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A new record for the canonical height on
an elliptic curve over C(t)

Sonal Jain

Abstract. We exhibit an elliptic curve E/C(t) of discriminant degree
84 with a nontorsion point P of canonical height 2987/120120 (a new

record). We also prove that if (E, P ) has Szpiro ratio σ ≤ 4, then ĥ(P )
must exceed this value, providing some evidence that our example may
yield the smallest height possible over C(t). Using the same strategy,
we find other E/C(t) with nontorsion points of small canonical height,
including Elkies’ previous record.
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1. Introduction

Let E/K be an elliptic curve over a number field or complex function
field K. A conjecture by Lang postulates a uniform lower bound for the
canonical height of nontorsion points P ∈ E(K):

Conjecture (Lang). There exists a constant C = C(K) > 0 such that for
all pairs (E,P ) one has

ĥ(P ) ≥ C log |NK/Q∆E/K |.

Over C(t) or C(C) for C a curve, the same bound holds with log |NK/Q∆E/K |
replaced by the discriminant degree d = 12n.
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In [5], Hindry and Silverman prove Lang’s conjecture under the hypothesis
of a conjecture of Lucien Szpiro [12]. Szpiro’s conjecture is equivalent to the
ABC conjecture of Masser–Oersterlé, showing that Lang’s conjecture is true
over function fields. In the case that K = C(t), Hindry and Silverman
determine an explicit value for C ≈ 7 × 10−10. In [4] Elkies improves the
value of C to ≈ 10−7, and conjectures that the correct value of C should
be 3071/10810800 ≈ 2.84× 10−4. It is natural to ask: What is the smallest
possible canonical height ĥ(P ) of a rational nontorsion point P on a curve
E/ C(t)?

In this paper we exhibit explicit equations for an elliptic curve E/ C(t)
of discriminant degree d = 84 with a rational point P of canonical height
2987/120120, which breaks the previous record of 261/10010 held by Elkies.
Our example comes very close to Elkies’ conjectural lower bound for 12n C.
In fact, 2987/120120 is only 4.2% larger than (12 · 7) 3071/10810800. This
leads us to ask: Could this value be a global minimum for the canonical
height of a nontorsion point on an elliptic curve over C(t)?

The conjectural value of the constant C relies on a heuristic improvement
of the Szpiro ratio σ, which is defined for E/ C(t) as the ratio of the degrees
of the discriminant of E and the conductor of E [12]. One always has σ ≤ 6
(see Hindry–Silverman [5, Thm. 5.1]). In general, most curves over C(t) will
not have a section of small canonical height. A parameter count suggests
that an E/ C(t) with Szpiro ratio σ > 4 and a section of height less than n
should be rare. (see Section 4.3). We prove the following:

Theorem 1.1. Suppose that E is a nonconstant elliptic curve over C(t)
with Szpiro ratio σ ≤ 4, and P is a nontorsion point in E(C(t)). Then the
canonical height ĥ(P ) > 2987/120120.

In fact our record example is the first and only known example with a
nontorsion integral point P that has Szpiro ratio σ > 4. Our attempts at
constructing such elliptic curves as well as the heuristic discussed in Sec-
tion 4.3 make us believe it is highly unlikely that another such curve, if
it exists, will also have a point of very small canonical height. Also, as d
grows, the only way ĥ(P ) could be smaller than our record is for σ to be
significantly larger than 4. We conjecture:

Conjecture 1.2. The minimum canonical height of a nontorsion point on
an elliptic curve over C(t) is 2987/120120.

Although we provide some evidence for the conjecture, the evidence is
not conclusive. A proof of this conjecture is not within reach using the
techniques of this paper, as the heuristic improvement of the Szpiro ratio
on which the conjecture depends puts a strong combinatorial constraint on
the fibration (see Section 4.3).

1.3. Integral multiples. There is an established connection (see Elkies
[3]) between points of low canonical height and points with integral multi-
ples. For E/ C(t), P is integral if it does not meet the zero section of E,



A NEW RECORD FOR THE CANONICAL HEIGHT OVER C(t) 527

i.e., if the coordinates of P with respect to a minimal Weierstrass equation
have no poles.

