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Weak type inequalities for maximal
operators associated to double ergodic

sums

Paul Hagelstein and Alexander Stokolos

Abstract. Given an approach region Γ ∈ Z2
+ and a pair U , V of com-

muting nonperiodic measure preserving transformations on a probabil-
ity space (Ω, Σ, µ), it is shown that either the associated multiparameter
ergodic averages of any function in L1(Ω) converge a.e. or that, given
a positive increasing function φ on [0,∞) that is o(log x) as x → ∞,
there exists a function g ∈ Lφ(L) (Ω) whose associated multiparameter
ergodic averages fail to converge a.e.
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1. Introduction

Let U and V be two commuting measure preserving transformations on
a probability space (Ω,Σ, µ). The general behavior of the multiparameter
ergodic averages associated to U and V is becoming well understood. As
was proven by N. Dunford in [2] and A. Zygmund in [13], if f ∈ L log L(Ω)
then

lim
m,n→∞

1
mn

m−1∑
j=0

n−1∑
k=0

f(U jV kω)

converges for a.e. ω. If the pair U, V is nonperiodic in the sense that, for any
(m,n) 6= (0, 0), (m,n) ∈ Z2 we have µ {ω ∈ Ω : UmV nω = ω} = 0 , then the
L log L condition is sharp: as was shown in [6], if φ is a positive increasing
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function on [0,∞) that is o(log x) as x → ∞, then there exists g ∈ Lφ(L)
such that

lim
m,n→∞

1
mn

m−1∑
j=0

n−1∑
k=0

g(U jV kω)

fails to converge a.e. As expected, these convergence and divergence re-
sults are reflected in the behavior of the associated ergodic strong maximal
operator MS , defined by

MSf(ω) = sup
m,n≥1

1
mn

m−1∑
j=0

n−1∑
k=0

∣∣∣f (U jV kω
)∣∣∣ .

In [3], Fava showed that MS satisfies the weak type (L log L,L1) inequality

µ {ω ∈ Ω : MSf(ω) > α} ≤
∫

Ω

|f |
α

(
1 + log+ |f |

α

)
.

The sharpness of this result was proved in [6], where it was shown that, given
a pair of commuting nonperiodic measure preserving transformations U and
V on Ω and an o(log x) function φ as above, there exists a function g ∈ Lφ(L)
such that the associated ergodic maximal operator MSg is infinite a.e.

This paper is concerned with somewhat better behaved multiparameter
ergodic maximal operators, corresponding to improved a.e. convergence re-
sults. The maximal operators and corresponding ergodic averages we will
be considering are associated to rare bases, ergodic theory analogues of
bases associated to geometric rare maximal operators previously studied
by Hagelstein, Hare, and Stokolos (see, e.g, [5], [7], and [11]). Being more
specific, let Γ ⊂ Z2

+ be an unbounded region. (Such a set Γ is sometimes
referred to as an approach region as it has a close connection to approach
regions associated to boundary value problems arising in harmonic analysis,
complex variables, and partial differential equations.) The corresponding
ergodic maximal operator MΓ is given by

MΓf(ω) = sup
(m,n)∈Γ

1
mn

m−1∑
j=0

n−1∑
k=0

∣∣∣f(U jV kω)
∣∣∣ .

(Note if Γ = Z2
+ itself, then MΓ is the usual strong ergodic maximal operator

MS .)
In this paper we will show that, given Γ, if U, V is a commuting pair

of nonperiodic measure preserving transformations one of two possibilities
must occur:

(i) MΓ is of weak type (1, 1) and accordingly the associated rare ergodic
averages

lim
m,n→∞
(m,n)∈Γ

1
mn

m−1∑
j=0

n−1∑
k=0

f(U jV kω)

converge a.e. for every f ∈ L1(Ω); or
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(ii) MΓ is of weak type (L log L,L1) but such that, given a positive
increasing function φ on [0,∞) that is o(log x) for x → ∞, there
exists g ∈ Lφ(L) satisfying MΓg = ∞ a.e. and such that

lim
m,n→∞
(m,n)∈Γ

1
mn

m−1∑
j=0

n−1∑
k=0

g
(
U jV kω

)
fails to converge a.e.

We shall see that a monotonicity condition on Γ determines whether case
(i) or (ii) holds. The notion of monotonicity is defined as follows. For any
positive integer j, let j∗ be the integer satisfying 2j∗−1 < j ≤ 2j∗ . Given a
set Γ ∈ Z2

+, we define the dyadic skeleton Γ∗ of Γ by

Γ∗ =
{

(2m∗
, 2n∗) : (m,n) ∈ Γ

}
.

We say that Γ is monotonic if, for any (m1, n1), (m2, n2) in Γ∗, m1 < m2

implies n1 ≤ n2. We will prove that if Γ is contained in a finite union of
monotonic sets then case (i) holds, and otherwise case (ii) will hold.

