
New York Journal of Mathematics
New York J. Math. 15 (2009) 169–198.

Representations of higher rank graph
algebras

Kenneth R. Davidson and Dilian Yang

Abstract. Let F
+
θ be a k-graph on a single vertex. We show that every

irreducible atomic ∗-representation is the minimal ∗-dilation of a group
construction representation. It follows that every atomic representation
decomposes as a direct sum or integral of such representations. We
characterize periodicity of F

+
θ and identify a symmetry subgroup Hθ

of Z
k. If this has rank s, then C∗(F+

θ ) ∼= C(Ts) ⊗ A for some simple
C*-algebra A.
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1. Introduction

There has been a lot of recent interest in the structure of operator algebras
associated to graphs (see [16]). Kumjian and Pask [11] have introduced the
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notion of higher rank graphs, which have a much more involved combina-
torial structure. The C*-algebras of higher rank graphs are widely studied
[6, 7, 12, 13, 17, 18, 19, 20]. Kribs and Power [10] initiated the study of
the associated nonself-adjoint algebras. Power [15] began a detailed study
of these operator algebras associated to higher rank graphs with a single
vertex. This effort was continued with the authors of this paper [2, 3, 4]
with a detailed analysis of rank 2 graphs on a single vertex. Two important
accomplishments there were a complete structure theory for the atomic ∗-
representations of the 2-graph, and a characterization of periodicity leading
to the structure of the 2-graph C*-algebra in the periodic case.

The purpose of this paper is to extend those results to the case of k-graphs
on a single vertex. These objects form an interesting class of semigroups with
cancellation and unique factorization. The combinatorial structure of a k-
graph F

+
θ is much more difficult to classify for k ≥ 3, but we do show that

there are lots of examples.
The goal is to describe the structure of the associated C*-algebra C∗(F+

θ ).
It was shown by Kumjian and Pask [11] that this C*-algebra is simple when
the k-graph satisfies an aperiodicity condition, and the converse was estab-
lished by Robertson and Sims [19]. When this condition fails and k = 2,
we established in [4] the more detailed structure that C∗(F+

θ ) � C(T) ⊗ A
where A is a simple C*-algebra. When k ≥ 3, there is a symmetry group
isomorphic to Z

s for some integer s ≤ k. We show that C∗(F+
θ ) � C(Ts)⊗A,

where A is again a simple C*-algebra.
The first main result concerns atomic ∗-representations. The ∗-represen-

tations of F
+
θ are the row isometric representations which are defect free (see

the next section for definitions). These are the representations of the semi-
group which yield ∗-representations of the associated C*-algebra C∗(F+

θ ).
An important class of such representations (atomic representations) have
the additional property that there is an orthonormal basis which is per-
muted, up to scalars of modulus 1, by the isometries which are the images
of elements of F

+
θ .

The analysis of these representations relies on dilation theory. Every
defect free, row contractive representation dilates to a unique minimal ∗-
dilation [3, 20]. So one can understand a ∗-representation by understanding
its restriction to a coinvariant cyclic subspace. The key to our analysis is
to show that there is a natural family of atomic defect free representations
modelled on the representations of an abelian group of rank k. In the rank
2 case [2], a detailed case by case analysis led to the conclusion that every
irreducible atomic ∗-representation is the dilation of one of these group con-
structions. In this paper, we provide a direct argument that avoids the case
by case approach. So it sheds new light even when k = 2.

Every k-graph F
+
θ has a faithful ∗-representation of inductive type, i.e., an

inductive limit of copies of the left regular representation of F
+
θ . This repre-

sentation has a natural symmetry group Hθ ≤ Z
k. The graph is aperiodic if
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and only if Hθ = {0}. In general, this is a free group of rank s ≤ k. Build-
ing on the detailed structure of periodic 2-graphs in [4], we show that the
centre of C∗(F+

θ ) is isomorphic to C(Ts). This leads to our decomposition
of C∗(F+

θ ) as a tensor product C∗(F+
θ ) ∼= C(Ts) ⊗ A.

2. Background

Kumjian and Pask [11] define a k-graph as a small category Λ with a
degree map deg : Λ → N

k satisfying the factorization property: for every
λ ∈ Λ and m,n ∈ N

k with deg(λ) = m + n, there are unique elements
μ, ν ∈ Λ such that λ = μν and deg(μ) = m and deg(ν) = n. It is perhaps
more convenient to consider Λ as a directed graph in which the vertices have
degree 0 and the edges are graded by their (nonzero) degree, which takes
values in N

k, and satisfy the unique factorization property above.
We are restricting our attention in this paper to k-graphs on a single

vertex. In this case, every path has the same source and range vertex, and
hence any two paths can be composed. So in this case, the k-graph is a
semigroup. The unique factorization property implies that the semigroup
has cancellation.

Let εi for 1 ≤ i ≤ k be the standard generators for Z
k. The generators

of F
+
θ are the paths of degree εi, for 1 ≤ i ≤ k. Let mi denote the number

of edges of degree εi, which we label eis for s ∈ mi = {1, 2, . . . ,mi}. There
are no commutation relations amongst the set {ei1, . . . , eimi

}. However the
factorization property implies that each product eise

j
t also factors as ejt′e

i
s′ for

some pair of edges. The uniqueness of the factorization implies that there
is a permutation θij in Smi×mj so that

eise
j
t = ejt′e

i
s′ where θij(s, t) = (s′, t′).

The family θ = {θij : 1 ≤ i < j ≤ k} determines the k-graph F
+
θ , which is

the semigroup generated by {eis : 1 ≤ i ≤ k, 1 ≤ s ≤ mi} subject to these
relations. The degree map sends a word w ∈ F

+
θ to deg(w) ∈ N

k
0 which

counts the number of terms from each family {ei1, . . . , eimi
}.

Unfortunately, not every family of permutations θ yields a k-graph. There
are evidently issues about associativity of the product and uniqueness of the
factorization. For k = 2, every permutation yields a 2-graph; but this is not
true for k ≥ 3. See, for example, [7, 17]. Fowler and Sims [7] showed that
for k ≥ 3, θ determines a k-graph if and only if every three sets of generators
satisfy the following cubic condition showing that a word of degree (1, 1, 1)
is well-defined. You should interpret the following identities by noting that
each equality follows from a series of three uses of the commutation relations
to reverse the order of the three terms. There are two orders in which this
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can be accomplished, and the end result must be the same.

eit1e
j
t2e

k
t3 = eit1e

k
t′3
ejt′2

= ekt′′3
eit′1
ejt′2

= ekt′′3
ejt′′2
eit′′1

eit1e
j
t2
ekt3 = ejt2′ e

i
t1′ e

k
t3 = ejt2′ e

k
t3′ e

i
t1′′ = ekt3′′ e

j
t2′′
eit1′′

implies eit′′1
= eit1′′ , e

j
t′′2

= ejt2′′ and ekt′′3 = ekt3′′ .

Hence, for k ≥ 3, F
+
θ is a k-graph if and only if the restriction of F

+
θ to every

triple family of edges {eis, ejt , eku} is a 3-graph.
We can consider each permutation θij as a permutation of

∏k
i=1 mi which

fixes the coordinates except for i, j, on which it acts as θij. With this abuse
of notation, one can rephrase the cubic condition as:

θijθikθjk = θjkθikθij for all 1 ≤ i < j < k ≤ k.

This will facilitate calculations.
We provide a few examples.

Example 2.1. Power [15] showed that there are nine 2-graphs with m1 =
m2 = 2 up to isomorphism. In [4], we showed that only two of these
are periodic (defined in the next section). These are the flip algebra in
which θ(s, t) = (t, s) and the square algebra given by the permutation(
(1, 1), (1, 2), (2, 2), (2, 1)

)
.

A more typical example of a 2-graph is the forward 3-cycle semigroup
given by the permutation

(
(1, 1), (1, 2), (2, 1)

)
. Curiously, the reverse 3-

cycle semigroup arising from the 3-cycle
(
(1, 1), (2, 1), (1, 2)

)
yields a 2-graph

which is not isomorphic to the forward 3-cycle semigroup.

Example 2.2. Let mi = n for all 1 ≤ i ≤ k and θij be the transposition
θij(s, t) = (t, s). Equivalently, this means that eise

j
t = ejse

i
t for all i, j and all

s, t. It is readily calculated that

θijθikθjk(s, t, u) = (u, t, s) = θjkθikθij(s, t, u).

Thus this is a k-graph.

Example 2.3. Letm1 = m2 = m3 = 2. Let θ13 = θ23 be the forward 3-cycle(
(1, 1), (1, 2), (2, 1)

)
and let θ12 be the flip. Observe that θ13(s, t) = (t, s + t)

where addition is calculated in Z/2Z. Thus θ yields a 3-graph because

θ12θ13θ23(s, t, u) = (u, t + u, s + t + u) = θ23θ13θ12(s, t, u).

Example 2.4. Let m1 = m2 = m3 = 2. Let θ13 = θ23 be the square algebra
which can be written θ13(s, t) = (t, s + 1), and let θ12 be the flip. Then θ
determines a 3-graph since

θ12θ13θ23(s, t, u) = (u, t + 1, s + 1) = θ23θ13θ12(s, t, u).



Higher rank graph algebras 173

2.5. Representations. Now consider the representations of F
+
θ , by which

we mean a homomorphism of F
+
θ into B(H) for some Hilbert space H. A

(partially) isometric representation of F
+
θ is a semigroup homomorphism

σ : F
+
θ → B(H) whose range consists of (partial) isometries on H.

Call σ row contractive if the operator [σ(ei1) · · · σ(eimi
)], considered as an

operator from H(mi) to H, is a contraction for 1 ≤ i ≤ k. Likewise σ
is row isometric if these row operators are isometries. A row contractive
representation is defect free if

mi∑
s=1

σ(eis)σ(eis)
∗ = I for all 1 ≤ i ≤ k.

