(⇐) Suppose {r1, r2, . . . , rn} is given along with ∆ ∈ Sn and Γ ∈ Sn so
that r(i) = uix

±1
[i] vi for ui = ui(x[i+1], . . . , x[n]) and vi = vi(x[i+1], . . . , x[n]),

1 ≤ i ≤ n. Apply the counting function ν[i] for i = 1, . . . , n to obtain

ν[i](r(j)) =

{
1 i = j

0 i < j
1 ≤ i, j ≤ n.

This implies {r1, . . . , rn} is algebraically collapsible on {x1, x2, . . . , xn}. �

In general, Γ and ∆ are not unique. For example, the collection of words
{r1, . . . , rn} on the set of generators {x1, x2, . . . , xn} where rj ≡ xj for j =
1, . . . , n is algebraically collapsible for every Γ = ∆ ∈ Sn.

Let F (x1, x2, . . . , xn) be the free group on {x1, x2, . . . , xn}. Suppose that
{r1, r2, . . . , rn} is a collection of distinct words on F . Recall from Theo-
rem 2.5 that {r1, r2, . . . , rn} is a simple set of words if each word rj corre-
sponds to a generator xi under some automorphism σ : F → F . In the nota-
tion of Definition 2.6 this is equivalent to the statement that {r1, r2, . . . , rn}
is a simple set of words if there exist Γ ∈ Sn and ∆ ∈ Sn so that σ(x[i]) = r(j)
for i, j = 1, . . . , n.

Lemma 2.9. Suppose that r is a word on X of the form r = uxεiv where u

and v are words on the set of generators X \ {xi, x−1i }and ε = ±1. Then
there exists an automorphism σ : F → F such that

σ(xj) =

{
u−1xεiv

−1 j = i

xj j 6= i,
j = 1, . . . , n.

Proof. Let r = uxiv where u and v are words on X \ {xi ∪ x−1i }. Suppose
that

u = x
εls
ls
x
εls−1

ls−1
. . . x

εl2
l2
x
εl1
l1

v = x
εr1
r1 x

εr2
r2 . . . x

εrt−1
rt−1 x

εrt
rt .

For k = 1, . . . , s, consider the simple transformation of the first type

defined by xi → x
−εlk
lk

xi. By the remarks following Theorem 2.4 there is an
associated automorphism λlk : F → F where

λlk(xj) =

{
x
−εlk
lk

xi j = i

xj j 6= i
j = 1, . . . , n.

Define λL = λls ◦ λls−1 ◦ · · · ◦ λl2 ◦ λl1 . By construction,

λL(xj) =

{
u−1xi j = i

xj j 6= i
j = 1, . . . , n.

Similarly, for k = 1, . . . , t, the simple transformation of the first type

defined by xi → xix
−εrk
rk may be associated with the automorphism

ρrk : F → F
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where

ρrk(xj) =

{
xix
−εrk
rk j = i

xj j 6= i
j = 1, . . . , n.

Define ρR = ρr1 ◦ ρr2 ◦ · · · ◦ ρrt . Then

ρR(xj) =

{
xiv
−1 j = i

xj j 6= i
j = 1, . . . , n.

Finally, define σ = λL ◦ ρR, so that

σ(xj) =

{
u−1xiv

−1 j = i

xj j 6= i
j = 1, . . . , n.

In the case r = ux−1i v where u and v are words on the set of generators

X \ {xi ∪ x−1i }, apply the preceding construction to the word v−1xiu
−1 to

obtain an automorphism σ : F → F such that

σ(xj) =

{
vxiu j = i

xj j 6= i,
j = 1, . . . , n.

Then σ(x−1i ) = (σ(xi))
−1 = u−1x−1i v−1. �

Theorem 2.10. Suppose that {r1, r2, . . . , rn} is an algebraically collapsible
set of words on X. Then there exists an automorphism σ : F → F such that
σ(x[i]) = r(i) for 1 ≤ i ≤ n.

In particular, if {r1, r2, . . . , rn} is an algebraically collapsible set then
{r1, r2, . . . , rn} is a simple set of words.

Proof. Let {r1, r2, . . . , rn} be an algebraically collapsible set on X. By
Theorem 2.8 there exists Γ ∈ Sn and ∆ ∈ Sn, where (j) = ∆(j) and
[i] = Γ(i), so that r(j) = ujx

±1
[j] vj for each j ∈ {1, . . . n} where

uj = uj(x[j+1], . . . , x[n])

vj = vj(x[j+1], . . . , x[n]).

For each i = 1, . . . n, let σi : F → F be the automorphism of Lemma 2.9
defined by

σi(x[j]) =

{
u−1i x[i] v

−1
i j = i

x[j] j 6= i
j ∈ {1, . . . , n}.

Define σ = σn ◦ · · · ◦ σ1.
Claim: σ(r(j)) = x[j] for j = 1, . . . , n.
Let r(j) = ujx[j]vj , where

uj = uj(x[j+1], . . . , x[n]),

vj = vj(x[j+1], . . . , x[n]).



ON SMALL GEOMETRIC INVARIANTS OF 3-MANIFOLDS 395

By construction, σi(uj) = uj and also σi(vj) = vj for i = 1 . . . j. Therefore,

σ(r(j)) = σn ◦ · · · ◦ σj+1 ◦ σj ◦ · · · ◦ σ1(ujx[j]vj)
= σn ◦ · · · ◦ σj+1 ◦ σj(ujx[j]vj)
= σn ◦ · · · ◦ σj+1(uj(u

−1
j x[j]v

−1
j )vj)

= σn ◦ · · · ◦ σj+1(x[j])

= x[j].

Then the automorphism σ−1 : {x[1], . . . , x[n]} → {r(1), . . . , r(n)} exhibits
{r(1), . . . , r(n)} as images of the generators {x[1], . . . , x[n]}. By Theorem 2.5
{r(1), . . . , r(n)} forms a simple set of words. �

Corollary 2.11. If P = 〈x1, x2, . . . , xn | r1, r2, . . . , rn〉 is an algebraically
collapsible presentation then P is extended Nielsen equivalent to the empty
presentation.

Proof. Let P = 〈x1, x2, . . . , xn | r1, r2, . . . , rn〉 be an algebraically collapsi-
ble presentation. Then there exists Γ ∈ Sn and ∆ ∈ Sn, with ν[i](r(j)) = 1
if i = j and ν[i](r(j)) = 0 where i < j for 1 ≤ i, j ≤ n.

Since P is algebraically collapsible, Lemma 2.10 implies there exists an
automorphism σ : F (x1, x2, . . . , xn)→ F (x1, x2, . . . , xn) where σ(x[i]) = r(i)
for 1 ≤ i ≤ n.

Then

P = 〈x1, x2, . . . , xn | r1, r2, . . . , rn〉
en∼ 〈x[1], . . . , x[n] | r(1), . . . , r(n)〉
en∼ 〈x[1], . . . , x[n] | x[1], . . . , x[n]〉
en∼ 〈− | −〉. �

2.2. Algebraic co-k-collapsibility. As in the previous section, let

K = e0 ∪

[
n⋃
i=1

e1i

]
∪

[
p⋃
j=1

e2j

]
and let PK = 〈x1, x2, . . . , xn | r1, r2, . . . , rp〉 be the geometric presenta-
tion associated with K. Suppose that L ⊂ K is a subcomplex of K for
which K ↘ L. In this case, if the corresponding elementary collapses are
across the 1-cells {e11, e12, . . . , e1p−k} for some k ≥ 0 which remove the 2-cells

{e21, e22, . . . , e2p−k}, then the corresponding presentation associated with L is

PL = 〈x̂1, . . . , x̂p−k, . . . , xn | r̂1, . . . , r̂p−k, rp−k+1 . . . , rp〉

where k ≤ n.

