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Convergence of the dual greedy algorithm
in Banach spaces

M. Ganichev and N. J. Kalton

ABSTRACT. We show convergence of the weak dual greedy algorithm in
wide class of Banach spaces, extending our previous result where it was
shown to converge in subspaces of quotients of L, (for 1 < p < 0).
In particular, we show it converges in the Schatten ideals S, when 1 <
p < oo and in any Banach lattice which is p-convex and g-concave with
constants one, where 1 < p < ¢ < co. We also discuss convergence of
the algorithm for general convex functions.
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1. Introduction

Suppose X is a real Banach space. A dictionary is a subset D of X such
that:
(i)de D = |d|| =1
(i) de D = —-deD.
(iii) z* € X*, (d,z*)=0Vde D = z*=0.
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Here (iii) is equivalent to the statement that the closed linear span of D is
X. For complex Banach spaces X we define D to be a dictionary if it is
dictionary for the underlying real Banach space Xg. This means that (iii)
is replaced by

(iv) z* € X*, Re (d,z*) =0Vde D = z*=0.
If the dictionary D satisfies
(v)de D = ¢e?Pde D, 0<6<2n,

then (iv) is equivalent to (iii). Thus we treat complex Banach spaces
throughout as well as real Banach spaces, by simply forgetting their complex
structure.

If f: X — R is a continuous convex function we denote by V f(z) the
subdifferential of f at x, i.e., the set of z* € X* such that

fl@)+2*(y—2) < fly), yeX.

If f is Gateaux differentiable then V f is single-valued and we consider
Vf: X — X"

as a mapping.

Now suppose [ : X — R is a continuous convex function which is Gateaux
differentiable. Assume further that f is proper, i.e., that

f(z) = oo
[|z[|—o0

The weak dual greedy algorithm with dictionary D and weakness 0 < ¢ < 1
is designed to locate the minimum of f. We select an initial point zg € X.
Then for n € N so that x,,_1 has been selected we choose d,, € D to nearly
optimize the rate of descent. Precisely we choose d,, so that

(dn, Vf(xn_1) > csup(d,V f(z,)).
deD

We then choose t,, > 0 so that
f(l'n—l - tndn) = Itnzl(r]l f(ajn—l - tdn)

We say the algorithm converges if, for any initial point xy and weakness c,
the sequence (z,)7°, always converges in norm to a point a € X at which
f assumes its minimum.

This algorithm has been studied in the literature (see [4], [16] and [17]) in
the special case when f(z) = ||z|| on a space X with a Gateaux differentiable
norm. Strictly speaking this does not quite fit our hypotheses since the norm
is never Gateaux differentiable at the origin (where it attains its minimum);
however it would be equivalent to consider the algorithm for f(z) = ||=||?
which then is Gateaux differentiable everywhere. The aim in this case is
to give an expansion of the initial point x¢y = Zzozl tnd, in terms of the
dictionary.



CONVERGENCE OF THE DUAL GREEDY ALGORITHM 75

Historically this algorithm was first considered and shown to converge
for f(z) = ||z||*> when X is a Hilbert space (see [9], [10] and [14]). In
2003, the current authors showed that the algorithm converges provided X
has a Fréchet differentiable norm and property (I') ([7] Theorem 4). To
define property (I'), assume X has a Gateaux differentiable norm and let
J: X\ {0} — X* be the duality map, i.e., J = VN where N(z) = ||z|. X
has property (I') provided there is a constant C' such that:

(L) [z =1, ye X, (y,Jz) =0 = (y,J(x+y)) <C(lz +yll - 1)

In fact the assumption of a Fréchet differentiable norm in Theorem 4 of [7]
is redundant because this is implied by property (I'), as will be seen in this
paper. It turns out that the classical spaces L,(0,1) enjoy property (I') as
long as 1 < p < oo. Furthermore the property passes to subspaces and
quotients, so that the algorithm converges for all subspaces of quotients of
L, (Theorem 4 of [7]). This result was the main conclusion of [7], and it
appeared at the time that property (I') was a rather specialized property
that could only be established for a restricted class of Banach spaces. (This
class does, however, include the complex L,-spaces (1 < p < 0o) because
these are isometric to subspaces of the corresponding real spaces.) Later
Temlyakov [17] studied modifications of the (WDGA) which converge in
spaces which are assumed only to be uniformly smooth with a certain degree
of smoothness. See also the recent preprint [5] for a discussion of problems
of weak convergence.