A row isometric defect free representation is a ∗-representation of F
+
θ .

The row isometric condition is equivalent to saying that the σ(eis)’s are
isometries with pairwise orthogonal range for each 1 ≤ i ≤ k. If σ is row
isometric and defect free, then the sum of these ranges is the whole space.

The most basic example of an isometric representation of F
+
θ is the left

regular representation λ. This is defined on �2(F+
θ ) with orthonormal basis

{ξw : w ∈ F
+
θ } given by λ(v)ξw = ξvw. Each λ(eis) is an isometry. Because

the factorization of an element in F
+
θ can begin with a unique element of

{ei1, . . . , eimi
} if it has any of these elements as factors, it is clear that the

ranges of λ(eis) are pairwise orthogonal for 1 ≤ s ≤ mi. Hence this is a row
isometric representation. However it is also evident that it is not defect free
since the range of each σ(eis) is orthogonal to ξw if w is any path containing
none of the edges eis, such as the empty path, or a path only in the other
generators ejt for j 
= i.

One forms a ∗-algebra A generated by F
+
θ subject to the relations implicit

in ∗-representations that each eis is an isometry, i.e., ei∗s eis = 1, and the defect
free condition

∑mi
s=1 e

i
se
i∗
s = 1 for 1 ≤ i ≤ k. It is an easy exercise to see that

A is the span of words of the form uv∗ for u, v ∈ F
+
θ . This follows from the

identity

ei∗s e
j
t = ei∗s e

j
t

mi∑
r=1

eire
i∗
r =

mi∑
r=1

ei∗s e
i
r′e

j
tre

i∗
r =

mi∑
r=1

δsr′e
j
tre

i∗
r .

Every ∗-representation π of F
+
θ extends to a representation of A.

The k-graph C*-algebra C∗(F+
θ ) is the universal C*-algebra for ∗-repre-

sentations of F
+
θ . This is the completion of A with respect to the norm

‖A‖ = sup{‖π(A)‖ : π is a ∗-representation}.

This is the C*-algebra generated by F
+
θ with the universal property that ev-

ery ∗-representation of F
+
θ extends uniquely to a ∗-representation of C∗(F+

θ ).
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The universal property of C∗(F+
θ ) yields a family of gauge automorphisms.

For any character ϕ in the dual group Ẑk ∼= T
k of Z

k, consider the repre-
sentation γϕ(w) = ϕ(deg(w))w. This is evidently an automorphism of TF

+
θ .

So by the universal property of C∗(F+
θ ), it extends to a ∗-automorphism of

C∗(F+
θ ), which we also denote γϕ.

Integration over the T
k yields a faithful expectation

Φ(X) =
∫

Tk

γϕ(X) dϕ.

Checking this map on words uv∗, one readily sees that Φ(uv∗) = δk0uv
∗

where k = deg(uv∗) := deg(u) − deg(v). Therefore

F := Ran Φ = span{uv∗ : deg(uv∗) = 0}.
Kumjian and Pask [11] show that this is an AF-algebra. In our case of a
single vertex, it is the UHF algebra for the supernatural number

∏k
i=1m

∞
i .

In particular, it is simple.

2.6. Dilations. Dilation theory is generally in the realm of nonself-adjoint
operator algebras, not C*-algebras. However there is a natural operator
algebra Aθ associated to F

+
θ generated by the left regular representation

λ(F+
θ ) as a subalgebra of B(�2(F+

θ )) that plays a critical role here. The
reason is that it naturally generates C∗(F+

θ ) and this C*-algebra is the C*-
envelope of Aθ, so that the maximal representations of Aθ are precisely
the ∗-representations of C∗(F+

θ ), which in turn are associated to the defect
free row isometric representations of F

+
θ . The advantage of working in this

context is that one can show that defect free representations of F
+
θ extend to

representations of Aθ. In turn, these representations have a unique minimal
dilation to a representation which extends to a ∗-representation of C∗(F+

θ ).
As we shall show, this allows us to examine the structure of ∗-representations
by focussing on a smaller much more tractable representation of F

+
θ . We

briefly review the relevant ideas of dilation theory required in this context.
If σ is a representation of an operator algebra A on a Hilbert space H, we

say that a representation ρ on a Hilbert space K containing H is a dilation
of σ if σ(a) = PHρ(a)|H for all a ∈ A. This implies that H is semiinvariant,
i.e., H = M1 � M2 for two invariant subspaces M2 ⊂ M1. Arveson’s
dilation theory [1], extended by Hamana [8], shows that A sits in a canonical
C*-algebra known as its C*-envelope, C∗

env(A). This is determined by the
universal property that whenever j : A → B(H) is a completely isometric
isomorphism, there is a unique ∗-homomorphism of C∗(j(A)) onto C∗

env(A)
which extends j−1.

A recent proof of Hamana’s Theorem by Dritschel and McCullough [5]
shows that every completely contractive representation ρ of A dilates to a
maximal dilation σ, in the sense that any further dilation τ of σ always has
the form τ � σ ⊕ π for another representation π. Moreover, these maximal
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representations of A are precisely those representations which extend to a
∗-representation of C∗

env(A).
The operator algebra that figures here is the nonself-adjoint unital op-

erator algebra Aθ defined above. There is no simple criterion on a repre-
sentation of F

+
θ which is equivalent to it having a completely contractive

extension to Aθ. A necessary condition is that the representation be row
contractive because∥∥[

σ(ei1) . . . σ(eimi
)
]∥∥ ≤ ∥∥[

λ(ei1) . . . λ(eimi
)
]∥∥ = 1.

However it was shown in [3] that this is a strictly weaker condition than
being completely contractive even for 2-graphs on one vertex.

Two results provide the information that we need, and they are both valid
for arbitrary k-graphs, not just the single vertex case. The first is a result of
Katsoulis and Kribs [9] on the C*-envelope of higher rank graph algebras.

Theorem 2.7 (Katsoulis–Kribs). The C*-envelope of Aθ is C∗(F+
θ ).

This implies that every completely contractive representation of Aθ dilates
to a ∗-representation of C∗(F+

θ ), and hence to a ∗-representation of F
+
θ .

In [3], we established a dilation theorem for a class of doubly generated
operator algebras which includes the 2-graphs on one vertex. We showed,
in particular, that every defect free representation dilates to a ∗-repre-
sentation; and consequently, they yields completely contractive represen-
tations of Aθ. Using the Poisson transform defined by Popescu in [14],
Skalski and Zacharias [20] studied the dilation theory of higher rank graphs
in a very general context. In particular, their results include the following
dilation theorem which is valid for all k.

Theorem 2.8 (Skalski–Zacharias). Every defect free, row contractive rep-
resentation of F

+
θ has a unique minimal ∗-dilation.

Consequently, every defect free representation of F
+
θ extends to a com-

pletely contractive representation of Aθ.
The algebra Aθ will not play a direct role in the current paper, which is

focussed on ∗-representations and the structure of C∗(F+
θ ). However, it lurks

in the background because we use dilation theory to simplify the analysis of
the representations.

3. Atomic representations

Atomic representations of 2-graphs are comprehensively studied in [2].
They provide a very interesting class of representations, and play an impor-
tant role in the study of 2-graphs. We now introduce such representations
of k-graphs.

Definition 3.1. A partially isometric representation is atomic if there is an
orthonormal basis which is permuted, up to scalars, by each partial isometry.
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That is, σ is atomic if there is an orthonormal basis {ξk : k ≥ 1} so that for
each w ∈ F

+
θ , σ(w)ξk = αξl for some l and some α ∈ T ∪ {0}.

As in [2], we refer to the atomic partially isometric representations in this
paper simply as atomic representations, and likewise we refer to the row
contractive defect free atomic representations simply as defect free atomic
representations.

Every atomic representation determines a graph with the standard basis
vectors representing the vertices, and the partial isometries σ(eis) determin-
ing directed edges: when σ(eis)ξa = ξb, we draw an edge from vertex a to
vertex b labelled eis. The graph is called connected if there is an undirected
path from each vertex to every other. This graph contains all information
about the representation except for the scalars of modulus one.

As in [3, Lemma 5.6], it is easy to see that the ∗-dilation of an atomic
defect free representation remains atomic. For the convenience of the reader,
we reproduce the proof here.

Lemma 3.2. If σ is an atomic defect free representation, with respect to
some basis of Hσ, with minimal ∗-dilation π, then this basis extends to a
basis for Hπ making π an atomic ∗-representation.

Proof. Let π be a minimal row isometric dilation of σ acting on K. Consider
the standard basis {ξk : k ≥ 1} for H with respect to which σ is atomic.
We claim that the set of subspaces {Cπ(x)ξk : k ≥ 1, x ∈ F

+
θ } forms an

orthonormal family of 1-dimensional subsets spanning K, with repetitions.
Indeed, H is coinvariant and cyclic; so these sets span K. It suffices to show
that any two such sets, say Cπ(x1)ξ1 and Cπ(x2)ξ2, either coincide or are
orthogonal.

Let d = deg(x1) ∨ deg(x2) ∈ N
k
0. Since σ is defect free, there are unique

basis vectors ζj and words yj with d(yj) = d − deg(xj) so that Cσ(yj)ζj =
Cξj. Thus using Cζj and the word xjyj, we may suppose that the two words
have the same degree. For convenience of notation, we suppose that this has
already been done.

Now two distinct words of the same degree have pairwise orthogonal
ranges. Thus if x1 
= x2, then Cπ(x1)ξ1 and Cπ(x2)ξ2 are orthogonal. On
the other hand, if x1 = x2, then if Cξ1 = Cξ2, the images are equal; while
if Cξ1 and Cξ2 are orthogonal, they remain orthogonal under the action of
the isometry π(x1). �

3.3. Inductive limit representations. In this subsection, we will define
a whole family of ∗-dilations of λ which are, in fact, inductive limits of λ.
They play a central role in what follows.