Definition 2.12. A collection of words {r1, r2, . . . rq} for 0 ≤ k ≤ q on

the letters {x1, x2, . . . , xn} ∪ {x−11 , x−12 , . . . , x−1n } for 0 < q ≤ n is called
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algebraically co-k-collapsible if after free reduction, there exists Γ ∈ Sn and
∆ ∈ Sq such that

ν[i](r(j)) =

{
1 i = j

0 i < j
1 ≤ i, j ≤ q − k.

A presentation P = 〈x1, x2, . . . , xn | r1, r2, . . . , rp〉 for p ≤ n is said
to be algebraically co-k-collapsible if {r1, . . . , rp} is an algebraically co-k-
collapsible collection of words on X.

Lemma 2.13. If {r1, r2, . . . , rp} is algebraically co-k-collapsible, 0 ≤ k < p,
then there exists a subset of cardinality p − k which forms an algebraically
collapsible set.

Proof. Let {r1, r2, . . . , rp} be algebraically co-k-collapsible with 0 ≤ k < p.
Then there exists Γ ∈ Sn and ∆ ∈ Sp such that

ν[i](r(j)) =

{
1 i = j

0 i < j
1 ≤ i, j ≤ p− k.

From Definition 2.6 it follows directly that {r(1), . . . , r(p−k)} is algebraically
collapsible on X. �

Lemma 2.14. Let {r1, r2, . . . , rp} for p ≤ n be a collection of words on
the generating set X. Then {r1, r2, . . . , rp} is algebraically co-k-collapsible if
and only if there exist Γ ∈ Sn and ∆ ∈ Sp where Γ(j) = [j], ∆(i) = (i) such
that

r(i) = uix
±1
[i] vi 1 ≤ i ≤ p− k

where ui = ui(x[i+1], . . . , x[n]) and vi = vi(x[i+1], . . . , x[n]).

Proof. (⇒) Let {r1, r2, . . . , rp} be algebraically co-k-collapsible. Then Lem-
ma 2.13 implies there exists Γ ∈ Sn and ∆ ∈ Sp and an algebraically col-
lapsible subset {r(1), . . . , r(p−k)}. Theorem 2.8 applied to this subset implies
the result.

(⇐) Suppose given {r1, r2, . . . , rp}, ∆ ∈ Sp and Γ ∈ Sn so that r(i) =

uix
±1
[i] vi for ui = ui(x[i+1], . . . , x[n]) and vi = vi(x[i+1], . . . , x[n]), 1 ≤ i ≤ p−k.

Apply the counting function ν to obtain

ν[i](r(j)) =

{
1 i = j

0 i < j
1 ≤ i, j ≤ p− k.

Then {r(1), . . . , r(p−k)} ⊂ {r1, . . . , rp} is algebraically collapsible so that
{r1, . . . , rp} is an algebraically co-k-collapsible set on X. �

Lemma 2.15. Suppose that P = 〈x1, x2, . . . , xn | r1, r2, . . . , rp〉 for p ≤ n is
algebraically-co-k collapsible. Then P is extended Nielsen equivalent to

P ′ = 〈x[p−k+1], . . . , x[n] | r′(p−k+1), . . . , r
′
(p)〉

for Γ ∈ Sn, ∆ ∈ Sp, and words {r′(p−k+1), . . . , r
′
(p)} on {x[p−k+1], . . . , x[n]}.
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Proof. Let P = 〈x1, x2, . . . , xn | r1, r2, . . . , rp〉 for p ≤ n be algebraically
co-k-collapsible. Then there exists Γ ∈ Sn and ∆ ∈ Sp, with ν[i](r(j)) = 1 if
i = j and ν[i](r(j)) = 0 where i < j for 1 ≤ i, j ≤ p− k.

By Lemma 2.10 there exists an automorphism σ : F → F where σ(r(i)) =
x[i] for 1 ≤ i ≤ p− k. For Γ ∈ Sn as above we have

P = 〈x1, x2, . . . , xn | r1, r2, . . . , rp〉(1)
en∼ 〈x[1], . . . , x[p−k], x[p−k+1], . . . , x[n] | r(1), . . . , r(p−k), . . . r(p)〉
en∼ 〈x[1], . . . , x[p−k], x[p−k+1], . . . , x[n]

| x[1], . . . , x[p−k], σ(r(p−k+1)), . . . , σ(r(p))〉.
Claim:

(x[1], . . . , x[p−k], σ(r(p−k+1)), . . . , σ(r(p)))
en∼ (x[1], . . . , x[p−k], r

′
(p−k+1), . . . , r

′
(p))

where r′(i) = r′(i)(x[p−k+1], . . . , x[n]) for p− k + 1 ≤ i ≤ p.

Proof. We argue by induction on the number of words k in the set

{σ(r(p−k+1)), . . . , σ(r(p))}.

If k = 0, then {r1, r2, . . . , rp} is algebraically collapsible on X. Corol-
lary 2.11 implies that Equation (1) is extended Nielsen equivalent to the
presentation

〈x[p+1], . . . , x[n] | −〉.
For k > 0, choose σ(r(j)) ∈ {σ(r(p−k+1)), . . . , σ(r(p))} for some j, where

p− k+ 1 ≤ j ≤ p. For some α ∈ {1, . . . , p− k}, suppose that x[α] is the first
occurrence in σ(r(j)) of a member of {x[1], . . . , x[p−k]}. Then σ(r(j)) = ux[α]v
where u = u(x[p−k+1], . . . , x[n]). From Equation (1) we obtain

(x[1], . . . , x[α], . . . , x[p−k], σ(r(p−k+1)), . . . , σ(r(j)), . . . , σ(r(p)))
en∼ (x[1], . . . x[α], . . . , x[p−k], σ(r(p−k+1)), . . . , ux[α]v, . . . , σ(r(p)))
en∼ (x[1], . . . x[α], . . . , x[p−k], σ(r(p−k+1)), . . . , x[α]vu, . . . , σ(r(p)))
en∼ (x[1], . . . x[α], . . . , x[p−k], σ(r(p−k+1)), . . . , uv, . . . , σ(r(p))).

Then the number of occurrences of elements of {x[1], . . . , x[p−k]} has been
reduced by one in the word σ(r(j)). Continuing for a finite number of such
occurrences results in a word r′j = r′j(x[p−k+1], . . . , x[n]), which reduces k
by 1. The induction hypothesis then implies the existence of the extended
Nielsen equivalent presentation,

〈x[1], . . . x[p−k], x[p−k+1], . . . , x[n] | x[1], . . . , x[p−k], r′(p−k+1), . . . , r
′
(p)〉

which in turn is equivalent to
en∼ 〈x[p−k+1], . . . , x[n] | r′(p−k+1), . . . , r

′
(p)〉
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such that {r′(p−k+1), . . . , r
′
(p)} are words on {x[p−k+1], . . . , x[n]}. �

3. Computation of the 2-handle presentation

We adopt the following terminology concerning minimal handle presenta-
tions [3].