2. Weak type (1,1) bounds associated to monotonic
approach regions

We now show that the ergodic maximal operator MΓ associated to a
monotonic region Γ ⊂ Z2

+ is of weak type (1, 1). To prove this theorem, we
will “transfer” the known weak type (1, 1) bound of a geometric maximal
operator associated to a monotonic basis of rectangles to a weak type (1, 1)
bound of MΓ. The transference mechanism will be constructed explicitly,
taking advantage of a lemma of Katznelson and Weiss involving commuting
nonperiodic pairs of measure preserving transformations. We hope to yield
a general transference principle relating weak type bounds of “rare” multi-
parameter ergodic maximal operators associated to commuting nonperiodic
pairs of measure preserving transformations to weak type bounds of rare
geometric maximal operators on a future occasion.

Lemma 1. Let Γ ⊂ Z2
+ be a monotonic region and let U, V be a pair of

commuting nonperiodic measure preserving transformations on a probability
space (Ω,Σ, µ). Then the associated maximal operator MΓ satisfies the weak
type (1, 1) inequality

µ {ω ∈ Ω : MΓf(ω) > α} ≤ C

α

∫
Ω
|f | .

Proof. Let Γ∗ denote the dyadic skeleton of Γ. One may readily check that
MΓf ≤ 4MΓ∗f , hence it suffices to show that MΓ∗ is of weak type (1,1).

Since Γ is monotonic, we may write Γ∗ = {(m1, n1), (m2, n2), . . .} where
(mj , nj) =

(
2m∗

j , 2n∗j
)

and where mj ≤ mj+1, nj ≤ nj+1 for each j. Also let
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Γ∗j = {(m1, n1), . . . , (mj , nj)}. As

lim
j→∞

µ
{

ω ∈ Ω : MΓ∗j
f(ω) > α

}
= µ {ω ∈ Ω : MΓ∗f(ω) > α}

there exists N such that

µ
{

ω ∈ Ω : MΓ∗N
f(ω) > α

}
≥ 1

2
µ {ω ∈ Ω : MΓ∗f(ω) > α} .

For notational simplicity we shall denote MΓ∗N
by M∗. It suffices to show

(1) µ {ω ∈ Ω : M∗f(ω) > α} ≤ C

α

∫
Ω
|f | ,

where C is independent of N .
It is useful at this point to recall the following result of Katznelson and

Weiss:

Lemma 2 ([9]). Let U and V be two commuting nonperiodic measure pre-
serving transformations on a measure space Ω of finite measure. Then for
any ε > 0 and positive integer γ there exist sets B and E in Ω such that
µ(E) < ε and

Ω =

 γ−1⋃
j,k=0

Bj,k

 ∪ E ,

where the Bj,k = U jV kB are pairwise disjoint.

Let ε = 1
4µ {ω : M∗f(ω) > α}. We assume without loss of generality that

ε > 0. Set RN = max(mN , nN ). Let γ ∈ Z+ be such that 2RN
ε < γ.

By Lemma 2, there exists a set A such that
{
U jV kA

}γ−1

j,k=0
is a disjoint

sequence of sets in Ω such that µ
(
∪γ−1

j,k=0U
jV kA

)
> 1 − ε. Observe that

1− ε < γ2µ(A) ≤ 1 and hence

µ

γ−1−RN⋃
j,k=0

U jV kA

 = (γ −RN )2 µ(A)

≥ γ2µ(A)− 2RNγµ(A)

> (1− ε)− (εγ) γµ(A)
≥ 1− 2ε .

Accordingly,

µ

{ω : M∗f(ω) > α} ∩
γ−1−RN⋃

j,k=0

U jV kA

 ≥ 1
2
µ {ω : M∗f(ω) > α} .
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For s = 1, 2, . . . , N let

Es =

ω ∈ Ω :
1

msns

ms−1∑
j=0

ns−1∑
k=0

∣∣∣f (U jV kω
)∣∣∣ > α

 .

and let As,j,k = A ∩ U−jV −kEs .

We now let {Br}Ñ
r=1 be a disjoint collection of sets of positive measure

such that:

(i)
⋃Ñ

r=1 Br =
⋃N

s=1

⋃γ−1−RN

j,k=0 As,j,k, and
(ii) given any Br and As,j,k for 1 ≤ r ≤ Ñ ; 1 ≤ s ≤ N ; and 1 ≤ j, k ≤

γ − 1−RN , either Br ⊂ As,j,k or µ (Br ∩As,j,k) = 0.

In order to circumvent certain technical complications later on involving
sets of measure zero, we assume without loss of generality that a slightly
stronger version of (ii) holds, namely, given any Br and As,j,k for 1 ≤ r ≤ Ñ ;
1 ≤ s ≤ N ; and 1 ≤ j, k ≤ γ − 1−RN , either Br ⊂ As,j,k or Br ∩As,j,k = ∅.
This may be justified from removing from the space Ω the set of zero measure

Ñ⋃
r=1

∞⋃
m,n=−∞

UmV n {ω ∈ Br ∩As,j,k : µ (Br ∩As,j,k) = 0} .