Arbitrarily choose an infinite tail τ of F
+
θ ; that is, an infinite word in the

generators which has infinitely many terms from each family {ei1, . . . , eimi
}.

Such an infinite word can be factored so that these terms occur in succession
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as
τ = e1t01 · · · ekt0k

e1t11 · · · ekt1k
· · · = τ0τ1τ2 . . .

where τs = e1ts1 · · · ektsk
for s ≥ 0. Let Fs = F := F

+
θ for s ≥ 0, viewed as

discrete sets on which the generators of F
+
θ act as injective maps by right

multiplication, namely, ρ(w)f = fw for all f ∈ F . Consider ρs = ρ(τs) as a
map from Fs into Fs+1. Define Fτ to be the injective limit set

Fτ = lim→ (Fs, ρs).
Also let ιs denote the injections of Fs into Fτ . Thus Fτ may be viewed as
the union of F0,F1, . . . with respect to these inclusions.

The left regular action λ of F
+
θ on itself induces corresponding maps on Fs

by λs(w)f = wf . Observe that ρsλs = λs+1ρs. The injective limit of these
actions is an action λτ of F

+
θ on Fτ . Let λτ also denote the corresponding

representation of F
+
θ on �2(Fτ ). That is, we let {ξf : f ∈ Fτ} denote the

orthonormal basis and set λτ (w)ξf = ξwf . It is easy to see that this provides
a defect free, isometric representation of F

+
θ ; i.e., it is a ∗-representation.

Let τ s = τ0τ1 . . . τs for s ≥ 0. We may consider an element w = ιs(v) as
w = vτ s∗. This makes sense in that ξw = λτ (v)λτ (τ s)∗ξι0(∅). In particular,
we have ξ∅ = ξι0(∅).

Since λτ is a ∗-dilation, it extends to a representation of C∗(F+
θ ) which

we also denote by λτ . This is always a faithful representation. This is the
analogue of [3, Theorem 3.6].

Theorem 3.4. For any infinite tail τ , the representation λτ is faithful on
C∗(F+

θ ).

Proof. Because of the gauge invariance uniqueness theorem, it suffices to
show that there are gauge automorphisms of C∗(λτ (F+

θ )). This is accom-
plished by conjugation by a diagonal unitary. Given a word w = vτ s∗ ∈ Fτ ,
define deg(w) = deg(v) − deg(τ s). It is clear that this is well-defined and
extends the degree map on F

+
θ . Given ϕ ∈ Ẑk, define Uϕ = diag

(
ϕ(deg(w))

)
with respect to the basis {ξw : w ∈ Fτ}. Then for u in F

+
θ and w = vτ s∗ in

Fτ ,
Uϕλτ (u)U∗

ϕξw = Uϕλτ (u)ϕ(deg(w))ξw

= Uϕϕ(deg(v) − deg(τ s))ξuw

= ϕ(deg(uv) − deg(τ s))ϕ(deg(v) − deg(τ s))ξuw
= ϕ(deg(u))λτ (u)ξw.

Hence Uϕλτ (u)U∗
ϕ = λτ (γϕ(u)). �

Because of the dilation theory, λτ is completely determined by any cyclic
coinvariant subspace H of �2(Fτ ) as the unique minimal ∗-dilation of this
compression. We will describe such a subspace which will be convenient.
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Observe that λτ (w)∗ξι0(∅) is nonzero if and only if w is an initial segment
of τ after appropriate factorization. That is, given n = (n1, . . . , nk) ∈ N

k
0,

one may factor τ in exactly one way so that τ = wnτ
′
n in which wn has degree

n. Let ζ−n := λτ (wn)∗ξι0(∅) for n ∈ N
k
0. In particular, ζ(−s,...,−s) = ξιs(∅).

Then
Hτ = span{ζn : n ∈ (−N0)k}

is evidently a cyclic subspace because it contains each ξιs(∅), and is coin-
variant by construction.

Note that beginning at any of the standard basis vectors ξw, there will be
some word v so that λτ (v)∗ξw is a basis vector ζn in Hτ . As the restriction
of λτ to the cyclic subspace generated by ζn is unitarily equivalent to λ, it
is easy to understand why the restriction of λτ to Hτ determines the whole
representation.

For each n ∈ −N
k
0, there are unique integers tin so that ζn is in the range of

λτ (eitin) for 1 ≤ i ≤ k; that is, λτ (eitin)ζn−εi = ζn. Set Σ(τ, n) = (t1n, . . . , t
k
n).

This determines the data set

Σ(τ) = {Σ(τ, n) : n ∈ −N
k
0}.

Definition 3.5. Two tails τ1 and τ2 are said to be tail equivalent if their
data sets eventually coincide; i.e., there is T ∈ −N

k
0 so that

Σ(τ1, n) = Σ(τ2, n) for all n ≤ T.

We say that τ1 and τ2 are p-shift tail equivalent for some p ∈ Z
k if there is

a T ∈ N
k
0 so that

Σ(τ1, n) = Σ(τ2, n+ p) for all n ≤ T.

Then τ1 and τ2 are shift tail equivalent if they are p-shift tail equivalent for
some p ∈ Z

k.

Clearly, if τ1 and τ2 are shift tail equivalent, then λτ1 and λτ2 are unitarily
equivalent.

We now introduce two important notions: the symmetry of τ and the
aperiodicity condition of F

+
θ .

Definition 3.6. A tail τ is said to be p-periodic if Σ(τ, n) = Σ(τ, n + p)
for all n ≤ 0 ∧−p; and eventually p-periodic if τ is p-shift tail equivalent to
itself. The symmetry group of τ is the subgroup of Z

k

Hτ = {p ∈ Z
k : τ is eventually p-periodic}.

The symmetry group of F
+
θ is defined by

Hθ := ∩τHτ

as τ runs over all possible infinite tails of F
+
θ .

A tail τ is called aperiodic if Hτ = {0}. The semigroup F
+
θ is aperiodic if

Hθ = {0}. Otherwise we say that F
+
θ is periodic.
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Clearly if there is an aperiodic infinite tail τ , then F
+
θ is aperiodic. The

following result shows that our definition coincides with the Kumjian–Pask
aperiodicity condition.

Proposition 3.7. F
+
θ has an infinite tail with Hτ = Hθ. In particular,

when F
+
θ is aperiodic, there is an aperiodic tail. More generally, we have

Hθ ∩ N
k
0 = {0}.

Proof. For each p in Z
k \ Hθ, there is a tail τ such that p 
∈ Hτ . Hence

there is some n ∈ −N
k
0 so that n + p ∈ −N

k
0 and Σ(τ, n) 
= Σ(τ, n + p).

Choose s so that 0 ≥ n, n + p ≥ (−s, . . . ,−s). Then the finite initial
segment wp = τ0 . . . τs of τ already exhibits the lack of p-symmetry. So any
infinite tail that contains wp infinitely often can never exhibit p-symmetry
for n ≤ T . Form a tail τ by stringing together the words wp, repeating each
one infinitely often. By construction, Hτ ⊂ Hθ. The other inclusion is true
by definition.

If p ∈ N
k
0 \ {0}, it is easy to write down a finite sequence without p-

symmetry. Splicing such words into τ as above shows thatHθ∩N
k
0 = {0}. �

4. A group construction

In this section, we describe a large family of defect free atomic represen-
tations with a very nice structure. By the dilation theorem, they encode a
family of atomic ∗-representations which are obtained as the unique minimal
∗-dilations. The main result is that every irreducible atomic ∗-representation
arises from this construction; and every atomic ∗-representation decomposes
as a direct integral of the irreducible ones.

Let G be a finitely generated abelian group with k designated generators
g1, . . . , gk. Suppose that functions are given

ti : G→ {1, . . . ,mi}, ti(g) =: tig, i = 1, . . . , k,

αi : G→ T, αi(g) =: αig, i = 1, . . . , k.

Consider a defect free atomic representation σ : F
+
θ → B(�2(G)) given by

σ(eit)ξg−gi = δt,tig α
i
g ξg for i = 1, . . . , k.

This ensures that ξg is in the range of σ(ei
tig

) for each 1 ≤ i ≤ k. In order
for σ to be a representation, the commutation relations must be satisfied,
namely

eitge
j
tg−gi

= ejtge
i
tg−gj

and αitgα
j
tg−gi

= αjtgα
i
tg−gj

for all g ∈ G and 1 ≤ i < j ≤ k. Such a representation will be called a group
construction representation.

Example 4.1. Actually defining such relations might not be so easy. How-
ever in the case of G = Z

k with the standard generators, we can obtain
all such representations from infinite tails. Indeed, we saw that an infinite
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tail τ gives rise to an inductive limit representation λτ . We then identified
a subspace Hτ with basis {ζn : n ∈ −N

k
0}. It is possible to continue this

‘forward’ to obtain a (noncanonical) representation modelled on the group
Z

k.
This may be accomplished by extending τ arbitrarily to a doubly infinite

word, say ω∗τ , where ω∗ is a tail in reverse order. This will specify how we
are allowed to move forward and stay within our subspace. If n ∈ −N

k, recall
that there is a unique word wn so that τ factors as τ = wnτ

′. Suppose that
m ∈ N

k
0. Then there is a unique word vm of degree m so that ω∗ = ω′∗vm.

Let ζn+m = λτ (vmwn)ζn. It is not difficult to verify that this is well-defined.
We identify K = span{ζm : m ∈ Z

k} with �2(Zk). It is easy to see that K
is a coinvariant subspace; and it is cyclic because Hτ is cyclic. Let σ be the
compression of λτ to this subspace. Then we have a representation of group
type with all constants αig = 1.

It turns out that the scalars αig are not difficult to control. It was shown
in [2, Theorem 5.1] that the representation is unitarily equivalent to another
group construction representation in which these constants are independent
of g ∈ G. The proof is essentially the same as the 2-graph case. So we state
it without proof.