Our (E,P ) has mP integral for every m ∈ [1, 10]∪{12, 14, 15}. Previously,
the maximal known m for which mP is integral was 12, for a curve of
conductor 60. The maximum possible such m is 42, and in the case that
σ ≤ 4 the maximum possible m is 15 (see [4] p.21). As an (E,P ) with P
integral and σ > 4 is rare, it is likely that 15 is maximum possible m. We also
find another example (E,P ) with mP integral for m ∈ [1, 9] ∪ {12, 13, 15}.

2. Strategy

2.1. A special family of K3 elliptic surfaces. In our paper [7], we found
the unique K3 elliptic surface that attains the smallest possible regulator
R(P,Q) = 1/100 for a rank 2 sublattice Z P⊕Z Q of its Mordell–Weil lattice.
We located this surface (as q = 3) in the following family K3 ellipic surfaces
of Picard number 19 with two independent sections, parametrized by P1:

Eq(t) : Y 2 + q(−t2 + (q + 1)t− 1)XY(1)

+ (qt(t− q)(t− q + 1)(qt− 1)(qt− t− 1))Y

= X3 − qt(t− q + 1)(qt− t− 1)X2

Qq(t) :
(
qt(t− q)(qt− t− 1),−q2t2(t− q)(qt− t− 1)

)
Pq(t) : (0, 0) .

2.2. Small heights over Q. In [7], where we found this family, we used to
following strategy to produce the elliptic curves E/ Q with smallest known
nonzero canonical height. There are 28 pairs of points on E3(t) of the
form mP + m′Q, with m and m′ both nonzero, that have naive height 6.
This means that these points meet the zero section for exactly one value
of t. For each such (m,m′) we specialized E3(t) to this value t0, forcing
mP3(t0) + m′Q3(t0) = 0 on the curve E3(t0)/ Q. This gave us a point Pg

generating ZP3(t0) + ZQ3(t0) of potentially small canonical height on this
curve:

ĥ(Pg) =
gcd(m′,m)2

m′2 ĥ(P3(t0)).

We expected this height to be small, both because several multiples of the
point Pg would be integral on E3(t0), and also because of specialization
theorems of Silverman and Tate (cf. chapter III section 11 of [11]). Our
prediction was correct, and we recovered the five smallest known nonzero
canonical heights over Q in this way.

For example The point 7P + Q has x-coordinate

x(7P + Q) =
72t6 + 426t5 − 501t4 − 1233t3 − 198t2 + 216t

(7t + 6)2
.
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Specializing to t = −6/7 yields the elliptic curve over Q of conductor 3990
with the point of smallest known canonical height, ĥ(Pg) ≈ 0.00445716 (see
Section 8, [7]).

2.3. Specializing to a curve. We apply a similar strategy to the family
in (1), in an attempt to produce elliptic surfaces over P1 with sections of
very small canonical height. Considering both t and q as parameters, we
view this family as an elliptic three-fold fibred over P1×P1. If we specialize
t = f(q) to some rational function of q, we obtain an elliptic surface (in
general not K3) over the q-line. The generic member of the family (1) has
22 points R = mP + m′Q, with both m and m′ nonzero, with naive height
6. For each such pair (m,m′), the section mPq(t) + m′Qq(t) meets the zero
section at one value t = f(q), where f is some rational function. Specializing
to t = f(q) forces mPq +m′Qq = 0 on the elliptic curve over C(q). This will
yield a point Pg generating ZP + ZQ of potentially small canonical height
on Eq:

ĥ(Pg) =
gcd(m′,m)2

m′2 ĥ(P ).

If a, b ∈ Z are such that am + bm′ = gcd(m,m′), then

Pg = bP − aQ =
gcd(m,m′)

m′ P = −gcd(m,m′)
m

Q.

Our prediction that ĥ(Pg) should be small is correct, and using this strategy
we obtain a new record for the canonical height on an elliptic surface over P1.
In addition, this strategy recovers the elliptic surface attaining the previous
record of Elkies.

2.4. Computing canonical heights. Let P be a point on an elliptic curve
E over C(C), where C is a complex algebraic curve of genus g. The canonical
height ĥ(P ) can be written as a sum of the naive height h(P ) and some local
correction terms:

ĥ(P ) = h(P ) +
∑

υ

λυ(P ),

where the sum is taken over singular fibers υ. The local correction term
λυ(P ) depends only on the type of the singular fiber Eυ at υ, and the
component cυ of Eυ that meets the section sP corresponding to P . The
naive height h(P ) is equal to 2n + 2sP · s0, where sP · s0 is equal to the
intersection number of sP with the zero section. In the case that C = P1,
2sP ·s0 is the number of poles of x(P ). We list explicit formulas for the local
correction terms for each possible singular fiber. These formulas have been
worked out by Cox and Zucker in [1]. One can use Tate’s algorithm [13]
to compute the type of each singular fiber Eυ, and thus computing exact
canonical heights in this setting is a straightforward calculation.

