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New binary and ternary digit extraction
(BBP-type) formulas for trilogarithm

constants

Kunle Adegoke

Abstract. Not many degree-3 digit extraction (BBP-type) formulas
are proved in literature. In this paper we present two binary and one
ternary new digit extraction formulas, together with their proofs, for
trilogarithm constants.
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1. Introduction

The discovery and study of digit extraction formulas, especially BBP-
type formulas, for mathematical constants have continued to receive much
attention.

Apart from digit extraction, another reason the study of BBP-type for-
mulas has continued to attract attention is that BBP-type constants are
conjectured to be either rational or normal to base b [5, 7, 10, 3], that is
their base-b digits are randomly distributed.

David Bailey maintains a Compendium of BBP-type formulas for Mathe-
matical constants on his website [3]. A nice collection of such formulas may
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also be found in MathWorld [14] while there is a nice article on the subject
in Wikipedia [15].

Experimentally, BBP-type formulas are usually discovered through com-
puter searches, especially by using Bailey and Ferguson’s PSLQ (Partial
Sum of Least Squares) algorithm [11] or its variations. A downside is that
PSLQ and other integer relation finding schemes typically do not suggest
proofs [7, 4]. Formal proofs must be sought after the discovery of the for-
mulas. There have been attempts in the past to give general formulas which
include the proofs [6, 8, 9, 1, 5, 2, 12].

In the Compendium, only one degree 3 BBP-type formula is listed as
having been proved, with the remaining formulas waiting to be proved. In
this paper we give two identities which generate some degree 3 BBP-type
formulas.

2. Generators of degree 3 BBP-type formulas

The trilogarithm function of the complex argument z, for |z| < 1, is
defined by

Li3(z) =
∞∑

k=1

zk

k3
.

Choosing z = p exp ix, x, p real and |p| < 1, the real and imaginary parts of
the trilogarithm function can be expressed as

(1) Re Li3(peix) =
∞∑

k=1

pk cos(kx)
k3

and

(2) Im Li3(peix) =
∞∑

k=1

pk sin(kx)
k3

.

Setting p = sin θ and x = θ − π/2, Equation (1) can be written

(3) Re Li3
[
sin θei(θ−π/2)

]
=

∞∑
k=1

sink θ cos [k(θ − π/2)]
k3

.

The left hand side of Equation (3) can be evaluated (see reference [13]),
giving

Re Li3
[
sin θei(θ−π/2)

]
=

7
16

ζ(3) +
1
8
Li3(sin2 θ) +

1
2
θ2 ln sin θ(4)

− 1
4
Cl3(2θ) +

1
4
Cl3(π − 2θ),

where Cl3 is a generalized Clausen integral defined by

Cl3(y) = ζ(3)−
∫ y

0
Cl2(x)dx



NEW BINARY AND TERNARY DIGIT EXTRACTION FORMULAS 363

with ζ the Riemann Zeta function and Cl2 the Clausen integral defined by

Cl2(y) = −
∫ y

0
ln |2 sin(x/2)|dx.

Combining Equation (3) and Equation (4), we obtain the following gen-
erator of degree 3 BBP-type formulas:

(5)
7
16

ζ(3) +
1
8
Li3(sin2 θ) +

1
2
θ2 ln sin θ − 1

4
Cl3(2θ) +

1
4
Cl3(π − 2θ)

=
∞∑

k=1

sink θ cos [k(θ − π/2)]
k3

.

Explicit BBP-type formulas from Equation (5) will be discussed in Section 3.
Setting p = tan θ and x = π/2− 2θ Equation (1) can be written

(6) Re Li3
[
tan θei(π/2−2θ)

]
=

∞∑
k=1

tank θ cos [k(π/2− 2θ)]
k3

.

Again the left hand side of Equation (6) can be evaluated [13] thus

Re Li3
[
tan θei(π/2−2θ)

]
=

5
16

ζ(3) +
1
4
Li3(tan2 θ)− 1

8
Li3(− tan2 θ)(7)

+ θ2 ln tan θ +
1
4
Cl3(π − 4θ)− 1

8
Cl3(4θ).

Combining Equation (6) and Equation (7), we obtain yet another gener-
ator of degree 3 BBP-type formulas:

(8)
5
16

ζ(3) +
1
4
Li3(tan2 θ)− 1

8
Li3(− tan2 θ) + θ2 ln tan θ

+
1
4
Cl3(π − 4θ)− 1

8
Cl3(4θ) =

∞∑
k=1

tank θ cos [k(π/2− 2θ)]
k3

.

The explicit BBP-type formulas from Equation (8) will be discussed in Sec-
tion 4.