For each group G, there is a canonical homomorphism κ of Z
k onto G

sending the standard generators εi to gi for 1 ≤ i ≤ k. Let K be the kernel
of κ, so that G ∼= Z

k/K.

Theorem 4.2. Let G = Z
k/K as above, and let σ be a group construction

representation. Then σ is unitarily equivalent to another group construction
representation with the same functions ti and constant functions αi.

In fact, as for 2-graphs, the constants determine a unique character ψ of
K. If a path in the graph is a loop returning to the vertex where it started,
then it determines a unique word in the generators and their adjoints whose
degree d belongs to K. The scalar multiple of the vertex vector obtained
by application of the partial isometry is ψ(d). The choice of the scalars αi

is determined by choosing an extension ϕ of ψ to a character on Z
k; and

they are given by αi = ϕ(εi). The character ϕ is determined by ψ and a
character χ of G; and the constants αi can be replaced by αiχ(gi). We will
not need this detailed information, so we refer the interested reader to the
proof in [2] in the 2-graph case.

There are two useful notions of symmetry for these group constructions.

Definition 4.3. A group construction representation σ of F
+
θ on �2(G) has

a full symmetry subgroup H ≤ G if H is the largest subgroup of G such that
tig+h = tig and αig+h = αig for all g ∈ G and h ∈ H and 1 ≤ i ≤ k.

We define the symmetry group Hσ ≤ G to be the largest subgroup H ≤ G
for which there is some T = (T1, . . . , Tk) ∈ Z

k such that tig+h = tig and
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αig+h = αig for all g ∈ G and h ∈ H and 1 ≤ i ≤ k with both g, g+h ∈ GT ={∑
nigi : ni ≤ Ti

}
.

We also will say that two group constructions σ and τ on �2(G) given
by functions sig, α

i
g and tig, β

i
g respectively are tail equivalent if tig = sig and

βig = αig for all g ∈ GT and 1 ≤ i ≤ k.

Note that the symmetry group Hσ is well-defined because an increasing
sequence of subgroups of a finitely generated abelian group G is eventually
constant.

The significance of tail equivalence is that two tail equivalent represen-
tations will have unitarily equivalent ∗-dilations. Indeed, by the Skalski–
Zacharias dilation theorem, each has a unique ∗-dilation. However, both
must coincide with the unique ∗-dilation of their common restriction to
�2(GT ).

We wish to show that these group constructions may be obtained by
dilating certain partial group constructions, preserving the symmetry. In
particular, we will show that a group construction σ with symmetry group
H is tail equivalent to one with full symmetry group H.

Theorem 4.4. Let G be an abelian group with generators g1, . . . , gk. Given
T = (T1, . . . , Tk) with Ti ∈ Z ∪ {∞}, let GT =

{ ∑
nigi : ni ≤ Ti

}
. Suppose

that σ is a representation of F
+
θ on �2(GT ) which is determined by functions

ti : GT → mi and αi : GT → T so that

σ(eit)ξg−gi = δt,tig α
i
g ξg for i = 1, . . . , k and g ∈ GT .

Then σ may be dilated to a group construction representation on �2(G).

Proof. Consider dilations to �2(GT ′) for T ′ ≥ T . Among these dilations,
select one which is maximal in the sense that it cannot be dilated to a
representation on a larger subset of this type. There is no loss of generality
in assuming that this set is GT itself. We will show that GT = G.

Indeed, otherwise there is some Ti <∞. By the Skalski–Zacharias dilation
theorem, there is a ∗-dilation σ̃ of σ on a Hilbert space H containing �2(GT ),
and by Lemma 3.2, this representation is atomic.

Assume first that every Ti < ∞. Set a =
∑k

i=1 Tigi; and arbitrarily pick
some i. Let T ′ = T + εi, so

GT ′ = GT + gi = GT ∪ (a+ gi +G0) = GT ∪̇ (a+ gi + S)

where S =
{∑

j �=i njgj : nj ≤ 0}. We will extend σ to �2(GT ′). To this end,
arbitrarily select pa ∈ mi. Identify ξa+gi with σ̃(eipa

)ξa in H; and set tia = pa
and αia = 1. For each s =

∑
j �=i njgj in S, a+ s ∈ GT and there is a unique

word w ∈ F
+
θ of degree (|n1|, . . . , |nk|) so that σ(w)ξa+s = αξa for some

α ∈ T. Factor eipa
w = w′eipa+s

. Then identify ξa+s+gi with σ̃(eipa+s
)ξa+s in

H; and set tia+s = pa+s and αia+s = 1.
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When nj 
= 0, we need to define t
j
a+s+gi

. Observe that a + s + gj ∈ GT .
If t

j
a+s = q, we can factor w = vejq. Now

σ(w)ξa+s = σ(v)αja+sξa+s+gj = αξa.

Factor eipa
v = v′eipa+s+gj

as before; and factor eipa+s+gj
ejq = ejq′e

i
p′ . Then we

have

v′ejq′e
i
p′ = v′eipa+s+gj

ejq = eipa
vejq = eipa

w = w′eipa+s
= v′ejq′e

i
pa+s

.

Therefore p′ = pa+s and

σ̃(ejq′)ξa+s+gi = σ̃(ejq′e
i
pa+s

)ξa+s = σ̃(eipa+s+gj
ejq)ξa+s

= σ̃(eipa+s+gj
)αja+sξa+s+gj = αja+sξa+s+gj+gi .

So we set t
j
a+s+gi

= q′ and αja+s+gi
= αja+s. It now follows that we have

defined a dilation of σ to �2(GT ′). This contradicts the maximality of GT .
Now consider the case in which Tj = ∞ for j ∈ J , for some subset

J ⊂ {1, . . . , k}. If GT 
= G, then there is some i with Ti < ∞. Let ak ∈ N
k
0

where aik = Ti when Ti <∞ and ajk = k when j ∈ J . Arguing as above, we
can construct a dilation σk to �2(Ak) where Ak = GT ∪̇ (a + gi + S). If we
look at the action of σk at ξal

for 0 ≤ l ≤ k, then one sees that the value
of pal

= tial
takes some value infinitely often. Using a diagonal argument,

we may drop to a subsequence so that the values of pal
are constant for a

sequence σks . Hence it is apparent that one can define a representation σ′
on �2(A∞), where A∞ =

⋃
kAk = GT + gi = GT ′ which extends σ. Since

GT was presumed to be maximal, we obtain GT = G as desired. �

Corollary 4.5. Let G be an abelian group with generators g1, . . . , gk. Sup-
pose that σ is a representation of F

+
θ on �2(GT ) determined by functions

ti : GT → mi and αi : GT → T satisfying

σ(eit)ξg−gi = δt,tig α
i
g ξg for i = 1, . . . , k and g ∈ GT .

Moreover, suppose that H is a subgroup of G such that

tig = tig+h and αig = αig+h whenever g, g + h ∈ GT .

Then σ may be dilated to a group construction representation on �2(G) with
full symmetry group H.

Proof. Using the symmetry group H, it is routine to extend the representa-
tion to �2(GT+H) with the same symmetry. Then by collapsing the cosets of
H to single points, we obtain a representation τ of G/H on �2((GT +H)/H).
By Theorem 4.4, there is a dilation τ ′ of τ on �2(G/H). Unfolding this yields
a representation on �2(G) with full symmetry group H which dilates σ. �
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Corollary 4.6. Suppose that σ is a group construction representation of
F

+
θ on �2(G) with symmetry group H. Then σ is tail equivalent to another

group construction representation τ which has full symmetry group H.

Proof. There is a GT so that σ compressed to �2(GT ) has symmetry group
H. The previous corollary shows how to dilate this to τ with full symmetry
group H. Evidently, τ is tail equivalent to σ. �

Corollary 4.7. Suppose that τ is an infinite tail with a symmetry group
H < Z

k. Then there is a group construction representation of F
+
θ on �2(Zk)

with symmetry group H with minimal ∗-dilation λτ .

Proof. By definition of the symmetry group of τ , there is a coinvariant sub-
space H spanned by {ζn : n ≤ T} which has H symmetry. By Corollary 4.5,
this dilates to a group construction σ on Z

k with full symmetry group H.
The minimal ∗-dilation of σ is a minimal ∗-dilation of PHλτ |H—which is
unique; and hence this dilation is λτ . �

5. Decomposing atomic representations

We are now prepared to prove that every atomic ∗-representation may
be decomposed as a direct sum of ∗-representations obtained from dilating
the group construction. In [2], this was established for rank 2 graphs by a
detailed case by case analysis. So our new proof provides insight into that
case as well.

It is evident that the span of basis vectors in any connected component
of the graph is a reducing subspace; and every atomic representation de-
composes as a direct sum of connected ones. So in our analysis of atomic
representations, it suffices to consider the case of a connected graph.

Proposition 5.1. Let σ be an atomic ∗-representation with connected graph.
For any standard basis vector η, there is a unique infinite tail τ = τ0τ1τ2 . . .
such that η is in the range of σ(τ0 . . . τn) for all n ≥ 0. The shift-tail
equivalence class of τ is independent of the choice of η.

Proof. Since each basis vector is in the range of σ(eij) for exactly one j ∈ mi,
the existence and uniqueness of τ is clear. For any two basis vectors η1 and
η2, there is a basis vector η and words u1 and u2 so that σ(ui)η = ηi. If τ
is the infinite tail obtained for η, it follows that the tails τi obtained for ηi
are τi = uiτ . So they are deg(u2) − deg(u1) shift tail equivalent. �

As a consequence, we can define the symmetry group of σ in an unam-
biguous way.

Definition 5.2. Define the symmetry group of an atomic ∗-representation
with connected graph as the symmetry group Hτ of any tail τ derived from
any standard basis vector.
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Theorem 5.3. Every atomic ∗-representation σ of F
+
θ with a connected

graph is obtained as the minimal ∗-dilation of a group construction rep-
resentation ρ. Moreover, the symmetry group of σ coincides with the full
symmetry group of ρ.