• If the section sP intersects the identity component of Eυ, then

λυ(P ) = 0.
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• If Eυ is an additive fiber of type III, IV, I∗0 , III∗ or IV ∗, and sP

intersects a nonidentity component of Eυ, then λυ(P ) = −dυ/6.
• Suppose Eυ is an additive fiber of type I∗ν (ν > 0) and sP passes

through a nonidentity component. If ν is odd and sP meets the
distinguished 2-torsion component, then λυ(P ) = −1. Otherwise we
have λυ(P ) = −ν/4− 1.

• Finally, if Eυ is a multiplicative fiber of type Iν and sP passes
through component a, then

λυ(P ) =
(a− ν)a

ν
.

3. Examples

In [7], we parametrized the set of triples (E,P, Q) of an elliptic curve
E/Q with rational points P,Q such that P, 2P,Q, P ± Q and 2P + Q are
all integral by an open subset of P3. We located the one parameter family
of K3 elliptic surfaces (1) as a one parameter family of conics in this P3.
By its definition, the moduli space has a symmetry interchanging Q and
−P − Q. Thus, although the generic member of the family in (1) has 22
points R = mP + m′Q (both m and m′ nonzero) of naive height 6, by
this symmetry we need only consider 11 pairs (m,m′) The naive height of
mP + m′Q equals 6 for the following pairs (m,m′):

(1, 2), (1, 3), (2, 3), (3, 3), (5, 1), (5, 2), (6, 1), (6, 2), (6, 3), (7, 1), (8, 2),

as well as their images under the symmetry (m,m′) ↔ (m−m′,−m′). We
specialize the family at these eleven pairs. We find very small values for the
canonical height at (5, 2), (6, 1), and (7, 1).

3.1. Example 1. Specializing t = −q2 + 2q forces 5P + 2Q = 0. The
resulting model is not minimal at q = 0, and we change coordinates to a
obtain a global minimal model y2 +A1(q)xy+A3(q)y = x3 +A2(q)x2, where

A1 = −(q − 1)3(q3 − 2q2 + q − 1),

A2 = (q − 2)(q2 − q − 1)(q3 − 3q2 + 2q + 1),

A3 = −(q − 2)(q − 1)2(q2 − q − 1)2(q3 − 3q2 + 2q + 1).

We then use Tate’s Algorithm [13] to compute the Kodaira fiber types, and
compute the component of each fiber meeting the section Pt = (0, 0). We
sum the local contributions to the canonical height ĥ(Pt). We list the places
at which we there a nonzero contribution to the height in Table 1. We
obtain h(Pt) = 205/308, and then divide this by 25 to get the height of the
generator for Z P ⊕Z Q to be 41/1540. This curve was previously known by
Elkies, and is believed to attain the minimum canonical height for d = 48
[3].
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Table 1.

Fiber Type cq(P ) λq(P )
q = 1 I4 2 −1
q = 2 I7 1 −6/7
q = (−1±

√
5)/2 2I5 2 2 · −6/5

q = 1±
√

2 2I2 1 2 · −1/2
q = ∞ I11 2 −11/18
q3 − 3q2 + 2q + 1 = 0 3I3 0 0
q2 − q2 − 9q + 13 = 0 3I1 0 0

Table 2.

Fiber Type cq(P ) λq(P )
q = 1 I13 3 −30/13
q = ∞ I11 1 −10/11
q = 2 I7 1 −6/7
q = (1±

√
5)/2 2I5 2 2 · −6/5

q3 − q2 − 2q2 + 1 = 0 3I2 1 3 · −1/2
q3 − 2q2 + q − 1 = 0 3I3 1 3 · −2/3
q4 − 9q3 + 28q2 − 34q + 13 = 0 4I1 0 0

3.2. Example 2. Specializing to t = (−q2 + 2q)/(q2 − 2q + 1) forces 6P +
Q = 0. The equations we obtain are not minimal at q = 0 or q = ∞, and
we change coordinates to obtain the minimal model

y2 + A1(q)xy + A3(q)y = x3 + A2(q)x2,

with

A1(q) = q5 − q4 − 7q3 + 13q2 − 6q + 1,

A2(q) = (q − 2)(q − 1)3(q2 − q − 1)(q3 − 2q2 + q − 1),

A3(q) = (q − 2)(q − 1)3(q2 − q − 1)2(q3 − 2q2 + q − 1)(q3 − q2 − 2q + 1).