Note that if M∗f(ω) > α and ω ∈ ∪γ−1−RN

j,k=0 U jV kA, then ω ∈ Es for some
s, and hence for some 0 ≤ j, k ≤ γ − 1 − RN we have U−jV −kω ∈ As,j,k

Hence U−jV −kω ∈ Br for some r, and thus ω ∈ U jV kBr. We will frequently
denote U jV kBr by Br,j,k. So

µ

{ω : M∗f(ω) > α} ∩
γ−1−RN⋃

j,k=0

U jV kA



= µ

{ω : M∗f(ω) > α} ∩
Ñ⋃

r=1

γ−1−RN⋃
j,k=0

Br,j,k


=

Ñ∑
r=1

µ

{ω : M∗f(ω) > α} ∩
γ−1−RN⋃

j,k=0

Br,j,k

 ,

the latter equality following from the fact that

µ

γ−1−RN⋃
j,k=0

U jV kBr

 ⋂ γ−1−RN⋃
j,k=0

U jV kBs

 = 0

when r 6= s.



238 PAUL HAGELSTEIN AND ALEXANDER STOKOLOS

Fix an r ∈
{

1, . . . , Ñ
}

. It suffices to show

µ

{ω : M∗f(ω) > α} ∩
γ−1−RN⋃

j,k=0

Br,j,k

 ≤ C

α

∫
∪γ−1

j,k=0Br,j,k

|f | dµ .

For our convenience, we set ρr =
√

µ(Br). Define gr on

Qr := [0, γρr]× [0, γρr]

by

gr(ξ, η) =
1

µ(Br)

γ−1∑
j,k=0

(∫
Br,j,k

|f | dµ

)
χ[jρr,(j+1)ρr)×[kρr,(k+1)ρr)(ξ, η) .

Note that ∫
Qr

gr(ξ, η)dξdη =
∫
∪γ−1

j,k=0Br,j,k

|f | dµ .

Let now the collection of rectangles βΓ∗N,r
be defined by

βΓ∗N ,r = {[jρr, (j + m`) ρr]× [kρr, (k + n`) ρr] : j, k ∈ Z, 1 ≤ ` ≤ N} .

We define the geometric maximal operator Mr associated to βΓN ,r by

Mrf(ξ, η) = sup
{

1
|R|

∫
R
|f (u, v)| dudv : (ξ, η) ∈ R,R ∈ βΓ∗N ,r

}
.

Suppose M∗f(ω) > α and ω ∈ Br,j,k for some 0 ≤ j, k ≤ γ − 1 − RN .
Then ω ∈ Es and U−jV −kω ∈ As,j,k for some s, and hence Br ⊂ As,j,k,
implying U jV kBr ⊂ Es, i.e. Br,j,k ⊂ Es. So

1
µ(Br)

1
msns

∫
Br,j,k

ms−1∑
a=0

ns−1∑
b=0

∣∣∣f (UaV bw
)∣∣∣ dµ(w) > α .

Hence if (ξ, η) ∈ [jρr, (j + 1) ρr)× [kρr, (k + 1) ρr) for 1 ≤ j, k ≤ γ− 1−RN

we have

Mrgr (ξ, η) ≥ 1
msnsµ(Br)

∫ (j+ms)ρr

u=jρr

∫ (k+ns)ρr

v=kρr

gr(u, v)dudv

=
1

msnsµ(Br)

j+ms−1∑
a=j

k+ns−1∑
b=k

ρ2
r

1
|Br|

∫
Br,a,b

|f | dµ

=
1

msnsµ(Br)

∫
Br,j,k

ms−1∑
a=0

ns−1∑
b=0

∣∣∣f (UaV bw
)∣∣∣ dµ(w) > α .

So {ω : M∗f(ω) > α} ∩
(
∪γ−1−RN

j,k=0 Br,j,k

)
is a disjoint union of a subcol-

lection of the Br,j,k’s, and if Br,j,k ⊂ {ω : M∗f(ω) > α} ∩
(
∪γ−1−RN

j,k=0 Br,j,k

)
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then

[jρr, (j + 1)ρr)× [kρr, (k + 1)ρr) ⊂ {(x, y) : Mrgr(x, y) > α} .

As the sets Br,j,k are of the same measure µ(Br) and disjoint, as well as the
sets of the form [jρr, (j + 1)ρr)× [kρr, (k + 1)ρr), we realize

µ

{ω : M∗f(ω) > α} ∩
γ−1−RN⋃

j,k=0

Br,j,k

 ≤ |{(ξ, η) : Mrgr(ξ, η) > α}| .

Hence it suffices to show

|{(ξ, η) : Mrgr(ξ, η) > α}| ≤ C

α

∫
∪γ−1

j,k=0Br,j,k

|f | dµ .

The rectangles in βΓ∗N ,r satisfy the following monotonicity property: if
R1, R2 ∈ βΓ∗N ,r, then there exists a translate τR1 of R1 such that either
τR1 ⊂ 2 ·R2 or R2 ⊂ 2 · τR1 where multiplication by 2 means the doubling
of the dimensions of the rectangle. This follows from the monotonicity
property of ΓN .