Definition 3.1. Let M3 be a 3-manifold and let N be a 4-manifold with
Bd(N) = 2M . A minimal handle structure for N (relative to the boundary
2M) is a handle presentation for N of the form

H = h0 ∪
en(M)⋃
i=1

h1i ∪
q⋃
j=1

h2j ,

where:

(1) H has one 0-handle and en(M) 1-handles.
(2) If KH is a 2-complex associated with H, then KH formally 3-deforms

to M?.

We establish a partial result in support of the following conjecture:

Conjecture 3.2 ([3]). Let M be a 3-manifold. Then there exists a 4-man-
ifold N with boundary 2M , and there is a minimal handle presentation for
N .

Details concerning the manifold M1 are discussed in the following section.
Recall that en(K) is the minimum number of generators on the presen-

tation PK which is achievable by formal three deformations on K, whereas
en(M3) is the minimum number of generators in any 2-complex L which 3-
deforms to a 2-complex spine K of M3. Here, en(PK) = en(K) = en(M3).
We consider the problem of reducing the number of 1-handles in M?×[−1, 1],
to obtain a handle presentation of M? × [−1, 1] for which the number of
1-handles is strictly less than hg(M3)for one of a family of manifolds intro-
duced by Boileau–Zieschang.

4. The manifolds of Boileau–Zieschang

Recall that a presentation P for a three manifold group π1(M) is said to
be geometric if there is a 2-spine K of M?, so that P is the presentation
given by

P = PK = 〈x1, x2, . . . , xn | r1, r2, . . . , rn〉
where ri reads the attaching map φi(Bd(e2i )) ⊂ K. The Heegaard genus of
a 3-manifold M3 is defined as the minimum number of 1-handles geometri-
cally realizable in any Heegaard decomposition of M3. For each 1-handle in
a Heegaard decomposition, there is a free generator in a geometric presenta-
tion for π1(M). This implies that a lower bound for the number of 1-handles
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in M3 in any Heegaard decomposition is given by rk(π1(M)). That is, if
M3 is a 3-manifold, then

(2) rk(π1(M
3)) ≤ hg((M)).

Boileau and Zieschang [2] exhibit a family of manifolds {Mi}∞i=1 for which
the inequality (2) is strict, that is

Theorem 4.1 ([2]). There exists a family of 3-manifolds {Mi}∞i=1 such that
for all i ≥ 1,

2 = rk(π1(Mi)) < hg(Mi) = 3.

The proof of the theorem proceeds by exhibiting particular Heegaard
decompositions of genus 3 and reducing the number of generators to 2 by
algebraic techniques. A discussion of this occurs in Montesinos [10].

One member of this family will be denoted throughout the rest of this
paper as M1. A geometric presentation for M1 is given by Montesinos as

(3) PM1 = 〈x1, x2, x3 | x3x1x3x−11 , x2x
−1
1 x2x

−3
1 , (x3x2x

−1
1 )3(x2x

−1
1 )2〉.

Using the given presentation for π1(M1), the following theorem [10] verifies
that the extended Nielsen genus of M3

1 is 2, so

(4) 2 = rk(π1(M1)) = en(M1) < hg(M1) = 3.

The derivation following the statement of the next theorem is included for
reference. It is referenced in Section 5 to calculate a handle presentation for
M1?× [−1, 1] whose associated presentation is algebraically co-2-collapsible.

Theorem 4.2 ([10]). Let M3
1 be the manifold of Boileau–Zieschang with

presentation PM1 as given above. Then the extended Nielsen genus of PM1

is 2.

Proof. Let r1 = x3x1x3x
−1
1 and r2 = x2x

−1
1 x2x

−3
1 . Then,

(r1, r2, (x3x2x
−1
1 )3(x2x

−1
1 )2)

en∼ (r1, r2, (x3x2x
−1
1 )3(x2x

−1
1 )2(x2x

−1
1 )−2x21)

en∼ (r1, r2, x3x2x
−1
1 x3(x

−1
3 x1x

−1
3 x−11 )x2x

−1
1 x3x2x1)

en∼ (r1, r2, x3x2x
−1
3 x−11 x2(x

−1
2 x1x

−1
2 x31)x

−1
1 x3x2x1)

en∼ (r1, r2, x3x2x
−1
3 x−12 x21x3(x

−1
3 x−11 x−13 x1)x2x1)

en∼ (r1, r2, x3x2x
−1
3 x−12 x1x

−1
3 (x3x

−1
1 x3x1)x1x2x1)

en∼ (r1, r2, x3x2x
−1
3 x−12 x3x1x1(x1x

−1
2 x31x

−1
2 )x2x1)

en∼ (r1, r2, x3x2x
−1
3 x−12 x3x

3
1x2
−1(x2x

−3
1 x2x

−1
1 )x41)

en∼ (r1, r2, x3x2x
−1
3 x−12 x3x2x

2
1(x
−2
1 x2x

−1
1 x2x

−1
1 )x1)

en∼ (r1, r2, x
−1
1 (x2x3x2x

−1
3 x−12 x3x

2
2)).
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Substituting into PM1 , we obtain

PM1 = 〈x1, x2, x3 | x3x1x3x−11 , x2x
−1
1 x2x

−3
1 , (x3x2x

−1
1 )3(x2x

−1
1 )2〉

en∼ 〈x1, x2, x3 | x3x1x3x−11 , x2x
−1
1 x2x

−3
1 , x−11 (x2x3x2x

−1
3 x−12 x3x

2
2)
−1〉

en∼ 〈x2, x3 | x3(x2x3x2x−13 x−12 x3x
2
2)
−1x3(x2x3x2x

−1
3 x−12 x3x

2
2),

x2(x2x3x2x
−1
3 x−12 x3x

2
2)x2(x2x3x2x

−1
3 x−12 x3x

2
2)

3〉.

So, the extended Nielsen genus of PM1 is at most 2. Since the genus must
be at least the rank of the group, it must be equal to 2. �

When inequality (2) is strict for a manifold M3, it follows that no cell
decomposition of M3 can result in a 2-spine K having exactly one 0-cell,
rk(π1(M

3)) 1-cells and rk(π1(M
3)) 2-cells. From such a spine, a Heegaard

decomposition could be constructed with genus rk(π1(M
3)).

Thus, for the Boileau–Zieschang manifold M3
1 , Theorem 4.2 yields that

en(M3
1 ) = 2 < hg(M3

1 )

so that no handle decomposition consisting of exactly one 0-handle, two
1-handles, two 2-handles and one 3-handle exists.

5. A handle presentation for a 4-manifold bounded by 2M1

To obtain information about minimal handle structures for 4-manifolds N
bounded by 2M , we examine handle decompositions of M1? × [−1, 1] using
a handle calculus for handle presentations with no handles of index greater
than 2.

A handle presentation H is normal if the attaching spheres for the 2-
handles are contained in (∂J)× {−0.75, 0.75}.

See Craggs [3] for a treatment of normal handle presentations, and Craggs
[4, 5] for material concerning algebraic cancellation, linking obstructions and
the free reduction problems.