Proof. Let σ be an atomic ∗-representation with connected graph and stan-
dard basis {ηj : j ≥ 0}. Start with an arbitrary basis vector, say η0. There
is a unique infinite tail τ = τ0τ1τ2 . . . with the degree of each τi equal to
(1, 1, . . . , 1) such that η0 is in the range of σ(τ0 . . . τn) for all n ≥ 0. Let λτ
be the inductive limit representation determined by τ . The standard basis
for �2(Fτ ) will be denoted {ξw : w ∈ Fτ}.

Let the symmetry group of λτ be H < Z
k. By Corollary 4.7, there is

a group construction representation μ on �2(Zk) with full symmetry group
H which has λτ as its unique minimal ∗-dilation. The basis {ζn : n ∈ Z

k}
is identified with a subset of the basis of �2(Fτ ) generating a coinvariant
subspace.

There is a canonical map θ of {ξw : w ∈ Fτ} onto the basis {ηj} which
intertwines the actions of λτ and σ in the sense

σ(v)θ(ξw) = θ(ξvw) for all v ∈ F
+
θ and w ∈ Fτ .

Indeed, every element of Fτ may be factored as w = uτ s∗ for some s ≥ 0
and u ∈ F

+
θ . Then we define θ(ξw) = σ(u)σ(τ s)∗η0. In particular, θ carries

{ζn : n ∈ Z
k} onto the basis of a coinvariant subspace of σ.

Suppose that ηj = θ(ζm) = θ(ζn) for n,m ∈ Z
k. Set l = m∧n ∈ Z

k. Then
there are unique words u, v ∈ F

+
θ of degrees m− l and n− l respectively so

that
λτ (u)ζl = ζm and λτ (v)ζl = ζn.

Hence λτ (u)λτ (v)∗ζn = ζm. Therefore σ(u)σ(v)∗ηj = ηj . Conversely, if
σ(u)σ(v)∗ηj = ηj and θ(ζn) = ηj, then setting m− n = deg(u)− deg(v), we
obtain θ(ζm) = ηj .

Observe that Kj = {m − n : ηj = θ(ζm) = θ(ζn)} is a subgroup of
H. Indeed, it is clear that if θ(ζm) = θ(ζn), then the infinite tails ob-
tained by pulling back from the vectors ζm and ζn both coincide with
the tail obtained by pulling back from ηj . Hence m − n ∈ H. Conse-
quently, if deg(uv∗) = m− n such that λτ (u)λτ (v)∗ζn = ζm and θ(ζl) = ηj ,
it follows that λτ (u)λτ (v)∗ζl = ζl+m−n. So if ki = mi − ni ∈ Kj, and
λτ (ui)λτ (vi)∗ζni = ζmi , then

λτ (u2)λτ (v2)∗λτ (u1)λτ (v1)∗ζl = ζl+k1+k2.

So k1 + k2 ∈ Kj. Also, −k ∈ Kj because λτ (v)λτ (u)∗ζm = ζn.
Next we note that the subgroups Kj are ordered by inclusion. That is, if

m < n, and θ(ζm) = ηi and θ(ζn) = ηj , then Kj ≤ Ki. This follows since
there is a word w ∈ F

+
θ so that λτ (w)ζm = ζn. Consequently, σ(w)ηi = ηj .

If k ∈ Kj and uv∗ is the word of degree k such that σ(u)σ(v)∗ηj = ηj . There
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are unique words u′, v′, w′ in F
+
θ with the same degrees as u, v,w so that

ηj = σ(u)σ(v)∗σ(w)ηi = σ(w′)σ(u′)σ(v′)∗ηi.

It follows that σ(u′)σ(v′)∗ηi is the unique basis vector obtained by pulling
back from ηj by deg(w′) = deg(w) steps. Hence w′ = w and σ(u′)σ(v′)∗ηi =
ηi. So deg(u′) − deg(v′) = deg(u) − deg(v) = k belongs to Ki.

An increasing sequence of subgroups of Z
k is eventually constant. So

there is a subgroup K ≤ H so that Kj = K for all ηj in a coinvariant
subspace L which is the image under θ of {ζm : m ∈ GT } for some T ∈ Z

k.
Consider the representation κ on �2((GT +K)/K) induced by λτ obtained
by collapsing cosets of K. The induced map θ̃ of (GT +K)/K onto the basis
of L is injective, and yields a unitary equivalence. By Corollary 4.5, there
is a group construction representation ρ on �2(Zk/K) with symmetry group
H/K that dilates κ. The minimal ∗-dilation of ρ is unitarily equivalent to
the minimal ∗-dilation of PLσ|L, namely σ. �

Now we consider irreducibility. Theorem 5.3 shows that it suffices to
consider group construction representations. Thus the result we want follows
from [2, Theorem 5.6] where it is established for the k = 2 case, but the proof
is not dependent on that restriction. A group construction on �2(G) with
symmetry group H 
= {0} decomposes as a direct integral or sum over the
dual group Ĥ of a family of group constructions on �2(G/H) with identical
functions ti but with different constants parameterized by Ĥ.

Theorem 5.4. An atomic ∗-representation σ with connected graph is irre-
ducible if and only if its symmetry group is trivial.

In general, if σ is the ∗-dilation of a group construction on �2(G) with
symmetry group H, then σ decomposes as a direct sum or direct integral
over Ĥ of the ∗-dilations of irreducible group constructions on �2(G/H).

The import is that a complete set of the irreducible atomic ∗-represent-
ations can be obtained by taking the inductive representation for each infi-
nite word τ , determining the symmetry group H, and using this to construct
a family of irreducible group construction representations on �2(Zk/H) with
different constants indexed by Ĥ.

6. Finitely correlated atomic representations

A representation is finitely correlated if it has a finite-dimensional coin-
variant cyclic subspace. By the previous section, this representation must
decompose as a direct sum of group constructions—and these will necessarily
be finite groups in this case.

As in the 2-graph case, the group constructions on finite groups are par-
ticularly tractable. Moreover, it is possible to provide a simple condition
that determines the possible group constructions on the product groups
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G = Cn1 × · · · × Cnk
. Every finite abelian group with k generators is a

quotient of Cn1 × · · · × Cnk
, where ni is the order of gi.

The first lemma depends only on two families of generators at a time. So
it is immediate from [2, Lemma 6.1].

Lemma 6.1. Let σ be a representation of F
+
θ . Suppose that there are words

eiu and ejv and a unit vector ξ such that

σ(eiu)ξ = αξ and σ(ejv)ξ = βξ

for some |α| = |β| = 1. Then eiue
j
v = ejveiu.

Corollary 6.2. If σ is a group construction representation of F
+
θ on a finite

group G = Cn1 × · · · × Cnk
/H, then there are unique words ui ∈ m∗

i with
|ui| = ni such that σ(eiui

)ξ0 = αiξ0 where |αi| = 1 for 1 ≤ i ≤ k; and the
{eiui

} all commute.

Just as in the 2-graph case [2], the converse is also true.

Theorem 6.3. Let eiui
be commuting words of lengths |ui| = ni, and let αi ∈

T for 1 ≤ i ≤ k. Then there is a unique group construction representation
σ of F

+
θ on G = Cn1 × · · · × Cnk

such that σ(eiui
)ξ0 ∈ Cξ0 for 1 ≤ i ≤ k and

αig = αi for all g ∈ G.

Proof. It is clear that the constants αi pose no additional complication, so
we will ignore them and assume that αi = 1 for all i.

As in [2, Lemma 6.2], the commutation relations of the k-graph completely
determine the functions ti on G. We will sketch the ideas. Write

ui = j0jni−1 . . . j2j1 =: ti0t
i
(ni−1)gi

. . . ti2gi
tigi
.

Then from the 2-graph case, one uses the commutation relations to factor
ejuje

i
ui

in the form ejveiuis
ejw, where |v| = nj − s and |w| = s. Consider the

first factorization as two loops, first moving in the gi direction starting at
ξ0 and returning to ξ0, followed by the loop in the gj direction around to ξ0
again. The second factorization moves first in the gj direction to ξsgj , then
around a loop in the gi direction through vectors ξsgj+tgi back to ξsgj again,
and then continuing on in the gj direction through the ξs′gj

to ξ0. In this
way we obtain the functions tisgj+tgi

.
One by one, introduce the next term ekuk

and partially commute through
in order to define tig for all g ∈ G. The fact that F

+
θ is a k-graph means that

there is unique factorization, and so the result is independent of the order
in which this calculation is performed. The fact that the words commute is
exactly what is required in order that one returns to the original word eiui

when one loops around, passing this word past ejuj . �
Example 6.4. Choose the 3-graph in Example 2.3. Let u = 112. Then
eu, fu, gu are mutually commuting. Using the construction of the proof in
Theorem 6.3, we obtain a 27-dimensional finitely correlated representation
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σ of F
+
θ . It is not hard to see that σ has a nontrivial symmetry group. More-

over, σ can be decomposed into a direct sum of three-dimensional atomic
representations of the following form:

ρ(e1)ξ1 = ω1ξ2, ρ(e1)ξ2 = ω1ξ3, ρ(e2)ξ3 = ω1ξ1;

ρ(f1)ξ1 = ω2ξ3, ρ(f1)ξ3 = ω2ξ2, ρ(f2)ξ2 = ω2ξ1;

ρ(g1)ξ1 = ω3ξ3, ρ(g1)ξ3 = ω3ξ2, ρ(g2)ξ2 = ω3ξ1.

where ωi are cube roots of unity.

We now show that there are many finitely correlated representations.

Theorem 6.5. There are irreducible finite-dimensional defect free represen-
tations of F

+
θ of arbitrarily large dimension.