Any geometric maximal operator associated to a basis of such rectangles
in R2 with sides parallel to the axes is automatically of weak type (1,1), as
may be readily seen by the proof of the Vitali covering theorem. (See [12]
for more details.) Hence

|{(ξ, η) : Mrgr(ξ, η) > α}| ≤ C

α

∫
R2

gr(ξ, η)dξdη

≤ C

α

∫
∪γ−1

j,k=0Br,j,k

|f | dµ ,

as desired. �

Theorem 1. Let U and V be a pair of commuting nonperiodic measure
preserving transformations on a probability space (Ω,Σ, µ), and let Γ ⊂ Z2

+

be contained in a finite number of monotonic sets. Then the associated
maximal operator MΓ satisfies the weak type (1, 1) inequality

µ {ω ∈ Ω : MΓf(ω) > α} ≤ C

α

∫
Ω
|f | ,

and the associated rare ergodic averages

lim
m,n→∞
(m,n)∈Γ

1
mn

m−1∑
j=0

n−1∑
k=0

f(U jV kω)

converge a.e. for every f ∈ L1(Ω).

Proof. Since Γ ⊂ Z2
+ is contained in a finite number of monotonic sets, there

exists subsets Γ1, . . . , ΓN of Z2
+ that are monotonic such that Γ ⊂ ∪N

j=1Γ
j .

As each MΓj is of weak type (1,1) by Lemma 1 and as by sublinearity we
have MΓf ≤ MΓ1f + · · ·+ MΓN f , the weak type (1,1) estimate follows.
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Let f ∈ L1(Ω) and ε > 0. To prove the convergence result, it suffices to
show

µ

ω ∈ Ω :

lim sup
m,n→∞
(m,n)∈Γ

− lim inf
m,n→∞
(m,n)∈Γ

 1
mn

m−1∑
j=0

n−1∑
k=0

f(U jV kω) > ε

 < ε .

Let ε1 > 0, where ε1 is to be determined later. Since L log L(Ω) is dense in
L1(Ω), there exists g ∈ L log L(Ω) such that ‖f − g‖L1(Ω) < ε1. As

lim
m,n→∞

1
mn

m−1∑
j=0

n−1∑
k=0

g(U jV kω)

converges a.e. as was shown by Dunford and Zygmund, we necessarily have

lim
m,n→∞
(m,n)∈Γ

1
mn

m−1∑
j=0

n−1∑
k=0

g(U jV kω)

converges a.e. Hence

µ

ω ∈ Ω :

lim sup
m,n→∞
(m,n)∈Γ

− lim inf
m,n→∞
(m,n)∈Γ

 1
mn

m−1∑
j=0

n−1∑
k=0

f(U jV kω) > ε


= µ

ω ∈ Ω :

lim sup
m,n→∞
(m,n)∈Γ

− lim inf
m,n→∞
(m,n)∈Γ

 1
mn

m−1∑
j=0

n−1∑
k=0

(f − g)(U jV kω) > ε


<

C

ε
‖f − g‖L1(Ω) <

Cε1
ε

.

As ε1 is arbitrarily small, the desired result holds. �

We remark that an alternative proof of this result may be obtained using
techniques of A. Zygmund in [13]. In this paper Zygmund states, without
providing details, a result that encompasses the above theorem even in the
case of noncommuting measure preserving transformations. However, the
transference methods we have constructed in our proof are effectively “re-
versible” and enable us in the next section to show that certain weak-type
bounds on multiparameter ergodic maximal operators are indeed sharp.

3. Nonmonotonic approach regions

In this section we shall show that if the approach region Γ is not mono-
tonic, then the weak type (L log L,L1) estimate on MΓ is sharp and moreover
that the rare ergodic averages associated to Γ will converge a.e. for all func-
tions in L log L(Ω) but not for all functions in any larger Orlicz class. Ob-
serve that the weak type (L log L,L1) estimate on MΓ follows from bounding
MΓ by the strong ergodic maximal operator MS and applying De Guzmán’s
(L log L,L1) estimate for MS . That the rare ergodic averages associated to
Γ converge for all functions in L log L(Ω) follows immediately from Dunford
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and Zygmund’s result that the strong ergodic averages of any function in
L log L(Ω) converge a.e.

Analogous sharpness results for (L log L,L1) bounds have been found pre-
viously for geometric maximal operators by the second author (see in partic-
ular [12].) The strategy here will be to “transfer” the associated techniques
of proof used by Stokolos to the ergodic setting, and the means of transfer-
ence will be the Katznelson–Weiss lemma.

Let I and I ′ be two rectangles in the plane whose sides are parallel to the
coordinate axes. If there exists a translation placing one of them inside the
other, we say I and I ′ are comparable. If such a translation does not exist
we say I and I ′ are incomparable.

Lemma 3. Let I1, . . . , Ik be pairwise incomparable rectangles in the plane
whose sides are parallel to the axes and whose sidelengths are dyadic. Then
there are two sets Θ and Y in the plane such that

|Y | ≥ k2k−3|Θ|
and such that for every (x, y) ∈ Y there is a shift τ such that for some j,

(x, y) ∈ τ(Ij) and |τ (Ij) ∩Θ| ≥ 21−k |τ(Ij)| .
Moreover, each τ(Ij) is a dyadic rectangle, Θ ⊂ Y , and Y is contained in a
dyadic rectangle HΘ,Y such that

|Y |
|HΘ,Y |

≥ k2−k−1 .