In this paper we will develop further the study of spaces with property
(T'). We first introduce the notion of a tame convex function. A convex
function f: X — R is tame if there is a constant + such that we have

(12) flz+2y)+ flz—2y) —2f(2) <~(flz+y) + f(z —y) - 2f(2)),
x,y € X.

We show that if f is a continuous tame convex function then f is contin-
uously Fréchet differentiable. Furthermore the (WDGA) converges to the
necessarily unique minimizer of f for any proper tame continuous convex
function (Theorem 3.6 below).

The connection with property (I') is that, if » > 1, X has property (I)
if and only if ||z||" is tame (Theorem 4.3). It turns out that this provides
a much better way to deal with property (I'). The advantage of dealing
with tame functions is that (1.2) is much easier to handle than (1.1). Using
this approach it is quite easy to see that a space with property (I') is both
uniformly convex and uniformly smooth (and hence superreflexive), and that
X* must also have property (I') (Theorem 4.4).

We can then expand the list of spaces with property (I') quite substan-
tially. We show that a Banach lattice which is p-convex and g-concave with
constants one where 1 < p < g < oo always has a property (I') (see The-
orem 5.2). We also show that an Orlicz space Ly (0,00) (with either the
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Luxemburg or the Orlicz norm) has property (I') if and only if the func-
tion t — F'(|t|) is tame on R; this is equivalent to the statement that the
second derivative of F' is a doubling measure (see Proposition 2.10 and The-
orem 5.1). We study stability of property (I') under interpolation and use
these results to deduce that the Schatten ideals S, for 1 < p < oo have

property ().

2. Tame convex functions

We shall say that a function ¢ : [0,00) — [0,00) is an Orlicz function
if ¢ is continuous, convex function and satisfies ¢(0) = 0. We allow the
degenerate case when ¢ is identically zero. ¢ satisfies a As-condition with
constant § > 2 if

(2.1) o(2t) < B(t) t>0.

It then follows that t~%p(t) is a decreasing function of ¢ > 0 where b = 5 —1
and hence that (at points of differentiability)
(2.2) to'(t) < bp(t)  t>0.
If  obeys (2.2) then it obeys (2.1) with 3 = 2°.
Conversely ¢ satisfies a Aj-condition with constant o > 2 if

(2.3) ©(2t) > ap(t) t > 0.

It then follows that ¢t~ %¢(t) is an increasing function of ¢ > 0 where a =
2—2a !> 1.

Let V be a real vector space. We will say that a convex function f : V' — R
is tame if the collection F = {p,, : z,y € V'} of all functions

ry(t) = flx+ty) + flx—ty) —2f(x) t=>0

obeys a uniform As-condition, i.e., for some v > 2 we have:

flet+2y)+ flz—=2y) = 2f(2) <A(fle+y)+ fle—y) —2f(x)) zyeV

We then say f has is tame with constant . A collection of convex functions
F is uniformly tame if there is a uniform constant v such that each f € F
has is tame with constant ~.

Lemma 2.1. Let ¢ : R — R be a nonnegative convex function with ¢(0) = 0.
Assume ¢ is tame with constant v. Then we have

ap(t) < p(2t) < @(2t) +p(=2t) < Bp(t)  —oo<t <00
where
a=2+y"1>2
and
B=n"
In particular ¢ is differentiable at 0 and ©'(0) = 0.
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Proof. We start by observing that for any ¢ we have
P(3t) + (1) — 2p(t) < v(p(2t) — 2(2)).
Hence
(2.4) (1) +o(t) < v(p(2t) — 2p(2)).
Thus
Yo(2t) > y(o(—t) + (1) > @(2t) + p(—2t).
Now we deduce

@(2t) < p(2t) + p(-2t)
< y(p(t) + o(-t))
< YPp(t).

On the other hand by (2.4) we have

©(2t) = ap(t).
Since « > 2, it trivially follows that both the left- and right-derivatives
of ¢ at 0 are 0. (|

Proposition 2.2. Let f : R — R be a tame convex function. Then f is
continuously differentiable.