Proof. We begin with arbitrary words ui ∈ m∗
i and consider a0 = e1u1

and
b0 = e2u2

e3u3
. . . ekuk

. The technique from [2, Proposition 6.7] produces a pair
of commuting words as follows. Consider the 2-graph consisting of families

E = {e1u : |u| = |u1|} and F = {w ∈ F
+
θ : deg(w) = (0, |u2|, . . . , |uk|)}.

There is a permutation θ̃ of E × F which determines the commutation re-
lation e1uw = w′e1u′ via θ̃(e1u, w) = (e1u′ , w

′). There is a cycle beginning with
(a0, b0), namely

(a0, b0), (a1, b1), . . . , (an−1, bn−1), (an, bn) = (a0, b0).

Then aibi = bi+1ai+1 for i ∈ Z/nZ. Hence a := an−1 . . . a1a0 commutes with
b := b0b1 . . . bn−1.

Now we can factor b = dc where deg(c) = (0, n|u2|, 0, . . . , 0) and deg(d) =
(0, 0, n|u3|, . . . , n|uk|). At this point, we can move to the inductive step.
Suppose that we have commuting words ai0 = eivi

for 1 ≤ i ≤ s and c0d0

where c0 = es+1
vs+1

and d0 is a word in the remaining variables. Consider the
rank s+ 2-graph F

+ with generators

Ei = {eiu : |u| = |vi|}, 1 ≤ i ≤ s+ 1, and F = {w : deg(w) = deg(d0)}.
We wish to build a defect free representation σ of F

+ on �2(Z) so that for
each basis vector δk, there are unique elements aik ∈ Ei so that

σ(aik)δk = δk for 1 ≤ i ≤ s and k ∈ Z

and words ck ∈ Es+1 and dk ∈ F so that

σ(ck)δk = δk+1 and σ(dk)δk+1 = δk for k ∈ Z.

It is clear that for such a representation to exist, certain commutation
relations must hold. Starting at k = 0, we must define ck and dk by the
rules

ckdk = dk+1ck+1 for k ∈ Z

and define aik+1 by the rules

cka
i
k = aik+1ck for k ∈ Z.
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We must also verify that {aik : 1 ≤ i ≤ s} commute, and

dka
i
k+1 = aikdk for k ∈ Z.

To see that this does follow, observe that since ai0 commutes with d0c0,
we have c0ai0 = ai1c

′; and hence

d0a
i
1c

′ = d0c0a
i
0 = ai0d0c0 = d′a′c0.

Thus by unique factorization, d′ = d0, c′ = c0 and a′ = ai1. That is,
c0a

i
0 = ai1c0 and ai0d0 = d0a

i
1. Also

ai1(c0d0) = c0a
i
0d0 = (c0d0)ai1

and
ai1a

j
1c0 = c0a

i
0a
j
0 = c0a

j
0a
i
0 = aj0a

i
0c0.

So {ai1 : 1 ≤ i ≤ s} ∪ {d1c1 = c0d0} is a commuting family. The relations
now follow by recursion.

As before, we see that the map taking (aik, ck, dk) to (aik+1, ck+1, dk+1)
results from an application of a permutation of E1 × · · · ×Es+1 ×F . Hence
there is an integer n so that (ain, cn, dn) = (ai0, c0, d0). Therefore, iden-
tifying δn+j with δj , we can wrap this sequence into a finite-dimensional
representation on span{δk : 0 ≤ k < n}. In particular, the words which
fix δ0 must commute by Lemma 6.1. So {eivi

: 1 ≤ i ≤ s} together with
es+1
vs+1

:= cn−1cn−2 . . . c1c0 and d = d0d1 . . . dn−1 form a commuting family.
Repeated application of this technique produces k commuting words. By

Theorem 6.3, this gives rise to a defect free finitely correlated representa-
tion on �2(G) where G is a finite product group. This may have nontrivial
symmetry. The first word had the form e1u′u1

where u1 was arbitrary. We
can ensure that this word has no small periods; for example, take any word
of length N starting with a 1 followed by N 2’s. Then this cannot be the
power of a word of length less than 2N . So even once we have quotiented
out by the symmetry group to obtain an irreducible representation, we have
dimension at least 2N . �

7. Periodicity

In this section, we examine the periodic case in more detail. This builds
on the detailed analysis of periodicity in 2-graphs in [4].

In the case of 2-graphs, periodicity is a very special property that requires
rather stringent structural properties. In particular, [4, Theorem 3.1] shows
that if a 2-graph F

+
θ is periodic, then Hθ = Z(a,−b) for some a, b > 0.

Moreover, this occurs if and only if there is a bijection γ : ma
1 → mb

2 so that

e1ue
2
v = e2γ(u)e

1
γ−1(v) for all u ∈ ma

1 and v ∈ mb
2.

Equivalently, the 2-graph with generators E1 = {e1u : u ∈ ma
1} and E2 =

{e2v : v ∈ mb
2} is just a flip algebra.
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The following theorem is the appropriate generalization of this result for
higher rank graphs.

Theorem 7.1. Let F
+
θ be a k-graph, and let ai, bj be positive integers and

ck = 0 for 1 ≤ i ≤ p < j ≤ p+ q < k ≤ k. Then the following conditions are
equivalent for π =: (a1, . . . , ap,−bp+1, . . . ,−bp+q, 0, . . . , 0):

(i) F
+
θ is π-periodic.

(ii) Every tail is π-periodic.
(iii) There is a bijection γ : E → F , where

E =

{
p∏
i=1

eiui
: ui ∈ mai

i

}
and F =

{
p+q∏
j=p+1

ejvj
: vj ∈ mbj

j

}
,

such that

(†) ef = γ(e)γ−1(f) for all e ∈ E and f ∈ F ;

and

eτ = γ(e)τ for every infinite tail τ and e ∈ E.

Moreover, if p+ q = k, this condition on the tails is automatic.

Proof. If F
+
θ is π-periodic, then by definition, every infinite tail τ is even-

tually π-periodic. Suppose that there were an infinite tail τ which is not
π-periodic. Then some initial segment of τ , say τ1, fails to be π-periodic.
Therefore any infinite tail which contains the sequence τ1 infinitely often is
not eventually π-periodic, contrary to hypothesis. Hence (ii) holds. Clearly
(ii) implies (i).

Suppose that (ii) holds. The 2-graph G+ with generators from E and F
has the property that every infinite tail is (1,−1)-periodic. By [4, Theo-
rem 3.1], there is a bijection γ of E onto F such that ef = γ(e)γ−1(f) for
all e ∈ E and f ∈ F . If τ is any infinite tail, take any e ∈ E and f ∈ F , and
consider the tail τ ′ = feτ = γ−1(f)γ(e)τ . Since τ ′ is π-periodic, one obtains
identical tails by deleting an initial word of degree (a1, . . . , ap, 0, . . . , 0) or an
initial word of degree (0, . . . , 0, bp+1, . . . , bp+q, 0, . . . , 0). That is eτ = γ(e)τ .
When p+q = k, the π-periodicity of τ is equivalent to the (1,−1)-periodicity
of an infinite tail in G+; and this follows from the existence of γ by [4, The-
orem 3.1].

Finally, suppose that (iii) holds. We may factor an arbitrary infinite word
τ as τ = feτ ′ for some e ∈ E and f ∈ F . So τ = γ−1(f)γ(e)τ ′. To check
π-periodicity of τ , we need to compare γ(e)τ with eτ . These are equal by
(iii). So (ii) holds. �

Periodicity yields nontrivial elements in the centre of C∗(F+
θ ) just as in

the 2-graph case [4, Lemma 5.4].

Corollary 7.2. Let F
+
θ be a k-graph with π-periodicity. Using the notation

from Theorem 7.1, define W =
∑

e∈E γ(e)e
∗ in C∗(F+

θ ). Then W is a
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unitary in the centre of C∗(F+
θ ) satisfying We = γ(e) for all e ∈ E; and

W is a sum of terms of degree −π. Also W = e∗γ(e) for any e ∈ E.

Proof. Since any inductive representation σ is faithful by Theorem 3.4, we
can compute within B(Hσ). Take any standard basis vector ξ and consider
the infinite tail τ obtained by pulling back from ξ; i.e., τ is the unique infinite
tail such that ξ is in the range of σ(w) whenever τ = wτ ′. Factor τ = eτ ′
for some e ∈ E. Let ζ = σ(e)∗ξ and ξ′ = σ(γ(e))ζ. Then

ξ′ = σ(γ(e))σ(e)∗ξ = σ(W )ξ.

The infinite tail obtained by pulling back from ξ′ is evidently γ(e)τ ′, which
equals τ by Theorem 7.1(iii).

Now let g = eij be any generator of F
+
θ . We will show that σ(W ) commutes

with σ(g)∗. Note that ξ is in the range of σ(g) if and only if τ factors as gτ ′′
(when one uses the commutation relations to move the first eij′ term to the
initial position). If ξ is not in the range of σ(g), then neither is ξ′, and so

σ(W )σ(g)∗ξ = 0 = σ(g)∗ξ′ = σ(g)∗σ(W )ξ.

If ξ is in the range of σ(g), there is a unique word e′ ∈ E so that τ = ge′τ̃ .
Also factor ge′ = eg′ for some g′ = eij′ . Let η = σ(g)∗ξ, η′ = σ(g)∗ξ′ and
ζ ′ = σ(e′)∗η = σ(g′)∗ζ. Now τ = gγ(e′)τ̃ by Theorem 7.1(iii). Thus ξ′ is in
the range of σ(gγ(e′)), say ξ′ = σ(gγ(e′))ζ̃ . Now γ(e)g′ = g̃γ(ẽ) for some
g̃ = ei

ej
and ẽ ∈ E. But then

σ(gγ(e′))ζ̃ = ξ′ = σ(γ(e)g′)ζ ′ = σ(g̃γ(ẽ))ζ ′.