Proof. Without loss of generality we assume that I1, . . . , Ik have a com-
mon lower left vertex. Let Ij = I1

j × I2
j , with

∣∣∣I1
j

∣∣∣ = 2−mj and
∣∣∣I2

j

∣∣∣ = 2−nj .

We also assume without loss of generality that I1
1 ⊂ I1

2 ⊂ · · · ⊂ I1
k while

I2
1 ⊃ I2

2 · · · ⊃ I2
k , corresponding to m1 > m2 > · · · > mk and n1 < n2 <

· · · < nk.
We define Θ1 and Θ2 by

Θ1 =

x1 ∈ I1
k :

k−1∏
j=1

2mj−mk−1−1∑
s=0

χI1
j

(
x1 − 2s

∣∣I1
j

∣∣) = 1

 ,

Θ2 =

x2 ∈ I2
1 :

k∏
j=2

2nj−n1−1−1∑
s=0

χI2
j

(
x2 − 2s

∣∣I2
j

∣∣) = 1

 .

Observe that
∣∣Θ1
∣∣ = 21−k

∣∣I1
k

∣∣ and
∣∣Θ2
∣∣ = 21−k

∣∣I2
1

∣∣. Set Θ = Θ1×Θ2. Then
|Θ| = 22−2k

∣∣I1
k

∣∣ · ∣∣I2
1

∣∣.
Set now Y 1

k = I1
k , Y 2

1 = I2
1 , and

Y 1
i =

x1 ∈ I1
k :

k−1∏
j=i

2mj−mk−1−1∑
s=0

χI1
j

(
x1 − 2s

∣∣I1
j

∣∣) ,



242 PAUL HAGELSTEIN AND ALEXANDER STOKOLOS

Figure 1.

Y 2
i =

x2 ∈ I2
1 :

i∏
j=2

2nj−n1−1−1∑
s=0

χI2
j

(
x2 − 2s

∣∣I2
j

∣∣) = 1


for i = 1, . . . , k−1 and i = 2, . . . , k respectively. We let Yi = Y 1

i ×Y 2
i . Note

that
∣∣Y 1

i

∣∣ = 2−(k−i)
∣∣I1

k

∣∣ and
∣∣Y 2

i

∣∣ = 21−i
∣∣I2

1

∣∣. So |Yi| = 21−k
∣∣I1

k

∣∣ · ∣∣I2
1

∣∣.
Let now Y = Y1 ∪ · · · ∪ Yk. For j = 1, . . . , k, Yj is a disjoint union of

translates of Ij , with at least one-quarter of each translate not intersecting
any of the other Yi’s. So

|Y | ≥ 1
4

k∑
i=1

|Yi| = k2−1−k
∣∣I1

k

∣∣ · ∣∣I2
1

∣∣ = k2k−3 |Θ| .

Moreover, if (x, y) ∈ Y , then (x, y) ∈ τ(Ij) for some 1 ≤ j ≤ k and shift τ ,
where

|τ(Ij) ∩Θ|
|τ(Ij)|

=
|Ij ∩Θ|
|Ij |

=
|Yj ∩Θ|
|Yj |

=
|Θ|
|Yj |

=
22−2k

∣∣I1
k

∣∣ · ∣∣I2
1

∣∣
21−k

∣∣I1
k

∣∣ · ∣∣I2
1

∣∣ = 21−k .

Let now HΘ,Y = I1
k × I2

1 . By construction Θ ⊂ Y ⊂ HΘ,Y . Moreover,

|Y |
|HΘ,Y |

≥ k2k−3 |Θ|∣∣I1
k × I2

1

∣∣ =
k2k−322−2k

∣∣I1
k

∣∣ · ∣∣I2
1

∣∣∣∣I1
k

∣∣ · ∣∣I2
1

∣∣ = k2−k−1 ,

completing the proof of the lemma. �

Figures 1 and 2 should aid the understanding of the proof of the above
lemma. Figure 1 illustrates three incomparable rectangles I1, I2, and I3.
Figure 2 features the set Θ (what is shaded in black) as well as the corre-
sponding Y (the union of the rectangles in the figure).

We now introduce some new notation that will be helpful to us. Given
an approach region Γ ⊂ Z2

+, associate to the dyadic skeleton Γ∗ of Γ the
collection of dyadic rectangles RΓ∗ , where

RΓ∗ =
{[

0, 2m∗
]
×
[
0, 2n∗

]
:
(
2m∗

, 2n∗
)
∈ Γ∗

}
.
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Figure 2.

A crucial observation at this point is that, if Γ is is not contained in a finite
number of monotonic sets, given any positive integer k and positive number
α there exists a collection of k pairwise incomparable rectangles in RΓ∗ all
of whose sidelengths exceed α.

Given Γ ⊂ Z2
+ and the associated collection of rectangles RΓ∗ , we now let

R̃Γ∗ be the collection of dyadic rectangles in the plane consisting of all the
shifts of members of RΓ∗ . We define the associated maximal operator M̃Γ∗

by

M̃Γ∗f(x, y) = sup
(x,y)∈R∈R̃Γ∗

1
|R|

∫
R
|f | .