The curve has d = 60. Table 2 lists all of the local data for the elliptic curve
and its section P . We calculate ĥ(P ) = 261/10010, which was previously
the smallest known nonzero canonical height on an elliptic curve over C(t).
This curve was found using different methods by Elkies, and is believed to
attain the minimum canonical height for d = 60 [3].

3.3. Example 3 (Record height). Finally, specializing to

t = (−q3 + 3q2 − 2q)/(q3 − 3q2 + 2q + 1)

forces 7P + Q = 0 and yields our new record. The model we obtain is
not minimal at q = 0 and the roots of q3 − 3q2 + 2q + 1 = 0. We change
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Table 3.

Fiber Type cq(P ) λq(P )
q = 1 I11 3 −24/11
q = ∞ I13 1 −12/13
q = 2 I8 1 −7/8
q = (1±

√
5)/2 2I7 3 2 · −12/7

q3 − 3q2 + 2q + 1 = 0 3I5 1 3 · −4/5
q3 − 2q2 − q + 3 = 0 3I2 1 3 · −1/2
q4 − 3q3 + 2q2 + 1 = 0 4I3 1 4 · −2/3
q5 − 9q4 + 28q3 − 33q2 + 7q + 7 = 0 5I1 5I1 0

coordinates to attain a minimal model

y2 + A1(q)xy + A3(q)y = x3 + A2(q)x2,

with
A1(q) = q7 − 3q6 − 5q5 + 28q4 − 32q3 + 5q2 + 6q + 1,

A2(q) = (q − 2)(q − 1)3(q2 − q − 1)(q3 − 3q2 + 2q + 1)(q4 − 3q3 + 2q2 + 1),

A3(q) = (q − 2)(q − 1)3(q2 − q − 1)3(q3 − 3q2 + 2q + 1)

· (q3 − 2q2 − q + 3)(q4 − 3q3 + 2q2 + 1).

All the local information is compiled in Table 3. Computing the canonical
height of Pt, we find that ĥ(Pt) = 2987/120120. This is a new record for the
canonical height over C(t).

3.4. Another small family. We apply the same strategy to another one
parameter family of K3 surfaces of Picard number 19. The generic member
of the family below is a K3 elliptic surface of conductor degree 9 with a rank
2 subgroup Z P⊕Z Q, such that the volume of the sublattice generated by P
and Q is 1/48. This is the smallest possible regulator for a rank 2 subgroup
of an elliptic K3 that is attained by a one parameter family.

Eq(t) :

Y 2 − q
(
q4t2 − q3t2 + qt2 − t2 − 2q3t + 3q2t− 2qt− t + q2 − 2q + 1

)
XY

− (q − 1)2
(
q2 − q + 1

)
(t− 1)2 t (qt− t− q)

(
q2t− qt + t− q2 + q

)
Y

= X3 + q2
(
q2 − q + 1

)
t (qt− t− 1)

(
q2t− qt + t− q + 1

)
X2,

Qq(t) :(
− (q − 1) q2

(
q2 − q + 1

)
t (qt− 1) (qt− t− 1)

(
q2t− qt + t− q + 1

)
,

− (q − 1) q3
(
q2 − q + 1

)2
t2 (qt− 1) (qt− t− 1)2

(
q2t− qt + t− q + 1

))
Pq(t) : (0, 0) .
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Table 4.

Fiber Type cq(R) λq(R)
q = 1 I5 1 −4/5
q = ∞ I13 6 −42/13
q = 0 I11 1 −10/11
q2 − q + 1 = 0 2I7 1 2 · −6/7
q2 + 1 = 0 2I5 2 2 · −6/5
q3 − 2q2 + q − 1 = 0 3I4 1 3 · −3/4
q4 − 2q3 + 2q2 − q + 1 = 0 4I3 1 4 · −2/3
q7 − 4q5 + 5q4 − 8q3 + 6q2 − 5q + 1 = 0 7I1 0 0

This family also has several points of naive height 6, including 2P + 5Q.