Proof. If s € R let A be the right-derivative of f at s. Let
e(t) = f(s+1) = At — f(s).

Then ¢ satisfies Lemma 2.1 for some constant . In particular ¢ is differ-

entiable at 0 which implies that f is differentiable at s. Since f is convex,
f must be continuously differentiable. O

Theorem 2.3. Let F be a collection of continuously differentiable convex
functions f: R — R. The following conditions on F are equivalent:

(i) F is uniformly tame.
(ii) There is a constant \ such that

(2.5) (f'()=f'(s))(t=s) S A(f(t)=f(s)—f'(s)(t—s))  [fEF, s;teR

Proof. (i) = (ii). Let v be a uniform tameness constant for F. For
s,t € R we define

Psp(u) = f(s+u(t —s)) —ult —s)f'(s) = f(s).
Then ¢ is tame with constant  and satisfies the hypotheses of Lemma 2.1.
Thus ¢+ satisfies a Ag-condition with constant +3. This implies that

ugl (u) < ppsi(u)  uw>0

where 2# = +3. Letting u = 1 gives (2.5).
(ii) = (i). For fixed s,t let

o(u) = f(s+ut) + f(s—ut) —2f(s).



78 M. GANICHEV AND N. J. KALTON

Then
ug (u) = ut(f'(s + ut) — f'(s — ut))
—ut(f (s + ut) — /() + ut(f(s) — /(s — ut))
< A(f(s+ ut) — f(s) — utf'(s)) + A(F(s —ut) = f(s) + utf'(s))
< Ap(u)
Hence ¢ satisfies a As-condition with constant 2*. O

If f is a tame convex function the optimal constant A = A(f) in (2.5) will
be called the index of f.

Proposition 2.4. If f is a tame convex function with index \ then we also
have

(2.6) (f'(&)=f'(s)(t=s) = N(fO)—f(s)=f'(s)(t=s)) [fEF, steR
where N = \/(A —1).
Proof. Simply observe that
A=1)(f'(t) = f'(s)t =)
> A(f(8) = f(s) + [/(t)(s = 1) + A(f'(t) = f'(s))(t = s)
> A(f(t) = f(s) = f(s)(t — 5)). 0

Remark. This argument is reversible so that )’ is the optimal constant in
(2.6).

Let us now give some examples.
Proposition 2.5. The function f(t) = |t|P is tame if and only if p > 1.

Proof. Since f satisfies a Ag-condition it suffices to check that the convex
function ¢t — |1 +¢[P 4 |1 —¢|P — 2 also satisfies a Ag-condition. This is easily
seen to hold if and only if p > 1. O

Notice this proof does not provide an estimate for A(f). Of course if
f(t) = t? we have \(f) = 2. We will calculate \(f) for f(t) = t* below but
in general it seems too complicated to explicitly estimate the indices for [¢|P.

Proposition 2.6. Let Cy, be the class of all convex polynomials of degree
at most 2n where n € N. Then Ca, is uniformly tame.

Let us denote the polynomials of degree n by P,_1. The proposition is
an immediate consequence of the following lemma.

Lemma 2.7. Let o, be the largest root of the Legendre polynomial P, of
degree n. Then for any convex polynomial ¢ € Pay, with p(0) = ¢'(0) we
have

2
to'(t) < 1 o(t) 0<t<oo
- Un

and these constants are best possible.
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Proof. Let o,, i1, be the optimal constants such that

1 1
/ tf(t)*dt < an/ f®)*dt,  fePu,
0 0
and
1 1
/ tf(t)*dt > un/ f(t)?dt, f€Pn.
0 0

Let us pick a nonzero polynomial g € P,,_1 such that

1 1
2 = 0p 2 .
/0 tg(t)? dt = /0 g(t)? dt

Then for any polynomial f € P, 4

/1 t(g(t) +0f (1) dt < oy, /l(g(t) +0f(t))dt —00<f <00
0 0

which leads to the fact that

1 1
/ L) f(t) dt = o, / g(D)f(t) dt
0 0

or (t —oy,)g(t) is a polynomial of degree n which is orthogonal to P,_1 in
L5(0,1). Hence (t—0,)g(t) = c¢P,(2t—1) and so o, is aroot of P, (2t—1) = 0.
In particular 20, — 1 < ay, Le., o, < %(1 + ay). On the other hand if we
choose go(t) = P,(2t—1)/(2(t — ;) — 1) then by using Gaussian quadrature
(see [2] p. 343) to perform the integration it is clear, since go(t)?,tgo(t)? €
Paon_1, that

1 1
/0 tgo(t)? = %(1 + a")/o go(t)? dt.