It follows that g̃ = g, ẽ = e′ and ζ̃ = ζ ′. Therefore

σ(g)∗σ(W )ξ = σ(g)∗ξ′ = η′ = σ(γ(e′))σ(e′)∗η = σ(W )σ(g)∗ξ.

We conclude that W commutes with g∗ for every generator of F
+
θ .

It is evident that σ(W ) carries the range of each σ(e) for e ∈ E onto the
range of σ(γ(e)). As the ranges of σ(e) for e ∈ E are pairwise orthogonal
and sum to the whole space, as do the ranges of σ(γ(e)), it follows that
σ(W ) is unitary. Thus it commutes with all of C∗(F+

θ ); i.e., it is in the
centre. The identity We = γ(e) for e ∈ E is clear. Also by construction,

deg(γ(e)e∗) = deg(γ(e) − deg(e) = −π.
Now eW = We = γ(e), and hence W = e∗γ(e). �

We now take a closer look at this for k = 3. The permutation θ12 which
define the relations between {e1i } and {e2j} determines a function θ̃12 from
m∗

1 × m∗
2 so that θ̃12(u, v) = (u′, v′) when e1ue

2
v = e2v′e

1
u′ .

Proposition 7.3. Let F
+
θ be a 3-graph with generating sets {ei : i ∈ l},

{fj : j ∈ m} and {gk : k ∈ n}. Suppose that F
+
θ has (a, b,−c) symmetry,
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where a, b, c ∈ N; and let γ : la × mb → nc satisfy (†), i.e.,

eu0fv0gγ(u1,v1) = gγ(u0,v0)eu1fv1 for all (ui, vi) ∈ la × mb.

Let δ = γθ̃−1
12 . Then for all (ui, vi) ∈ la × mb,

eu0gδ(u1,v0) = gγ(u0,v0)eu1 and fv0gγ(u1,v1) = gδ(u1,v0)fv1 ;

and conversely these relations imply that F
+
θ is (a, b,−c)-periodic. Moreover,

fv0eu0gδ(u1,v1) = gδ(u0,v0)fv1eu1 .

Proof. There is a word w ∈ nc so that

gγ(u0,v0)eu1fv1 = eu0gwfv1 = eu0fv0gγ(u1,v1).

Since gγ(u0,v0)eu1 = eu0gw, w depends only on u0, u1, v0; and since

gwfv1 = fv0gγ(u1,v1),

w depends only on u1, v0, v1. Therefore w is a function w = δ(u1, v0). That
is,

eu0gδ(u1,v0) = gγ(u0,v0)eu1 and fv0gγ(u1,v1) = gδ(u1,v0)fv1 .

Hence
fv0eu0gδ(u1,v1) = fv0gγ(u0,v1)eu1 = gδ(u0,v0)fv1eu1 .

Fix (u0, v0) and (u1, v1). Let θ̃−1
12 (ui, vi) = (u′i, v

′
i) for i = 0, 1; so that

fvieui = eu′ifv′i . Also let δ−1γ(u′1, v
′
1) = (u, v). Then

g
γeθ−1

12 (u0,v0)
fv1eu1 = gγ(u′0,v′0)eu′1fv′1 = eu′0fv′0gγ(u′1,v′1)

= fv0eu0gδ(u,v) = fv0gγ(u0,v)eu

= gδ(u0,v0)fveu.

Hence δ(u0, v0) = γθ̃−1
12 (u0, v0).

The converse is straightforward. By Theorem 7.1 (iii), the tail condition
is automatic. Hence F

+
θ is (a, b,−c)-periodic. �

Proposition 7.3 allows us to define some examples of periodic 3-graph
algebras.

Example 7.4. Suppose that θ12 = id; i.e., the ei’s commute with the fj’s.
Also suppose that n = lm and fix a bijection γ : l × m → n. By Proposi-
tion 7.3, we require δ = γ. So define relations

eigγ(i′,j′) = gγ(i,j′)ei′ and fjgγ(i′,j′) = gγ(i′,j)fj′.

It is easy to check the cubic condition—so this determines a 3-graph F
+
θ .

By Proposition 7.3, F
+
θ is (1, 1,−1)-periodic. Its symmetry group is exactly

Z(1, 1,−1).
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Example 7.5. Suppose that l = m, n = m2 and θ12 is the transposition:
θ12(i, j) = (j, i); i.e., eifj = fiej. Then we again identify a bijection γ :
l × m → n and motivated by Proposition 7.3, define δ(i, j) = γ(j, i). Then
define the commutation relations

eigγ(j,k) = gγ(i,j)ek and figγ(j,k) = gγ(i,j)fk.

This is easily seen to be a 3-graph F
+
θ . By construction, it has (1, 1,−1)-

periodicity.
The first two variables form a 2-graph with (1,−1)-periodicity. Since

(1,−1, 0) has a 0, it is convenient to look for (3, 1,−2)-periodicity instead.
One readily computes that

ei1ei2ei3fjgγ(i′1,i′2)gγ(i′3,j′) = ei1ei2gγ(i3,j)ei′1fi′2gγ(i′3,j′)

= ei1gγ(i2,i3)ejgγ(i′1,i′2)ei′3fj′

= gγ(i1,i2)ei′3gγ(j,i′1)ei′2ei′3fj′

= gγ(i1,i2)gγ(i3,j)ei′1ei′2ei′3fj′.

Thus the function Γ : l3 × m → n2 by Γ(i1, i2, i3, j) = (γ(i1, i2), γ(i3, j)) is
a bijection satisfying (†).

Thus the symmetry group is

H = Z(1, 1,−1) + Z(3, 1,−2) = Z(1,−1, 0) + Z(1, 1,−1).

Example 7.6. A different example can be defined when l = m = n = 2.
Let F

+
θ be the 3-graph with F

+
θ12

being the flip algebra, and F
+
θ13

, F
+
θ23

each
being the square algebra. A straightforward computation shows that F

+
θ has

the symmetry group H = Z(1,−1, 0) + Z(2, 0,−2).

Example 7.7. In [4], many examples of periodic 2-graphs were exhibited,
some with surprisingly high order of periodicity. It is easy to combine a
number of 2-graphs together with other variables by making them commute.
So suppose that F

+
θ2i−1,2i

are 2-graphs with symmetry groups Hi = Z(ai,−bi)
for 1 ≤ i ≤ s, and let F

+
θ be any k-graph with symmetry group H ≤ Z

k.
Form a 2s + k-graph G+

θ =
∏s
i=1 F

+
θ2i−1,2i

× F
+
θ by declaring that variables

in the different factors of the product commute. Then it is routine to check
that this is a 2s+k–graph with symmetry group Hθ =

∏s
i=1Hi×H ≤ Z

2s+k.

8. The structure of graph C*-algebras

Kumjian and Pask [11] showed that C∗(F+
θ ) is simple if F

+
θ is aperiodic.

Robertson and Sims [19] proved the converse. In [4], we showed that in the
case of a periodic 2-graph F

+
θ on a single vertex, one has the more precise

description C∗(F+
θ ) ∼= C(T) ⊗ A1 for some simple C*-algebra A1. We wish

to extend this result to k-graphs (on a single vertex). The proof will follow
the method of [4] of constructing two approximately inner expectations.
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Let Hθ be the symmetry group of F
+
θ . Then Hθ

∼= Z
s for some s ≤ k.

Let h1, . . . , hs be a set of free generators, and set �h = (h1, . . . , hs). By
Corollary 7.2, each h ∈ Hθ determines a unitary operator Wh in the centre
Z of C∗(F+

θ ). It turns out that this map is a group homomorphism—but
we will not establish that at this time. Instead we define Wi = Whi

and
use these as generators for an abelian algebra which will eventually turn
out to be all of Z. For n = (n1, . . . , ns) ∈ Z

s, write W n =
∏s
i=1W

ni
i and

n · �h =
∑s

i=1 nihi.
Let Gθ = Z

k/Hθ, and let π be the quotient map. Recall that every
character ϕ ∈ Ẑk ∼= T

k determines a gauge automorphism γϕ of C∗(F+
θ ) such

that γϕ(w) = ϕ(degw)w for all w ∈ F
+
θ . Each character ψ ∈ Ĝθ determines

the character ψπ on Z
k which takes the value 1 on Hθ. Let γψ denote

the corresponding gauge automorphism. We will define an expectation on
C∗(F+

θ ) which respects the symmetry of F
+
θ :

Ψ(X) =
∫

cGθ

γψ(X) dψ.

Lemma 8.1. The joint spectrum of (W1, . . . ,Ws) is T
s; and

C∗(F,W1, . . . ,Ws) ∼= C(Ts) ⊗ F ∼= C(Ts,F).

Proof. If χ is any character ofHθ, there is a character ϕ in Ẑk which extends
χ. Therefore

γϕ(W n) = ϕ(n · �h)W n = χ(n)W n.

Thus γϕ restricts to an automorphism of C∗(W1, . . . ,Ws) and for any λi ∈ T,
there is some ϕ so that γϕ(Wi) = λiWi for 1 ≤ i ≤ s. So the joint spectrum
σ(W1, . . . ,Ws) is invariant under the transitive action of the torus. Hence
σ(W1, . . . ,Ws) = T

s and C∗(W1, . . . ,Ws) ∼= C(Ts).
There is a canonical map of the tensor product C(Ts)⊗F ∼= C(Ts,F) onto

C∗(F,W1, . . . ,Ws) which sends the constant functions onto F and sends zi
to Wi. Since F is simple, the kernel consists of all functions vanishing on
some closed subset of T

s. However, since the joint spectrum of (W1, . . . ,Ws)
is all of T

s, this set must be empty; and this map is an isomorphism. �

Theorem 8.2. The map Ψ is a faithful, completely positive, approximately
inner expectation onto C∗(F,W1, . . . ,Ws).