3.5. Example 4 (Several integral multiples). We specialize

t = (q2 − q + 1)/q,

which forces 2P + 5Q = 0. Again the model is not minimal at q = 1 and we
change coordinates to obtain the minimal model

Y 2 + A1(q)XY + A3(q)Y = X3 + A2(q)X2:

A1(q) =− q8 − 3 q7 + 3 q6 + q5 − 6 q4 + 6 q3 − 5 q2 + 2 q − 1
q − 1

A2(q) =
q

(
q2 − q + 1

)2 (
q3 − 2 q2 + q − 1

) (
q4 − 2 q3 + 2 q2 − q + 1

)
(q − 1)2

A3(q) =− (q − 1) q5
(
q2 − q + 1

)2 (
q3 − 2 q2 + q − 1

)(
q4 − 2 q3 + 2 q2 − q + 1

)
Q(q) =

(
(−q2

(
q2 − q + 1

)2 (
q3 − 2 q2 + q − 1

) (
q4 − 2 q3 + 2 q2 − q + 1

)
,

−
q2

(
q2 − q + 1

)4 (
q3 − 2 q2 + q − 1

)2 (
q4 − 2 q3 + 2 q2 − q + 1

)
q − 1

)
.

(2)

The curve has discriminant degree 84 and conductor N = 3 · 7. All
of the correction terms for the generator R = P + 2Q of Z P + Z Q are
compiled in Table 4. Adding up the correction terms gives us a height
ĥ(R) = 1753/60600. This curve also has a very large number of integral
multiples. The point mR is integral for m ∈ [1, 9] ∪ {12, 13, 15}.

4. Proof of Theorem

Our proof of Theorem 1.1 uses two main ingredients. The first is apply-
ing linear programming to find asymptotic lower bounds for the canonical
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height. The second is searching through combinatorial configurations of
fibers and sections that could correspond to an elliptic surface.

4.1. Hindry–Silverman. In [5], Hindry–Silverman prove Lang’s conjec-
ture for elliptic curves over function fields. Their basic approach in approx-
imating ĥ(P ) is:

1. Replace P by 12P so that P meets the identity component of any
additive fiber.

2. Carefully choose coefficients cm so that

(3)
∑

cmĥ(mP ) � (12n).

Since
∑

cmĥ(mP ) = (
∑

m2cm)ĥ(P ), they are able to obtain an explicit
constant C ≈ 7× 10−10.

4.2. Elkies’ approach. One may use the following to greatly improve the
constant obtained by Hindry–Silverman [4]:

1. In order to find lower bounds for the canonical height, it is only nec-
essary to search through configurations consisting entirely of fibers
of type Iν . This eliminates a factor of 122 = 144 in the denominator
of the lower bound.

2. Any choice of cm’s inside a particular polytope ensures that (3) holds.
Thus one may minimize the linear form

∑
m2cm on this polytope

to obtain a better bound.
The feasible region for Elkies’ linear program depends on the Szpiro ratio

σ. One always has σ ≤ 6, and setting σ = 6 yields

C = 39086299807/99005116318560 ≈ 1/25330.

If E has a small section, however, one expects (heuristically) that σ ≤ 4:

4.3. Heuristic improvement of σ. One can improve the upper bound on
σ via the following parameter counting argument. Let E be an elliptic curve
over C(t) of discriminant degree 12n, with minimal Weierstrass equation:

y2 = x3 + a4(t)x + a6(t).

Semistability is equivalent to a4(t) and a6(t) being coprime polynomials of
degrees ≤ 4n and ≤ 6n, respectively. The discriminant ∆(t) is given by

∆(t) = a4(t)3 − 27a6(t)2.

By changing coordinates on the base P1, we may assume that E has good
reduction at ∞, and hence ∆(t) is polynomial of degree 12n. The polyno-
mials a4(t) and a6(t) vary in an affine space A10n+2 of dimension 10n + 2.
After accounting for the four dimensions of symmetry given by rescaling
(a4, a6) 7→ (u4a4, u

6a6) and the action of PGL(2) on the base P1, one sees
that the space of E of discriminant degree 12n is parametrized by an open
subset of A10n−2.
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Consider the space of (E,P ), where E has d = 12n and P = (X(t), Y (t))
where X(t) and Y (t) are coprime polynomials of degree 2n and 3n. This is
an affine space of dimension 10n − 2 + 5n + 2 = 15n. The condition that
P is a rational point on E amounts to the 6n + 1 equations given by the
Weierstrass equation. This determines a subvariety of dimension 9n − 1.
The polynomial ∆(t), which depends on 9n− 1 parameters, has generically
12n disctinct roots and therefore σ = 1. However, imposing conditions
that collapse roots, one may descend to 3n + 1 = 12n − (9n − 1) distinct
roots. Therefore we obtain the heuristic inequaltiy σ ≤ 12n/(3n + 1) < 4.
Examples with 3n roots, which give σ = 4, are unlikely. Those with 3n− 1
roots, which give σ > 4, are even worse.