Definition 5.1. A normal handle presentation H for a 4-manifold N with
boundary 2M∗ is algebraically minimal (relative to the boundary 2M∗) pro-
vided:

(1) The handle presentation H has no handles of index greater than 2.
(2) All but en(M?) of the 1-handles can be canceled algebraically.

(3) If KH is a 2-complex naturally associated with H, then M∗
3
�↘ KH.

Note that if H is a handle presentation for M1? × [−1, 1] which is alge-
braically minimal, then in the absence of any linking obstructions, Theorem
A, Craggs [5] implies that H is reducible to a minimal handle structure for
M1.

The remainder of this section is devoted to establishing an explicit de-
scription of an algebraically minimal handle presentation.
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Theorem 5.2. There exists an algebraically minimal normal handle pre-
sentation H for a 4-manifold N with boundary 2M1.

We calculate a handle presentation H whose associated presentation is
algebraically co-2-collapsible. This will imply that H is an algebraically
minimal handle presentation.

Unless stated otherwise, all handle presentations for M1? × [−1, 1] are
assumed to have handles of index at most two.

We introduce a sequence of admissible operations that will be used ex-
tensively in what follows. Suppose that (D, g) is a singular system with
members including Di and Dj . If a push is performed on Di along an arc
β which encounters Dj the resulting system may be modeled by an appro-
priately chosen admissible system. Figure 2 illustrates one such possibility.
Here, the arc β, and the relator paths rk = Bd(Dk) ∩Bd(J) for k = i, j are
illustrated.

To describe the corresponding operations as an admissible sequence of op-
erations, we introduce the following notation: Let (ri, εi) denote the relator
curve within an admissible system (D, g, ε), that is, let

(ri, εi) = Bd(g(Di, εi)) ∩ Bd(J)

where εi ∈ {−1, 0, 1} is the label associated with g(Di). Let (ri, εi)→ (ri, ε
′
i)

denote a change of label corresponding to a level change, and denote an
admissible slide of g(Di, εi) over g(Dj , εj) by the notation (ri, εi) y (rj , εj).

The next lemma states that the configuration of Figure 2 may be obtained
entirely within an admissible context.

Lemma 5.3. Suppose that A is an admissible system having (ri, εi) and
(rj , εj) as relators. Let β be an arc joining a point of (ri, εi) with a point
of (rj , εj) and let N be a regular neighborhood of β in Bd(J) which fails
to intersect the other arcs of the system. Then there exists an admissible
system A′ and a sequence of admissible operations taking A to A′ which
result in the configuration given by Figure 2.

Proof. The result consists of calculating a suitable sequence of admissible
operations. Let (ri, εi), (rj , εj) and β be given for some admissible system
A.

Begin by stabilizing as indicated in Figure 3 to obtain relators (rk, 0) and
(rl, 0) on the generators y1 and y2 respectively. Then the label changes

(rl, 0)→ (rl, εj), (rk, 0)→ (rk, εi)

allow the nonsingular slides,

(rj , εj) y (rl, εj), (ri, εi) y (rk, εi).

Since the sliding operations leave their respective targets nonsingular, we
may adjust labels again resulting in the pair

(rl, εj)→ (rl, 0), (rk, εi)→ (rk, 0).
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Figure 2. A singular push as an admissible system.

This situation forms the basis for Step 2, indicated in the upper right hand
corner of Figure 3.

Stabilizing again, we obtain relators (rn, 0) and (rm, 0) on the generating
symbols y3 and y4. Set (rk, 0) → (rk, εk), where εk 6= 0 is some choice of
label, and set (rl, 0) → (rl,−εk), performing a feeler push along the arc β.
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Figure 3. Admissible operations to obtain a singular feeler push.

This allows the following sequence of admissible moves:

(rn, 0)→ (rn, εk),

(rk, εk) y (rn, εk),

(rn, εk)→ (rn, 0),

(rm, 0)→ (rm,−εk)
(rl,−εk) y (rm,−εk)
(rm,−εk)→ (rm, 0).

The resulting configuration is illustrated in the lower section of Figure 3
which is the desired result. �

Lemma 5.4. There exists an admissible system A1, having the following
properties:

(1) A1 is admissibly equivalent to the geometric presentation PM1.
(2) PA1 = 〈x1, x2, x3, y1, . . . , y92 | r1, r2, . . . , r95〉, where ri is given in

Table 1.
(3) PA1 is extended Nielsen equivalent to P (M1).

Proof. Section 6 contains a derivation of the admissible system A1. Geo-
metric readings are presented at intermediate stages ending in an explicit list
of the relators of the corresponding presentation PA1 . Table 1 represents the
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reduced form of this final entry. Each admissible operation induces an ex-
tended Nielsen transformation of the original presentation PM1 . Therefore,
the third part of the lemma follows immediately. �

Table 1: PA1 with relators {r1, r2, . . . , r95}.

r01 = x3 x1 x3 x49 x
−1
1

r02 = x2 x
−1
1 x2 x

−3
1

r03 = y10 y8 y1 y5 y4 y17
r+4 = y29 y

−1
37 y3 y57 y

−1
73 y

−1
1

r−5 = y4 y
−1
2

r06 = y−19 y2
r07 = y−116 y

−1
3

r+8 = y−16 y−118 y8
r−9 = y−122 y

−1
7 y5 y

−1
33

r010 = y6
r−9 = y−122 y

−1
7 y5 y

−1
33

r010 = y6
r011 = y−17

r+12 = y−111 y9
r−13 = y77 y

−1
53 y

−1
12 x

−1
3 y41 y

−1
25 y10

r014 = y12
r015 = y−115 y

−1
11

r+16 = y−113 y15
r−17 = y−145 x

−1
3 y−114 y16

r018 = y14
r019 = x3 y13
r+20 = y26 y

−1
19 y17

r−21 = x−12 y−120 y61 y
−1
69 y18

r022 = y20
r023 = y−165 y85 y21 y

−1
19

r+24 = y−123 y21
r−25 = y−124 x2 y89 y

−1
81 y22

r026 = y24
r027 = x2 y

−1
23

r+28 = y−128 y26
r−29 = y−127 y25
r030 = y27
r031 = y−130 y28
r+32 = y−132 y30
r−33 = y−131 y29
r034 = y31

Continued on next page
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Table 1 (continued)
r035 = y−134 y32
r+36 = y−136 y34
r−37 = y−135 y33
r038 = y35
r039 = y−138 y36
r+40 = y−140 y38
r−41 = y−139 y37
r042 = y39
r043 = y−142 y40
r+44 = y−144 y42
r−45 = y−143 y41
r046 = y43
r047 = y−146 y44
r+48 = y−148 y46
r−49 = y−147 y45
r050 = y47
r051 = y−150 y48
r+52 = y−152 y50
r−53 = y−151 y49
r054 = y51
r055 = y−154 y52
r+56 = y−156 y54
r−57 = y−155 y53
r058 = y55
r059 = y−158 y56
r+60 = y−160 y58
r−61 = y−159 y57
r062 = y59
r063 = y−162 y60
r+64 = y−164 y62
r−65 = y−163 y61
r066 = y63
r067 = y−166 y64
r+68 = y−168 y66
r−69 = y−167 y65
r070 = y67
r071 = y−170 y68
r+72 = y−172 y70
r−73 = y−171 y69
r074 = y71
r075 = y−174 y72

Continued on next page
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Table 1 (continued)
r+76 = y−176 y74
r−77 = y−175 y73
r078 = y75
r079 = y−178 y76
r+80 = y−180 y78
r−81 = y−179 y77
r082 = y79
r083 = y−182 y80
r+84 = y−184 y82
r−85 = y−183 y81
r086 = y83
r087 = y−186 y84
r+88 = y−188 y86
r−89 = y−187 y85
r090 = y87
r091 = y−190 y88
r+92 = y−192 y90
r−93 = y−191 y89
r094 = y91
r095 = x2 x

−1
1 x2 y92

Lemma 5.5. The presentation PA1(M1) presents an algebraically co-2-col-
lapsible complex.