Proof. Since Ψ is the average of automorphisms, it is clearly faithful and
completely positive.

Let w = uv∗, where u, v ∈ F
+
θ , be a typical word in C∗(F+

θ ). Then
deg(w) = deg(u) − deg(v) is a homomorphism into Z

k. The kernel, the
words of zero degree, generate F as a C*-algebra. If deg(w) = h ∈ Hθ, then
π deg(w) = 0; so for any ψ ∈ Ĝθ, we have γψ(w) = w. Therefore Ψ(w) = w.
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On the other hand, if deg(w) 
∈ Hθ, then π deg(w) = g 
= 0. Therefore

Ψ(w) =
∫

cGθ

ψ(g) dψ w = 0.

By Corollary 7.2,Wi is a sum of words of degree −hi. Hence W n is a sum
of words of degree −n · �h. Thus if deg(w) = h = n · �h ∈ Hθ, then wW n is
a sum of words of degree 0, and so lies in F. Therefore w = FW ∗n belongs
to C∗(F,W1, . . . ,Ws). Conversely, this C*-algebra is spanned by terms of
the form uv∗W n where deg(uv∗) = 0 and n ∈ Z

s. We have seen that
Ψ(uv∗W n) = uv∗W n. Thus Ψ is an expectation onto C∗(F,W1, . . . ,Ws).

Lastly, we will construct a sequence of isometries Vn ∈ C∗(F+
θ ) so that

limn→∞ V ∗
nXVn = Ψ(X) for all X ∈ C∗(F+

θ ).
By Proposition 3.7, there is an infinite tail τ with Hτ = Hθ. Therefore if

u, v ∈ F
+
θ and deg(uv∗) 
∈ Hθ, then uτ 
= vτ . It follows that for some initial

segment τ0 of τ , τ∗0u∗vτ0 = 0. So for each integer n ≥ 1, select τn so that
τ∗n(u∗v)τn = 0 whenever deg(uv∗) 
∈ Hθ and

deg(u) ∨ deg(v) ≤ n := (n, n, . . . , n).

Let Sn = {x ∈ F
+
θ : deg(x) = n}. Define an isometry in C∗(F+

θ ) by

Vn =
∑
x∈Sn

xτnx
∗.

Suppose that uv∗ ∈ F; so deg(u) = deg(v). For n sufficiently large,
deg(u) ≤ n. Then uv∗ can be written as a sum of words of the same
form with deg(u) = deg(v) = n. Recall that when deg(x) = deg(u), then
x∗u = δx,u. Therefore

V ∗
n (uv∗)Vn =

∑
x∈Sn

∑
y∈Sn

xτ∗n(x∗u)(v∗y)τny∗ = uτ∗nτnv
∗ = uv∗.

It follows that V ∗
n (uv∗)Vn = uv∗ whenever deg(u) = deg(v) ≤ n.

Next suppose that deg(uv∗) = h = m · �h ∈ Hθ. Then Wm(uv∗) belongs
to F

+
θ . By the previous paragraph, for n sufficiently large,

V ∗
n (uv∗)Vn = V ∗

nW
∗m(Wmuv∗)Vn = W ∗mV ∗

n (Wmuv∗)Vn
= W ∗m(Wmuv∗) = uv∗.

Finally, suppose that deg(uv∗) 
∈ Hθ. For sufficiently large n, we have
deg(u) ∨ deg(v) ≤ n. Hence if x, y ∈ Sn, then x∗(uv∗)y is either 0 or it has
the form ab∗ where deg(a) ∨ deg(b) ≤ n and

deg(a) − deg(b) = deg(u) − deg(v) 
∈ Hθ.

Consequently,
xτ∗nx

∗(uv∗)yτny∗ = x(τ∗nab
∗τn)y∗ = 0.

Summing over Sn × Sn yields V ∗
n (uv∗)Vn = 0.
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We have shown that

lim
n→∞V ∗

n (uv∗)Vn = Ψ(uv∗)

for all words uv∗. Thus this limit extends to all of C∗(F+
θ ). �

The next step is to localize at the point 1 = (1, . . . , 1) in σ(W1, . . . ,Ws).
Essentially this is evaluation at 1.

Theorem 8.3. Let q be the quotient map of C∗(F+
θ ) onto

A := C∗(F+
θ )/〈W1 − I, . . . ,Ws − I〉.

Let ε1 be evaluation at 1 in C(Ts,F). Then there is a faithful, completely
positive, approximately inner expectation Ψ1 of A onto F such that the fol-
lowing diagram commutes:

C∗(F+
θ )

q ��

Ψ
��

A

Ψ1

��
C(Ts,F) ε1

�� F.

Moreover, A is a simple C*-algebra.

Proof. For each ψ ∈ Ĝθ, we have γψ(Wi) = Wi. Hence γψ carries the ideal
〈W1 − I, . . . ,Ws − I〉 onto itself. Therefore it induces an automorphism γ̇ψ
of A; and γ̇ψq = qγψ. Define a map on A by

Ψ1(A) =
∫

cGθ

γ̇ψ(A) dψ for A ∈ A.

Then it follows that Ψ1q = qΨ = ε1Ψ because the restriction of q to
C∗(F,W1, . . . ,Ws) ∼= C(Ts,F) is evidently ε1.

Since Ψ1 is an average of automorphisms, it is a faithful, completely
positive map into F. Now q is an isomorphism on F; so we may identify qF
in A with F. For any F ∈ F,

Ψ1(F ) = ε1(Ψ(F )) = ε1(F ) = F.

Thus Ψ1 is an expectation.
Let V̇n = q(Vn). Ψ1 is approximately inner because if A = qX ∈ A,

Ψ1(A) = qΨ(X) = lim
n→∞ q(V ∗

nXVn) = lim
n→∞ V̇ ∗

nAV̇n.

The fact that A is simple now follows. Indeed, if J is a nonzero ideal
of A, then it contains a nonzero positive element A. Since Ψ1 is faithful,
Ψ1(A) 
= 0. Also because Ψ1 is approximately inner, Ψ1(A) belongs to F∩J.
Since F is simple, we conclude that F∩J = F contains the identity; and hence
J = A. �
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Remark 8.4. The expectation Ψ1q = ε1Ψ of C∗(F+
θ ) onto F is not the

expectation Φ obtained by integrating over all gauge automorphisms. Indeed
Φ(Wi) = 0 while Ψ1q(Wi) = Ψ1(I) = I.

We are now ready to obtain the structure of C∗(F+
θ ).

Theorem 8.5. Suppose that the symmetry group Hθ of F
+
θ has rank s. Then

C∗(F+
θ ) ∼= C(Ts) ⊗ A.

Proof. For z = (z1, . . . , zs) ∈ T
s, let Jz = 〈W1 − z1I, . . . ,Ws − zsI〉 and

set Az := C∗(F+
θ )/Jz . Let χz ∈ Ĥθ be the character χz(hi) = zi, and let

ϕ be any extension to a character on Ẑk. Since deg(Wi) = −hi, we have
γϕ(Wi) = ziWi. Therefore γϕ(Wi − I) = zi(Wi − ziI). So γϕ carries the
ideal J1 onto Jz. It follows that Az ∼= A via the automorphism γ̇ϕ.

Moreover, the lifting from χ to ϕ can be done in a locally continuous way.
That is, for any z ∈ T

s, there is a neighbourhood of z on which we can select
a continuous lifting. It follows that the map taking z to qz(X) = q(γϕ(X)) is
a continuous function into A. This provides a ∗-homomorphism Θ of C∗(F+

θ )
into C(Ts,A).

The restriction of Θ to C(Ts,F) is readily seen to be the identity map.
In particular, this restriction is an isomorphism. By Theorem 8.3, it follows
that ΘΨ = (Ψ1 ⊗ id)Θ. The left-hand side is faithful, and therefore Θ must
be an monomorphism.

If A ∈ A and qX = A, then for any f ∈ C(Ts),

Θ(f(W1, . . . ,Ws)X) = f(z1, . . . , zs)A.

These functions span C(Ts,A), and therefore Θ is surjective. This estab-
lishes the desired isomorphism. �

As an immediate consequence, we obtain the following characterization of
the simplicity of k-graph C*-algebras, which was proved in full generality by
Kumjian–Pask [11] (sufficiency) and Robertson–Sims [19] (necessity) using
completely different approaches.

Corollary 8.6. C∗(F+
θ ) is simple if and only if F

+
θ is aperiodic.

Another immediate consequence is a description of the centre of C∗(F+
θ ).

Corollary 8.7. The center of C∗(F+
θ ) is C∗(W1, . . . ,Ws) ∼= C(Ts).

Corollary 7.2 defined an element Wh in Z for any h ∈ Hθ. If h =
(a1, . . . , an), then we set E =

{∏
eiui

: ai > 0, ui ∈ mai
i

}
and F ={∏

eivi
: ai < 0, ui ∈ m−ai

i

}
. There is a bijection γ of E onto F so

that ef = γ(e)γ−1(f) for e ∈ E and f ∈ F . The central unitary Wh is
then defined by the formula Wh =

∑
e∈E γ(e)e

∗. This is the sum of words
of degree −h.
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Write h = n ·�h. In C∗(W1, . . . ,Ws), the unitary W n also has deg(W n) =
−h. Therefore, in the identification of C∗(W1, . . . ,Ws) with C(Ts) which
sendsWi to zi, bothWh andW n are sent to a scalar multiple of zn. However,
it is clear from the commutation relations in F

+
θ that multiplying out the

product W n1
1 . . .W ns

s will be a sum of words of the form uv∗ with no scalars,
as is Wh. So they must be equal.

Since Z = C∗(W1, . . . ,Ws) = span{W n : n ∈ Z
s}, we deduce:

Corollary 8.8. The map taking h ∈ Hθ to Wh is a group homomorphism
into the unitary group of Z; and Z = span{Wh : h ∈ Hθ}.
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