Lemma 4. Suppose Γ ⊂ Z2
+ is not contained in a finite number of mono-

tonic sets. Let ε > 0. For 0 < λ < 1
100 , let k ∈ Z be such that 2−k ≤ λ <

21−k. Then there exist sets Θλ,ε ⊂ Yλ,ε ⊂ Hλ,ε in the plane, all being unions
of dyadic squares of sidelength 1 and such that Hλ,ε is a dyadic square itself,
such that

M̃Γ∗χΘλ,ε
> λ on Yλ,ε ,

|Yλ,ε| ≥ k2k−3 |Θλ,ε| ,

and
|Hλ,ε − Yλ,ε|

|Hλ,ε|
< ε .

Proof. Since Γ is not contained in a finite number of monotonic sets, there
exist a collection I1,1, . . . , I1,k of pairwise incomparable rectangles in RΓ∗ .
By the previous lemma, there are two sets Θ̃1 and Ỹ1 in the plane such that∣∣∣Ỹ1

∣∣∣ ≥ k2k−3
∣∣∣Θ̃1

∣∣∣
and such that for every (x, y) ∈ Ỹ1 there is a shift τ such that for some j,

(x, y) ∈ τ (I1,j) and
∣∣∣τ (I1,j) ∩ Θ̃1

∣∣∣ ≥ 21−k |τ (I1,j)| .



244 PAUL HAGELSTEIN AND ALEXANDER STOKOLOS

Moreover, each τ(I1,j) is a dyadic rectangle and Θ̃1 and Ỹ1 lie in a dyadic
rectangle H1 such that ∣∣∣Ỹ1

∣∣∣
|H1|

≥ k2−1−k .

Observe that M̃Γ∗χΘ̃1
> 21−k > λ on Ỹ1.

Let now I2,1, . . . , I2,k be a collection of pairwise incomparable rectangles
in RΓ all of whose sidelengths exceed the longest sidelength of H1. Applying
the previous lemma again we obtain two sets Θ2 and Y2 in the plane such
that

|Y2| ≥ k2k−3 |Θ2|
and such that for every (x, y) ∈ Y2 there is a shift τ such that for some j,

(x, y) ∈ τ (I2,j) and |τ(I2,j) ∩Θ2| ≥ 21−k |τ (I2,j)| .

Moreover, each τ(I2,j) is a dyadic rectangle, Θ2 ⊂ Y2, and Y2 lies in a dyadic
rectangle H2 such that

|Y2|
|H2|

≥ k2−1−k .

Assuming without loss of generality that the construction of Θ2 and Y2 from
the I2,j was like the one described in the proof of the previous lemma, H2−Y2

consists of an a.e. disjoint union of dyadic rectangles, each being a translate
of H1. (This follows from the method of construction and the fact that each
I2,j has sidelengths exceeding the largest sidelength of H1.) Defining the
shift operators τ2,1, . . . , τ2,`2 such that H2 − Y2 is the a.e. disjoint union of
the τ2,jH1, we set

Ỹ2 = Y2 ∪

 `2⋃
j=1

τ2,j Ỹ1

 ,

Θ̃2 = Θ2 ∪

 `2⋃
j=1

τ2,jΘ̃1

 .

An important observation here is that∣∣∣H2 − Ỹ2

∣∣∣
|H2|

≤
(
1− k−1−k

)2

and ∣∣∣Ỹ2

∣∣∣ ≥ k2k−3
∣∣∣Θ̃2

∣∣∣ .
Also note that M̃Γ∗χΘ̃2

> λ on Ỹ2.
We proceed by induction. Suppose Ỹn, Θ̃n, and Hn have been constructed,

all being unions of rectangles in R̃Γ. Moreover, suppose MΓ∗χΘ̃n
> λ on Ỹn,
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and ∣∣∣Hn − Ỹn

∣∣∣
|Hn|

≤
(
1− k−1−k

)n
.

Let In+1,1, . . . , In+1,k be a collection of incomparable rectangles in RΓ

all of whose sidelengths exceed the longest sidelength of Hn. Applying the
techniques of the previous lemma we obtain two sets Θn+1, Yn+1 in the plane
such that

|Yn+1| ≥ k2k−3 |Θn+1|
and such that for every (x, y) ∈ Yn+1 there is a shift τ such that for some j,
(x, y) ∈ τ(In+1,j) and |τ (In+1,j) ∩Θn+1| ≥ 21−k |τ (In+1,j)| . Moreover, each
τ(In+1,j) is a dyadic rectangle, Θn+1 ⊆ Yn+1, and Θn+1 and Yn+1 lie in a
dyadic rectangle Hn+1 such that |Yn+1|

|Hn+1| ≥ k2−1−k. Now, Hn+1 − Yn+1 is
an a.e. disjoint union of dyadic rectangles each being a translate of Hn, due
to the nature of construction of Θn+1 and Yn+1 and the fact that each
In+1,j has sidelengths exceeding the largest sidelength of Hn. Defining
τn+1,1, . . . , τn+1,`n+1 such that Hn+1 − Yn+1 is an a.e. disjoint union of
the τn+1,jHn, we set

Ỹn+1 = Yn+1 ∪

`n+1⋃
j=1

τn+1,j Ỹn


and

Θ̃n+1 = Θn+1 ∪

`n+1⋃
j=1

τn+1,jΘ̃n

 .