Proof. Given PA1(M1) as presented in Lemma 5.4, we claim that the subset
{r3, . . . , r95} is algebraically collapsible on {x1, x2, x3, y1, . . . , y92}.

To see this, examine Table 2 which presents the relators from Table 1
according to the following convention: The general entry,

(i) r
ε(i)
(i) = u(i)x[i]v(i) [x[i]]

corresponds to the permutations Γ ∈ S95 and ∆ ∈ S93 so ∆(i) = (i),
Γ(i) = [i]. In addition, inspection of Table 2 demonstrates that ui =
ui(x[i+1], . . . , x[95]) and vi = vi(x[i+1], . . . , x[95]) for all i = 1, . . . , 93. Lem-
ma 2.14 then directly implies that {r1, . . . , r95} forms an algebraically co-2-
collapsible set on {x1, x2, x3, y1, . . . , y95}. �

Theorem 5.2. Given M1? × [−1, 1], Lemma 5.4 implies that there exists
an admissible system A1 representing M1? × [−1, 1] whose presentation is
given by PA1 = 〈x1, x2, x3, y1, . . . , y92 | r1, r2, . . . , r95〉. By Theorem 4.2, the
extended Nielsen genus of PM1 is 2. Therefore, Lemma 5.5 implies that PA1

presents an algebraically co-en(M1)-collapsible presentation.
From Lemma 2.15 there is an automorphism σ : F → F where σ(r(i)) =

x[i], where x[i] is an element of the ordered collection (x1, x2, x3, y1, . . . , y92)
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for 1 ≤ i ≤ 93, so that

PA1 = 〈x1, x2, x3, y1, . . . , y92 | r1, r2, . . . r95〉
en∼ 〈x[1], . . . x[95] | σ(r1), σ(r2), σ(r(1)), . . . , σ(r(93))〉
en∼ 〈x[1], . . . x[95] | r′1, r′2, x[1], . . . , x[93]〉.

There exists an admissible system A2 for M1? × [−1, 1] and a sequence of
admissible systems which take A1 to A2 having a presentation

PA2 = 〈x[1], . . . x[95] | r′1, r′2, x[1], . . . , x[93]〉.

Table 2: Sequence of collapses in order by relator number
and generator.

(1) r095 = x2 x
−1
1 x2 y92 [x1]

(2) r+92 = y−192 y90 [y92]
(3) r091 = y−190 y88 [y90]
(4) r+88 = y−188 y86 [y88]
(5) r087 = y−186 y84 [y86]
(6) r+84 = y−184 y82 [y84]
(7) r083 = y−182 y80 [y82]
(8) r+80 = y−180 y78 [y80]
(9) r079 = y−178 y76 [y78]

(10) r+76 = y−176 y74 [y76]
(11) r075 = y−174 y72 [y74]
(12) r+72 = y−172 y70 [y72]
(13) r071 = y−170 y68 [y70]
(14) r+68 = y−168 y66 [y68]
(15) r067 = y−166 y64 [y66]
(16) r+64 = y−164 y62 [y64]
(17) r063 = y−162 y60 [y62]
(18) r+60 = y−160 y58 [y60]
(19) r059 = y−158 y56 [y58]
(20) r+56 = y−156 y54 [y56]
(21) r055 = y−154 y52 [y54]
(22) r+52 = y−152 y50 [y52]
(23) r051 = y−150 y48 [y50]
(24) r+48 = y−148 y46 [y48]
(25) r047 = y−146 y44 [y46]
(26) r+44 = y−144 y42 [y44]
(27) r043 = y−142 y40 [y42]
(28) r+40 = y−140 y38 [y40]
(29) r039 = y−138 y36 [y38]

Continued on next page
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Table 2 (continued)
(30) r+36 = y−136 y34 [y36]
(31) r035 = y−134 y32 [y34]
(32) r+32 = y−132 y30 [y32]
(33) r031 = y−130 y28 [y30]
(34) r+28 = y−128 y26 [y28]
(35) r+20 = y26 y

−1
19 y17 [y26]

(36) r03 = y10 y8 y1 y5 y4 y17 [y17]
(37) r−13 = y77 y

−1
53 y

−1
12 x

−1
3 y41 y

−1
25 y10 [y10]

(38) r−29 = y−127 y25 [y25]
(39) r030 = y27 [y27]
(40) r−45 = y−143 y41 [y41]
(41) r046 = y43 [y43]
(42) r014 = y12 [y12]
(43) r−57 = y−155 y53 [y53]
(44) r058 = y55 [y55]
(45) r−81 = y−179 y77 [y77]
(46) r082 = y79 [y79]
(47) r+8 = y−16 y−118 y8 [y8]
(48) r−21 = x−12 y−120 y61 y

−1
69 y18 [y18]

(49) r−73 = y−171 y69 [y69]
(50) r074 = y71 [y71]
(51) r−65 = y−163 y61 [y61]
(52) r066 = y63 [y63]
(53) r022 = y20 [y20]
(54) r010 = y6 [y6]
(55) r+4 = y29 y

−1
37 y3 y57 y

−1
73 y

−1
1 [y1]

(56) r−33 = y−131 y29 [y29]
(57) r034 = y31 [y31]
(58) r−41 = y−139 y37 [y37]
(59) r042 = y39 [y39]
(60) r07 = y−116 y

−1
3 [y3]

(61) r−17 = y−145 x
−1
3 y−114 y16 [y16]

(62) r018 = y14 [y14]
(63) r−49 = y−147 y45 [y45]
(64) r050 = y47 [y47]
(65) r−61 = y−159 y57 [y57]
(66) r062 = y59 [y59]
(67) r−77 = y−175 y73 [y73]
(68) r078 = y75 [y75]
(69) r−9 = y−122 y

−1
7 y5 y

−1
33 [y5]

(70) r−25 = y−124 x2 y89 y
−1
81 y22 [y22]

Continued on next page
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Table 2 (continued)
(71) r026 = y24 [y24]
(72) r−93 = y−191 y89 [y89]
(73) r094 = y91 [y91]
(74) r−85 = y−183 y81 [y81]
(75) r086 = y83 [y83]
(76) r011 = y−17 [y7]
(77) r−37 = y−135 y33 [y33]
(78) r038 = y35 [y35]
(79) r−5 = y4 y

−1
2 [y4]

(80) r06 = y−19 y2 [y2]
(81) r+12 = y−111 y9 [y9]
(82) r015 = y−115 y

−1
11 [y11]

(83) r+16 = y−113 y15 [y15]
(84) r019 = x3 y13 [y13]
(85) r023 = y−165 y85 y21 y

−1
19 [y19]

(86) r−69 = y−167 y65 [y65]
(87) r070 = y67 [y67]
(88) r−89 = y−187 y85 [y85]
(89) r090 = y87 [y87]
(90) r+24 = y−123 y21 [y21]
(91) r027 = x2 y

−1
23 [y23]

(92) r−53 = y−151 y49 [y49]
(93) r054 = y51 [y51]

Let H be the handle presentation for M1?× [−1, 1] whose associated pre-
sentation is given by PA2 . Then with 2 = en(PA1) = en(PA2), and for
3 ≤ j ≤ 95 where rj = r(i−2), rj freely reduces to x[i] after the change of
basis, so that H is algebraically minimal. �

6. Derivation of an admissible system for M1

This section details a calculation of a 2-complex spine and corresponding
2-handle presentation forM1?×[−1, 1] following the derivation of Montesinos
presented in Theorem 4.2. The calculation consists of generating a series of
admissible systems to produce a 2-complex whose associated presentation
is algebraically co-2-collapsible. Plate B1 shows the 2-spine presentation
given by the first equation of Theorem 4.2, and commences by performing
a nonsingular slide. The corresponding reading is recorded below it.