Bounding σ ≤ 4 increases the feasible region of the linear program, and
yields the conjectural value of C = 3071/10810800.

4.4. More linear programming. We modify the linear program to com-
pute lower bounds useful to us. The record height of 2987/120120 = .02486...
is smaller than (12n)3071/10810800 for n > 7. Thus if (E,P ) has Szpiro
ratio σ ≤ 4 and n > 7, the canonical height ĥ(P ) is larger than our new
record.

For n = 1, . . . , 5, one can search through possible configurations of fibers
and sections corresponding to elliptic curves. Restricting to σ ≤ 4 puts
enough constraints on the fibration that there is no (E,P ) with

ĥ(P ) < 2987/120120.

For n = 1, 2, 3 the minimum heights are known (see Oguiso–Shioda [9],
Shioda [10], Nishiyama [8], Elkies [3]), and for n = 4, 5 they are known for
curves with σ ≤ 4 (Elkies [3]).

For n = 7, the lower bound for the canonical height on curves with σ ≤ 4
is (12n)3071/1081080 = .02386..., which is slightly smaller than our record
height. We consider σ ≤ (12 · 7)/(3 · 7 + 1) = 42/11, which is the largest
possible value of the Szpiro ratio that is less than 4 in the case that n = 7.
This further shrinks the feasible of the linear program. Solving the linear
program and computing a lower bound with this restriction on σ, we obtain
84 · Cσ = 10561/360360 = .02930..., which is larger than our record height.

Similary in the case that n = 6 we compute a lower bound with the
restriction that σ ≤ (12 · 6/3 · 6 + 1) = 72/19. We obtain the lower bound
72 · Cσ = 46663/1801800 = .02589..., which is again larger than our record
height.

Thus we are left to consider the case that σ = 4, and n = 6 or n = 7.

4.5. Combinatorial search. For n = 6 and n = 7, we search through con-
figurations of fibers and sections, restricting to σ = 4. We use the conditions
explained in [3] and [7] to eliminate unattainable configurations. For n = 7,
we find no configurations that could yield an (E,P ) with ĥ(P ) smaller than
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our record. For n = 6, however, we find one configuration:

(4) [1/11]+[4/9]+[3/8]+[1/7]+[2/7]+2[1/5]+[1/4]+2[1/3]+2[1/2]+6[0].

Here [a/ν] denotes a fiber of type Iν with the section meeting the ath
component. This configuration, if realized by an elliptic curve (E,P ) over
C(t), would have ĥ(P ) = 683/27720 = 0.02463... < 2987/120120 = .02486....
In addition, it would have mP integral for m ∈ [1, 11]. We show that this
configuration cannot be attained.

4.6. Integral points. Elkies, in [2], parametrizes the moduli space of el-
liptic curves (E,P ) with P, . . . , 8P integral by P1 × P1:

A1 = Au5 +
(
2A2 + 3A− 2

)
u4 + (−4A− 8) u3

+
(
−A2 − 10A− 10

)
u2 +

(
−4A2 − 10A− 6

)
u

+
(
−A2 − 2A− 1

)
A2 = u(u + 1)(u + A + 1)(Au−A− 1)(Au2 + u2 + u + A + 1)

· (Au3 −Au2 − 2u2 −Au− 2u−A− 1)

A3 = u(u + 1)3(u + A + 1)2(Au−A− 1)(Au−A− 1)

· (Au2 + u2 + u + A + 1)(Au2 −Au− 2u−A− 1)

· (Au3 −Au2 − 2u2 −Au− 2u−A− 1).

Here A1, A2 and A3 are the nonzero Weierstrass coefficients of E : y2 +
A1xy + A3y = x3 + A2x

2, and P = (0 , 0). The coordinates A, u are the
affine coordinates on the two copies of P1.