Note that ∣∣∣Hn+1 − Ỹn+1

∣∣∣
|Hn+1|

≤
(
1− k−1−k

)n+1
,

M̃Γ∗χΘ̃n+1
> λ on Ỹn+1 ,

and ∣∣∣Ỹn+1

∣∣∣ ≥ k2k−3
∣∣∣Θ̃n+1

∣∣∣ .
Let now N = N(λ, ε) ∈ Z+ be such that

(
1− k−1−k

)N
< ε. HN is

not necessarily a dyadic square. However, there exist a collection of shift
operators τHN ,j for 1 ≤ j ≤ rHN

such that the a.e. disjoint union of the
τHN,j

forms a dyadic square. Defining Θλ,ε, Yλ,ε, and Hλ,ε by

Θλ,ε =
rHN⋃
j=1

τHN ,j(ΘN ) ,

Yλ,ε =
rHN⋃
j=1

τHN ,j(YN ) ,
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and

Hλ,ε =
rHN⋃
j=1

τHN ,j(HN ) ,

we obtain the lemma. �

We now consider some pleasantries associated to the fact that, although
MΓ is a “centered” maximal operator, M̃Γ∗ is not. We define the four “quasi-
centered” maximal operators M̃Γ∗,I , M̃Γ∗,II , M̃Γ∗,III , and M̃Γ∗,IV by

M̃Γ∗,If(x, y) = sup
R∈RΓ∗

1
|R|

∫
R

f((bxc, byc) + (u, v)) dudv ,

M̃Γ∗,IIf(x, y) = sup
R∈RΓ∗

1
|R|

∫
R

f((dxe, byc) + (−u, v)) dudv ,

M̃Γ∗,IIIf(x, y) = sup
R∈RΓ∗

1
|R|

∫
R

f((dxe, dye) + (−u,−v)) dudv ,

and

M̃Γ∗,IV f(x, y) = sup
R∈RΓ∗

1
|R|

∫
R

f((bxc, dye) + (u,−v)) dudv .

Note that M̃Γ∗f ≤ M̃Γ∗,If + M̃Γ∗,IIf + M̃Γ∗,IIIf + M̃Γ∗,IV f . We may
assume without loss of generality that on a set within Yλ,ε of measure at
least 1

4 |Yλ,ε| that M̃Γ∗,IχΘλ,ε
≥ 1

4M̃Γ∗χΘλ,ε
. To see this, suppose it had been

that, say, M̃Γ∗,IIχΘλ,ε
≥ 1

4M̃Γ∗χΘλ,ε
on a set within Yλ,ε of measure at least

1
4 |Yλ,ε|. Assuming without loss of generality that Hλ,ε were situated such
that its lower left hand corner were at the origin, we could replace Θλ,ε, Yλ,ε

by sets Θ′
λ,ε and Y ′

λ,ε, where

χΘ′λ,ε
(x, y) = χΘλ,ε

(|Hλ,ε|1/2 − x, y) ,

χY ′λ,ε
(x, y) = χYλ,ε

(|Hλ,ε|1/2 − x, y) .

Observe that M̃Γ∗,IIχΘλ,ε
≥ 1

4M̃Γ∗χΘλ,ε
on a set of measure at least 1

4 |Yλ,ε|
implies that M̃Γ∗,IχΘ′λ,ε

≥ 1
4M̃Γ∗χΘ′λ,ε

on a set of measure at least 1
4 |Yλ,ε|.

Relabeling Θ′
λ,ε and Y ′

λ,ε by Θλ,ε and Yλ,ε we would obtain the desired result.
Similar symmetries apply if we replace M̃Γ∗,II by M̃Γ∗,III or M̃Γ∗,IV .

We summarize these considerations with the following.

Lemma 5. Suppose Γ ⊂ Z2
+ is not contained in a finite number of mono-

tonic sets. Let ε > 0. For 0 < λ < 1
100 , let k ∈ Z be such that 2−k ≤ λ <

21−k. Then there exist sets Θλ,ε ⊂ Yλ,ε ⊂ Hλ,ε in the plane, all being unions
of dyadic squares of sidelength 1 and such that Hλ,ε is a dyadic square itself,
such that

M̃Γ∗,IχΘλ,ε
(x, y) >

1
4
λ for any (x, y) ∈ Yλ,ε ,
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|Yλ,ε| ≥
1
4
k2k−3 |Θλ,ε| ,

and
|Hλ,ε − Yλ,ε|

|Hλ,ε|
< 3/4 + ε .

By means of transference we now obtain an ergodic analogue of Lemma 5.