The diagrams which follow Plate B1 represent the effect of the projection
maps

p+ : J × {+1} → J × {0} and

p− : J × {−1} → J × {0}
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and are presented using an admissible representation. A high resolution
collection of plates is available at [7] in addition to those presented here.

Each diagram is accompanied by a table at each stage of the calculation
which corresponds to the relators of the complex whose presentation is given
by

Pn = 〈x1, x2, x3, y1, y2, . . . , yn | r1, r2, . . . rn+3〉.
where r1 = x3x1x3x

−1
1 and r2 = x2x1x2x

−3
1 are the relators of PM1 as given

in Equation (3). The generating symbols corresponding to the 1-handles are
taken from the set {x1, x2, x3, y1, y2, . . . }, where the generators {x1, x2, x3}
correspond to the generators of π1(M1) and {y1, y2, . . . } are introduced by
repeated stabilizations as in Lemma 5.3.

To convey the information associated with the admissible system at each
stage, we adopt the following notational conventions:

(1) If ri corresponds to a 2-handle attachment in J̇ × [12 , 1], it will be

recorded as r+i . Similarly, a 2-handle attachment in J̇ × [−1,−1
2 ]

will be recorded as r−i and those nonsingular members of the disk
system will be denoted as r0i . In terms of the admissible disk system
structure this implies that r+i = (ri,+1), r−i = (ri,−1), and r0i =
(ri, 0).

(2) The basepoint of each relator curve ri is denoted as ?i. This symbol
is located near the line segment denoting the starting position of the
associated reading (the initial segment of ri).

(3) For noninitial segments, the mth line segment of curve ri is labeled
i.m. If i.k denotes the terminal segment of ri, additionally this
segment will contain the basepoint. When space is available, the
terminal segment may contain the symbols i.k and i.1 in addition
to the basepoint marker ?n. However, the terminal segment and
the segment containing the basepoint are always assumed to be the
same.

(4) The admissible slide construction of Lemma 5.3 is used to realize
2-handle slides geometrically in M1? × [−1, 1]. Segments which cor-
respond to the demonstration of Theorem 4.2 are underlined as they
are first encountered in the derivation.

The plates which follow have been carefully checked for accuracy. How-
ever, it remains possible that a mislabeled segment or an out of sequence
segment numbering has been overlooked. In this case, the reader should
proceed with the logical indexing that the particular situation calls for.

Reading for Plate B1.

r01 = x3 x1 x3 x
−1
1

r02 = x2 x
−1
1 x2 x

−3
1

r03 = (x3 x2 x
−1
1 )3(x2 x

−1
1 )2
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Figure 4. Plate B1.

Reading for Plate B2.

r01 = x3 x1 x3 x
−1
1

r02 = x2 x
−1
1 x2 x

−3
1

r03 = (x3 x2 x
−1
1 )3(x2 x

−1
1 )2(x2 x

−1
1 )−2x21

Reading for Plate B3.

r01 = x3 x1 x3 x
−1
1

r02 = x2 x
−1
1 x2 x

−3
1

r03 = (x3 x2 x
−1
1 )2x3 x2 x1
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Figure 5. Plate B2.

Reading for Plate B4.

r01 = x3 x1 x3 x
−1
1

r02 = x2 x
−1
1 x2 x

−3
1

r03 = x3 x2 x
−1
1 x3 y1 x2 x

−1
1 x3 y4 x2 x1

r+4 = y3 y
−1
1

r−5 = y4 y
−1
2

r06 = y2

r07 = (x−13 x1 x
−1
3 x−11 )y−13
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Figure 6. Plate B3.

Reading for Plate B5.

r01 = x3 x1 x3 x
−1
1

r02 = x2 x
−1
1 x2 x

−3
1

r03 = x3 x2 y1 x2 x
−1
1 x3 y4 x2 x1

r+4 = x−11 x3 x
−1
3 x1 y3 y

−1
1

r−5 = y4 y
−1
2

r06 = y2

r07 = x−13 x−11 y−13
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Figure 7. Plate B4.

Reading for Plate B6.

r01 = x3 x1 x3 x
−1
1

r02 = x2 x
−1
1 x2 x

−3
1

r03 = x3 x2 y8 y1 x2 y5 x
−1
1 x3 y4 x2 x1

r+4 = x−11 x3 x
−1
3 x1 y3 y

−1
1

r−5 = y4 y
−1
2

r06 = y2

r07 = x−13 x−11 y−13

r+8 = y−16 y8

r−9 = y−17 y5

r010 = y6

r011 = (x−12 x1 x
−1
2 x31 )y−17
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Figure 8. Plate B5.

Reading for Plate B7.

r01 = x3 x1 x3 x
−1
1

r02 = x2 x
−1
1 x2 x

−3
1

r03 = x3 x2 y8 y1 y5 x3 y4 x2 x1

r+4 = x−11 x3 x
−1
3 x1 y3 y

−1
1

r−5 = y4 y
−1
2

r06 = y2

r07 = x−13 x−11 y−13

r+8 = y−16 y8

r−9 = x−11 y−17 x2 x
−1
2 y5 x1

r010 = y6

r011 = x1 x
−1
2 x21 y

−1
7
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Figure 9. Plate B6.