3. BBP-type formulas generated by Equation (5)

3.1. θ = π/4 in Equation (5). Plugging θ = π/4 in Equation (5) gives

(9)
1
48

ln3 2− 5π2

192
ln 2 +

35
64

ζ(3) =
∞∑

k=1

(
1√
2

)k cos(kπ/4)
k3

.
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By noting that

∞∑
k=1

(
1√
2

)k cos(kπ/4)
k3

(10)

=
1
16

∞∑
k=1

1
16k

[
8

(8k + 1)3
− 4

(8k + 3)3
− 4

(8k + 4)3

− 2
(8k + 5)3

+
1

(8k + 7)3
+

1
(8k + 8)3

]
,

and using this in Equation (9) we obtain the following binary BBP-type
formula:

1
3

ln3 2−5π2

12
ln 2 +

35
4

ζ(3)(11)

=
∞∑

k=0

1
16k

[
8

(8k + 1)3
− 4

(8k + 3)3
− 4

(8k + 4)3

− 2
(8k + 5)3

+
1

(8k + 7)3
+

1
(8k + 8)3

]
.

3.2. θ = π/6 in Equation (5). Inserting θ = π/6 in Equation (5) we
have

(12)
1
8
Li3

(
1
4

)
− π2

72
ln 2 +

35
144

ζ(3) =
∞∑

k=1

(
1
2

)k cos(kπ/3)
k3

.

In obtaining Equation (12) we used the known values [13] Cl3(π/3) =
ζ(3)/3 and Cl3(2π/3) = −4ζ(3)/9. By definition

Li3

(
1
4

)
=

∞∑
k=1

1
4k

1
k3

(13)

=
1
64

∞∑
k=0

1
64k

[
16

(3k + 1)3
+

4
(3k + 2)3

+
1

(3k + 3)3

]
.

We also note that
∞∑

k=1

(
1
2

)k cos(kπ/3)
k3

(14)

=
1
64

∞∑
k=0

1
64k

[
16

(6k + 1)3
− 8

(6k + 2)3
− 8

(6k + 3)3

− 2
(6k + 4)3

+
1

(6k + 5)3
+

1
(6k + 6)3

]
.
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Equation (13) and Equation (14) in Equation (12) yields the following
binary digit extraction formula:

35ζ(3)−2π2 ln 2

=
9
32

∞∑
k=0

1
64k

[
128

(6k + 1)3
− 64

(6k + 2)3
− 64

(6k + 3)3
− 16

(6k + 4)3

+
8

(6k + 5)3
+

8
(6k + 6)3

− 16
(3k + 1)3

− 4
(3k + 2)3

− 1
(3k + 3)3

]
.

The above can be put in the standard BBP-type form:

35ζ(3)−2π2 ln 2(15)

=
9
4

∞∑
k=0

1
64k

[
16

(6k + 1)3
− 24

(6k + 2)3
− 8

(6k + 3)3

− 6
(6k + 4)3

+
1

(6k + 5)3

]
.

4. BBP-type formula generated by Equation (8)

4.1. θ = π/6 in Equation (8). Putting θ = π/6 in Equation (8), we
have

(16)
13
18

ζ(3) +
ln3 3
48

− 5π2

144
ln 3 =

∞∑
k=1

(
1√
3

)k cos(kπ/6)
k3

.

In obtaining Equation (16), we made use of the identity [12]

Li3

(
1
3

)
− 1

2
Li3

(
−1

3

)
=

13ζ(3)− π2 ln 3 + ln3 3
12

.

We also used the known values [13]

Cl3(π/3) = ζ(3)/3 and Cl3(2π/3) = −4ζ(3)/9.

By noting that
∞∑

k=1

(
1√
3

)k cos(kπ/6)
k3

(17)

=
1

1458

∑
k=0

1
729k

[
729

(12k + 1)3
+

243
(12k + 2)3

− 81
(12k + 4)3

− 81
(12k + 5)3

− 54
(12k + 6)3

− 27
(12k + 7)3

− 9
(12k + 8)3

+
3

(12k + 10)3
+

3
(12k + 11)3

+
2

(12k + 12)3

]
.
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and using this in Equation (16) we obtain the following ternary (base 3)
BBP-type formula

13
9

ζ(3) +
ln3 3
24

− 5π2 ln 3
72

(18)

=
1

729

∑
k=0

1
729k

[
729

(12k + 1)3
+

243
(12k + 2)3

− 81
(12k + 4)3

− 81
(12k + 5)3

− 54
(12k + 6)3

− 27
(12k + 7)3

− 9
(12k + 8)3

+
3

(12k + 10)3
+

3
(12k + 11)3

+
2

(12k + 12)3

]
.

5. Conclusion

Using straightforward, elementary techniques and without doing any com-
puter searches, we have proved three digit extraction formulas for triloga-
rithm constants.
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