We consider the discriminant locus of E in P1×P1:

u10 (u + 1)7 (A + u + 1)5 (uA−A− 1)7
(
u2 A + A + u2 + u + 1

)4 ·(
u3 A− u2 A− u A−A− 2 u2 − 2 u− 1

)3 (
u2 A− u A−A− 2 u− 1

)2 ·(
11 u3 A3 − u2 A3 − 3 u A3 + A3 + 9 u4 A2 + 18 u3 A2 − 9 u2 A2 − 4u A2

+2A2 − u5 A + 5 u4 A + 6 u3 A− 8 u2 A− u A + A + 2 u4 + 2 u3 − u2
)
.

(5)

If the configuration (4) were to correspond to an elliptic curve over P1 of
discriminant degree 72, we would be able to locate this curve as a (1, 1)-curve
l in the P1×P1 above.

We compute the slope of the line through 4P and 5P , and find it is equal
to f(u) − (u4 + u3)/(A + 1) for some polynomial f(u). In order for 9P
to be integral, the slope of this line must be integral, which happens when
the curve l goes through (A, u) = (−1,−1) or (0,−1). However l cannot
go through (0,−1), for at this point the I10 fiber along u = 0 merges with
the I5 fiber along A + u + 1 = 0 to form a I15 fiber. Similarly for 10P to
be integral, l must go through (−1/2,−1). This implies that l is in fact a
(1, 0)-curve.
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Finally, we see from the factorization of the discriminant in (5) that the
fiber of type [1/11] in the configuration would have to occur somewhere along
the line u = 0. The only other component of the discriminant locus that
u = 0 meets to order 1 is the sextic factor in (5), and only at A = 1. This
forces our (1, 0)-curve through (1, 0), which is impossible. This completes
the proof of the Theorem.

5. Further directions

5.1. Base curves of higher genus. Fixing the genus of a base curve C,
there is a minimum canonical height for elliptic curves E/ C(C). One may
attempt to use techniques similar to those of this paper to produce elliptic
curves over higher genus curves with points of low height. For example, one
could look for points of naive height 8 in a family of elliptic surfaces similar
the one in Section 2.1. Applying the technique in Section 2.3 to such a family
would yield an elliptic surface fibred over a hyperelliptic curve of genus 2
with several integral multiples of a nontorsion section, and potentially a
point of small canonical height. It would be interesting to explore how
small the canonical height could be over higher genus base curves.

5.2. A uniform bound for any genus? It is interesting to ask whether
or not there is a minimum canonical height if one allows the genus of the base
curve to vary. Given a curve (E,P ) defined over C(t), a first thought might
be to take the curve (E, 1

N P ) defined over C(t, 1
N P ), which is isomorphic

to C(C) for some curve C. However it is not the case that ĥ( 1
N P ) equals

N−2ĥ(P ): In general this basechange has degree N2 which eliminates the
factor of N2 in the denominator. In the number field setting, one typically
uses the absolute canonical height, so that ĥ( 1

N P ) does equal N−2ĥ(P ). In
the function field setting we use the height relative to the field K = C(C).

For example, let E1 be an elliptic curve over C, let E be the constant
curve E1 × E1, and let P be the section coming from the identity map of
E1. Then P has height (both canonical and naive) equal 2. To define 1

N P ,
one needs a base change to a curve EN with deg(EN/E1) ≥ N2. In the case
of equality EN is E1 itself but the map EN → E1 is multiplication by N .
Then 1

N P is again the identity map, and thus again of height 2.
In fact a uniform version of Lehmer’s conjecture over function fields asserts

that for an elliptic curve E/k(C), there is an absolute lower bound for ĥ(P )
for nontorsion points in E(k(C ′)) for finite covers C ′ → C. Over number
fields, Lehmer’s conjecture says that [K : Q]ĥ(P ) is bounded below. Hence
the above question, even for a single elliptic curve, is not known to be true.

5.3. Higher rank. In [7] we computed minimal discriminants for rank 2
sublattices of E/ C(t) of discriminant degree 12 and 24 (rational or K3 el-
liptic surfaces). In [6], we compute nontrivial asymptotic lower bounds for
rank 2 sublattices of any E/ C(t), and conjectured the best possible bound
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12n C. It would be interesting to find examples of elliptic curves E/ C(t)
with rank 2 sublattices whose volume is very close to the conjectural bound.
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