Reading for Plate B8.

r01 = x3 x1 x3 x
−1
1

r02 = x2 x
−1
1 x2 x

−3
1

r03 = x3 y10 x2 y8 y1 y5 x3 y4 x2 x1

r+4 = x−11 x3 x
−1
3 x1 y3 y

−1
1

r−5 = y4 y
−1
2

r06 = y−19 y2

r07 = x−13 x−11 y−13

r+8 = y−16 y8

r−9 = x−11 y−17 x2 x
−1
2 y5 x1

r010 = y6

r011 = x1 x
−1
2 x21 y

−1
7
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Figure 10. Plate B7.

r+12 = y−111 y9

r−13 = y−112 y10

r014 = y12

r015 = (x−13 x−11 x−13 x1 )y−111

Reading for Plate B9.

r01 = x3 x1 x3 x
−1
1

r02 = x2 x
−1
1 x2 x

−3
1

r03 = y10 x2 y8 y1 y5 y4 x2 x1

r+4 = x−21 x21 y3 y
−1
1

r−5 = y4 x1 x
−1
1 y−12

r06 = y−19 y2

r07 = x−13 y−13

r+8 = y−16 y8
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Figure 11. Plate B8.

r−9 = x−21 y−17 x−11 x2 x
−1
2 x1 y5 x

2
1

r010 = y6

r011 = x−12 x1 y
−1
7

r+12 = y−111 y9

r−13 = y−112 x
−1
3 x−11 x1 y10

r014 = y12

r015 = x−13 x1 y
−1
11

Reading for Plate B10.

r01 = x3 x1 x3 x
−1
1

r02 = x2 x
−1
1 x2 x

−3
1

r03 = y10 x2 y8 y1 y5 y4 x2 x1

r+4 = x−21 x21 y3 y
−1
1

r−5 = y4 x1 x
−1
1 y−12

r06 = y−19 y2
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Figure 12. Plate B9.

r07 = x−13 y−116 y
−1
3

r+8 = y−16 y8

r−9 = x−21 y−17 x−11 x2 x
−1
2 x1 y5 x

2
1

r010 = y6

r011 = x−12 x1 y
−1
7

r+12 = y−111 y9

r−13 = y−112 x
−1
3 x−11 x1 y10

r014 = y12

r015 = x−13 y−115 x1 y
−1
11

r+16 = y−113 y15

r−17 = y−114 y16

r018 = y14

r019 = (x3 x
−1
1 x3 x1 )y13

Reading for Plate B11.

r01 = x3 x1 x3 x
−1
1
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Figure 13. Plate B10.

r02 = x2 x
−1
1 x2 x

−3
1

r03 = y10 y8 y1 y5 y4 x2 x1

r+4 = x−21 x21 y3 y
−1
1

r−5 = y4 x1 x
−1
1 y−12

r06 = y−19 y2

r07 = x−13 y−116 y
−1
3

r+8 = y−16 x−12 y8

r−9 = x−21 y−17 x−11 x1 y5 x
2
1

r010 = y6

r011 = x−12 x1 y
−1
7

r+12 = y−111 y9

r−13 = y−112 x
−1
3 x−11 x1 y10

r014 = y12

r015 = y−115 x1 y
−1
11
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Figure 14. Plate B11.

r+16 = x−13 x3 y
−1
13 y15

r−17 = y−114 y16

r018 = y14

r019 = x−11 x3 x1 y13

Reading for Plate B12.

r01 = x3 x1 x3 x
−1
1

r02 = x2 x
−1
1 x2 x

−3
1

r03 = y10 y8 y1 y5 y4 y17 x2 x1

r+4 = x−21 x21 y3 y
−1
1

r−5 = y4 x1 x
−1
1 y−12

r06 = y−19 y2

r07 = x−13 y−116 y
−1
3

r+8 = y−16 x−12 y−118 y8

r−9 = x−21 y−17 x−11 x1 y5 x
2
1
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Figure 15. Plate B12.

r010 = y6

r011 = x−12 x1 y
−1
7

r+12 = y−111 y9

r−13 = y−112 x
−1
3 x−11 x1 y10

r014 = y12

r015 = y−115 x1 y
−1
11

r+16 = x−13 x3 y
−1
13 y15

r−17 = y−114 y16

r018 = y14

r019 = x−11 x3 x1 y13

r+20 = y−119 y17

r−21 = y−120 y18

r022 = y20

r023 = (x1 x
−1
2 x31 x

−1
2 )y−119
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Figure 16. Plate B13.

Reading for Plate B13.

r01 = x3 x1 x3 x
−1
1

r02 = x2 x
−1
1 x2 x

−3
1

r03 = y10 y8 y1 y5 y4 y17 x1

r+4 = x−31 x31 y3 y
−1
1

r−5 = y4 x1 x
−1
1 y−12

r06 = y−19 y2

r07 = y−116 y
−1
3

r+8 = y−16 y−118 y8

r−9 = x−31 y−17 x−11 x1 y5 x
3
1

r010 = y6
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Figure 20. Plate B17.
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r022 = y20

r023 = x1 x
−1
2 x31 y

−1
19

Reading for Plate B14.

r01 = x3 x1 x3 x
−1
1

r02 = x2 x
−1
1 x2 x

−3
1

r03 = y10 y8 y1 y5 y4 y17 x1

r+4 = x−31 x31 y3 y
−1
1

r−5 = y4 x1 x
−1
1 y−12

r06 = y−19 y2

r07 = y−116 y
−1
3

r+8 = y−16 y−118 y8

r−9 = x−31 y−122 y
−1
7 x−11 x1 y5 x

3
1

r010 = y6

r011 = x−12 y−17

r+12 = y−111 y9

r−13 = y−112 x
−1
3 x−21 x21 y10

r014 = y12

r015 = y−115 x1 y
−1
11

r+16 = y−113 y15

r−17 = x−11 x1 x
−1
3 y−114 y16

r018 = y14

r019 = x3 x1 y13

r+20 = y−119 y17

r−21 = x−12 y−120 y18

r022 = y20

r023 = x1 x
−1
2 y21 x

3
1 y
−1
19

r+24 = y−123 y21

r−25 = y−124 y22

r026 = y24

r027 = (x2 x
−3
1 x2 x

−1
1 )y−123
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Reading for Plate B15.

r01 = x3 x1 x3 x
−1
1

r02 = x2 x
−1
1 x2 x

−3
1

r03 = y10 y8 y1 y5 y4 y17 x1

r+4 = x−31 x31 y3 x
−3
1 x31 y

−1
1

r−5 = y4 y
−1
2

r06 = y−19 y2

r07 = y−116 y
−1
3

r+8 = y−16 y−118 y8

r−9 = x−31 y−122 y
−1
7 x−11 x1 y5 x

3
1

r010 = y6

r011 = x−12 y−17

r+12 = y−111 y9

r−13 = x−21 x21 y
−1
12 x

−1
3 x−21 x21 y10

r014 = y12

r015 = y−115 y
−1
11

r+16 = y−113 y15

r−17 = x−11 x1 x
−1
3 y−114 x

−1
1 x1 y16

r018 = y14

r019 = x3 y13

r+20 = y−119 y17

r−21 = x−12 y−120 x1 x
−3
1 x31 x

−1
1 y18

r022 = y20

r023 = x31 x
−1
1 x1 x

−1
2 x2 x

−3
1 y21 x

2
1 y
−1
19

r+24 = x−11 x1 y
−1
23 y21

r−25 = y−124 x2 x
−3
1 x31 x

−1
2 y22

r026 = y24

r027 = x2 y
−1
23

Reading for Plate B16.