Lemma 6. Let U and V be two commuting nonperiodic measure preserving
transformations on a probability space (Ω,Σ, µ), and suppose Γ ⊂ Z2

+ is not
contained in a finite union of monotonic sets. Let 0 < λ < 1

100 , 0 < ε < 1.
Then there exists a set Aλ,ε ⊂ Ω such that:

(i) MΓ∗χAλ,ε
> 1

4λ on Ω on a set of measure greater than 1/4−2ε, and
(ii) |Aλ,ε| ≤ 100λ

log( 1
λ) .

Proof. Let k ∈ Z be such that 2−k ≤ λ < 21−k and let Θλ,ε, Yλ,ε, and
Hλ,ε be as is provided by Lemma 5. For notational convenience let ρλ,ε =
|Hλ,ε|1/2. Applying the Katznelson–Weiss lemma (Lemma 2) we obtain sets
Bλ,ε and Eλ,ε in Ω such that |Eλ,ε| < ε and

Ω =

ρλ,ε−1⋃
j,k=0

U jV kBλ,ε

 ∪ Eλ,ε ,

where the U jV kBλ,ε are pairwise a.e. disjoint.
Let Sλ,ε =

{
(j, k) : (j + 1

2 , k + 1
2) ∈ Θλ,ε

}
and Aλ,ε = ∪(j,k)∈Sλ,ε

U jV kBλ,ε.
Let Tλ,ε =

{
(j, k) : (j + 1

2 , k + 1
2) ∈ Yλ,ε

}
and Wλ,ε = ∪(j,k)∈Tλ,ε

U jV kBλ,ε.

Observe that |Aλ,ε| ≤
|Θλ,ε|
|Hλ,ε| and |Wλ,ε| > (1 − ε) |Yλ,ε|

|Hλ,ε| ≥
|Yλ,ε|
|Hλ,ε| − ε . By

Lemma 5 we then have

|Aλ,ε| ≤ 4k−123−k ≤ 100λ

log( 1
λ)

and

|Wλ,ε| >
1
4
− 2ε .

Note also that, as M̃Γ∗,IχΘλ,ε
(x, y) > 1

4λ for any (x, y) ∈ Yλ,ε , we must have
that MΓ∗χAλ,ε

> 1
4λ on Wλ,ε, completing the proof of the lemma. �

We now are in position to show that, if the approach region Γ ⊂ Z2
+ is not

contained in a finite union of monotonic sets, then L log L(Ω) is the largest
Orlicz class of functions for which we have a.e. convergence.

Theorem 2. Let U and V be a commuting pair of nonperiodic measure pre-
serving transformations on a probability space (Ω,Σ, µ), and suppose Γ ⊂ Z2

+

is not contained in a finite union of monotonic sets. Let φ be a positive
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increasing function on [0,∞) that is o(log x) as x → ∞. Then there exists
a function f ∈ Lφ(L)(Ω) such that

lim
m,n→∞
(m,n)∈Γ

1
mn

m−1∑
j=0

n−1∑
k=0

f
(
U jV kω

)
does not exist on a set of positive measure in Ω.

Proof. For each positive integer n, choose 0 < λn < 1
100 such that

φ
(

n
λn

)
log
(

1
λn

) <
1

n · 2n
.

Note that such a λn exists since φ(x) = o(log x) as x → ∞. By Lemma 6,
there exists a set En ⊂ Ω such that MΓχEn ≥ 1

16λn on Ω on a set of measure
at least 1

8 , where |En| ≤ 100λn

log( 1
λn

)
.

Let now fn = n
λn

χEn . Note that MΓfn > n
16 on Ω on a set of measure at

least 1
8 . Moreover, ∫

Ω
fnφ (fn) = |En| ·

n

λn
φ

(
n

λn

)
≤ 100λn

log
(

1
λn

) n

λn
φ

(
n

λn

)

≤ 100
nφ
(

n
λn

)
log
(

1
λn

)
<

100
2n

.

Set now f = supn fn . Observe that MΓf = ∞ in Ω on a set of measure at
least 1

8 and hence for each ω in a set of measure 1
8 in Ω there exist sequences

of positive integers jω,1, jω,2, jω,3, . . ., kω,1, kω,2, kω,3, . . . tending to infinity
with each (jω,n, kω,n) ∈ Γ such that

lim
n→∞

1
jω,nkω,n

jω,n−1∑
j=0

kω,n−1∑
k=0

f
(
U jV kω

)
= ∞ .

Moreover, f ∈ Lφ(L)(Ω) since

∞∑
n=1

∫
Ω

fnφ (fn) <

∞∑
n=1

100
2n

= 100 .



MAXIMAL OPERATORS ASSOCIATED TO DOUBLE ERGODIC SUMS 249

As accordingly f ∈ L1 (Ω) we also have∫
Ω

1
mn

m−1∑
j=0

n−1∑
k=0

f
(
U jV k

)
≤ ‖f‖L1(Ω)

for all positive integers m, n, and hence it is not possible for

lim
m,n→∞

1
mn

m−1∑
j=0

n−1∑
k=0

f
(
U jV kω

)
= ∞

to hold for all ω in a set in Ω of measure 1
8 (even though on such a set we

may have lim sup m,n→∞
(m,n)∈Γ

1
mn

∑m−1
j=0

∑n−1
k=0 f

(
U jV kω

)
= ∞). The theorem

follows. �
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