r01 = x3 x1 x3 y49 x
−1
1

r02 = x2 x
−1
1 x2 x

−3
1



ON SMALL GEOMETRIC INVARIANTS OF 3-MANIFOLDS 429

r03 = y10 y8 y1 y5 y4 y17 x1

r+4 = x−21 y29 x
−1
1 x1 y

−1
37 x

2
1 y3 x

−1
1 y57 x

−2
1 x21 y

−1
73 x1 y

−1
1

r−5 = y4 y
−1
2

r06 = y−19 y2

r07 = y−116 y
−1
3

r+8 = y−16 y−118 y8

r−9 = x−31 y−122 y
−1
7 x−11 x1 y5 x1 y

−1
33 x

2
1

r010 = y6

r011 = x−12 y−17

r+12 = y−111 y9

r−13 = y77 x
−2
1 x21 y

−1
53 y

−1
12 x

−1
3 x−11 y41 x

−1
1 x1 y

−1
25 x1 y10

r014 = y12

r015 = y−115 y
−1
11

r+16 = y−113 y15

r−17 = x−11 x1 y
−1
45 x

−1
3 y−114 x

−1
1 x1 y16

r018 = y14

r019 = x3 y13

r+20 = y26 y
−1
19 y17

r−21 = x−12 y−120 x1 x
−1
1 y61 x

−2
1 x21 y

−1
69 x1 x

−1
1 y18

r022 = y20

r023 = x21 y
−1
65 x1 x

−1
1 x1 x

−1
2 x2 x

−1
1 y85 x

−2
1 y21 x

2
1 y
−1
19

r+24 = x−11 x1 y
−1
23 y21

r−25 = y−124 x2 x
−1
1 y89 x

−2
1 x21 y

−1
81 x1 x

−1
2 y22

r026 = y24

r027 = x2 y
−1
23

r+28 = y−128 y26

r−29 = y−127 y25

r030 = y27

r031 = y−130 y28

r+32 = y−132 y30

r−33 = y−131 y29
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r034 = y31

r035 = y−134 y32

r+36 = y−136 y34

r−37 = y−135 y33

r038 = y35

r039 = y−138 y36

r+40 = y−140 y38

r−41 = y−139 y37

r042 = y39

r043 = y−142 y40

r+44 = y−144 y42

r−45 = y−143 y41

r046 = y43

r047 = y−146 y44

r+48 = y−148 y46

r−49 = y−147 y45

r050 = y47

r051 = y−150 y48

r+52 = y−152 y50

r−53 = y−151 y49

r054 = y51

r055 = y−154 y52

r+56 = y−156 y54

r−57 = y−155 y53

r058 = y55

r059 = y−158 y56

r+60 = y−160 y58

r−61 = y−159 y57

r062 = y59

r063 = y−162 y60

r+64 = y−164 y62
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r−65 = y−163 y61

r066 = y63

r067 = y−166 y64

r+68 = y−168 y66

r−69 = y−167 y65

r070 = y67

r071 = y−170 y68

r+72 = y−172 y70

r−73 = y−171 y69

r074 = y71

r075 = y−174 y72

r+76 = y−176 y74

r−77 = y−175 y73

r078 = y75

r079 = y−178 y76

r+80 = y−180 y78

r−81 = y−179 y77

r082 = y79

r083 = y−182 y80

r+84 = y−184 y82

r−85 = y−183 y81

r086 = y83

r087 = y−186 y84

r+88 = y−188 y86

r−89 = y−187 y85

r090 = y87

r091 = y−190 y88

r+92 = y−192 y90

r−93 = y−191 y89

r094 = y91

r095 = (x−21 x2 x
−1
1 x2 x

−1
1 )y92
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Reading for Plate B17.

r01 = x3 x1 x3 y49 x
−1
1

r02 = x2 x
−1
1 x2 x

−3
1

r03 = y10 y8 y1 y5 y4 y17

r+4 = y29 x
−3
1 x31 y

−1
37 y3 y57 x

−3
1 x31 y

−1
73 y

−1
1

r−5 = y4 y
−1
2

r06 = y−19 y2

r07 = y−116 y
−1
3

r+8 = y−16 y−118 y8

r−9 = x31 x
−3
1 y−122 y

−1
7 x−11 x1 y5 y

−1
33

r010 = y6

r011 = y−17

r+12 = y−111 y9

r−13 = y77 x
−2
1 x21 y

−1
53 y

−1
12 x

−1
3 y41 x

−2
1 x21 y

−1
25 y10

r014 = y12

r015 = y−115 y
−1
11

r+16 = y−113 y15

r−17 = x−11 x1 y
−1
45 x

−1
3 y−114 x

−1
1 x1 y16

r018 = y14

r019 = x3 y13

r+20 = y26 y
−1
19 y17

r−21 = x−21 x21 x
−1
2 y−120 x1 x

−1
1 y61 x

−2
1 x21 y

−1
69 x1 x

−1
1 y18

r022 = y20

r023 = y−165 x
3
1 x
−1
1 x1 x

−3
1 y85 y21 y

−1
19

r+24 = x−11 x1 y
−1
23 y21

r−25 = y−124 x2 y89 x
−3
1 x31 y

−1
81 y22

r026 = y24

r027 = x2 y
−1
23

r+28 = y−128 y26

r−29 = x−31 x31 y
−1
27 y25

r030 = y27
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r031 = y−130 y28

r+32 = y−132 x1 x
−1
1 y30

r−33 = x−41 x41 y
−1
31 y29

r034 = y31

r035 = y−134 y32

r+36 = y−136 x
−2
1 x21 y34

r−37 = x31 x
−3
1 x−11 x1 x

3
1 x
−3
1 y−135 y33

r038 = y35

r039 = y−138 y36

r+40 = y−140 x1 x
−1
1 y38

r−41 = x−31 x31 x
−4
1 x41 x

−3
1 x31 y

−1
39 y37

r042 = y39

r043 = y−142 y40

r+44 = x1 x
3
1 x
−3
1 x1 x

2
1 x
−2
1 x1 x

−3
1 y−144 y42

r−45 = y−143 y41

r046 = y43

r047 = y−146 y44

r+48 = y−148 y46

r−49 = x1 x
−1
1 x−21 x21 x1 x

−1
1 y−147 x1 x

−1
1 y45

r050 = y47

r051 = y−150 y48

r+52 = y−152 y50

r−53 = x1 x
−1
1 x−21 x21 x1 x

−1
1 y−151 x1 x

−1
1 y49

r054 = y51

r055 = y−154 y52

r+56 = y−156 y54

r−57 = x1 x
−1
1 x−21 x21 x1 x

−1
1 y−155 x1 x

−1
1 y53

r058 = y55

r059 = y−158 y56

r+60 = y−160 x
−1
1 x1 y58

r−61 = x−31 x31 y
−1
59 y57
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r062 = y59

r063 = y−162 y60

r+64 = y−164 y62

r−65 = x−21 x21 y
−1
63 x1 x

−1
1 y61

r066 = y63

r067 = y−166 y64

r+68 = y−168 x
−3
1 x31 y66

r−69 = y−167 y65

r070 = y67

r071 = y−170 y68

r+72 = y−172 y70

r−73 = x−21 x21 y
−1
71 x1 x

−1
1 y69

r074 = y71

r075 = y−174 y72

r+76 = x31 x
−1
1 x1 x

−3
1 y−176 x

−1
1 x1 y74

r−77 = y−175 y73

r078 = y75

r079 = y−178 y76

r+80 = y−180 y78

r−81 = x1 x
−1
1 x−21 x21 x1 x

−1
1 y−179 x1 x

−1
1 y77

r082 = y79

r083 = y−182 y80

r+84 = y−184 y82

r−85 = x−31 x31 y
−1
83 y81

r086 = y83

r087 = y−186 y84

r+88 = y−188 x
−3
1 x31 y86

r−89 = y−187 y85

r090 = y87

r091 = y−190 y88

r+92 = x31 x
−3
1 y−192 y90
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r−93 = y−191 y89

r094 = y91

r095 = x2 x
−1
1 x2 y92
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