Thus 0, = (1 + @y,). Similarly we have p, = £(1 — a,). Thus

1—a, [* 2 ! 2
(2.7) . /0 £(1) dtg/o LE(E)? dt

1+

<
B 2

1
on /0 F@02dt,  fePan.

This in turn implies

1—%8 ° 2 ° 2
es) 15 /0 F)2dt < /O LE()? dt

1+«
2

<

s/ f(t)?dt, fe€Pu_1, s>0.
0

Now if ¢ is a convex function in Pa, 1 then ¢”(t) > 0 for all ¢ € R and
so we can write " (t) = > 7%, fi(t)? where f; € Pno1. If (0) = ¢/(0) = 0
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then if s >0

I PR Y
o(s) = /0 ( t);f](t) di

s T 1 . s T
s/ X st T X st

1—a,

=— s/ ().

Clearly if we define o(t) so that ¢"(t) = go(t)?> as above the estimate is
optimal. This gives

v

2
1—a,

sl(s) < o(s),  s>0. 0

Notice that the lemma gives a more precise estimate of the index of f € C,,:

Proposition 2.8. If f € C,, then

2
Af) = T

and this estimate is sharp.
Proposition 2.9. If f(t) = t* then A\(f) = 3+ V/3.

Proof. Note that s = 1/v/3 and by the proof of Lemma 2.7 if ¢”(t) =
((2t —1) — 1//3)? then A(¢) = 3 + /3. This implies A(f) =3+ 3. O

If n > 3 it may be shown that 2n < A\(t?") < 2(1 — a,,)~'. It seems that
the index for a power function |¢[P for arbitrary p cannot be given by elegant
formula.

We conclude this section with some further remarks on tame scalar convex
functions. If f : R — R is a convex, its second derivative (as a distribution) is
a positive locally finite Borel measure d* f = p. Then ula,b) = f"(b)— f (a).

We recall that a measure i defined on R is doubling if there is a constant
C such that p([s — 2t,s +2t]) < Cu([s —t,s +t]) for all s € R and ¢ > 0.

Proposition 2.10. If f : R — R is a convex function, then f is tame if
and only if p = d*f is a doubling measure.

Proof. Let ps(t) = f(s+t) + f(s —t) — 2f(s). The functions
{ps: —0 < s < o0}

satisfy a uniform As-condition if and only the functions
{phy 1 —00 < s < o}

also satisfy a uniform As-condition and this is equivalent to the doubling
condition for pu. O
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Now suppose F' : [0,00) — R is an Orlicz function. We extend F' to R by
setting F'(t) = F(—t) if t < 0. It is easy to see that F' (or its extension to
R) is then tame if and only if p([s — 2¢, s+ 2t]) < Cu([s —t, s +t]) whenever
0 <t < s. Thus an Orlicz function F' is tame if and only if

F(t)z/o(t—s)d,u(s), t>0

where p is a doubling measure.

Proposition 2.11. Let F' be a continuously differentiable Orlicz function
such that there exist 0 < a < b < oo so that F'(t)/t* is increasing and
F'(t)/t* is decreasing for t > 0. Then F is tame.

Proof. Note that I’ satisfies a Ay-condition. Let
gs(0) = F'(1+0)s) — F'((1 —0)s), s>0,0>0.

It will be enough to show that the functions {gs : s > 0} satisfy a uniform
Ao-condition. This follows from the following two estimates. For 8 > 1 we
note that

F'(0s) < F'(1+60)s)— F'((1—-0)s) <2F'((1+0)s) < 2F’'(20s)
and so
F'(0s) < gs(0) < 2F'(20s) < 2"H1F'(s), 6> 1.
On the other hand if 0 < # < 1 then
(L+0)* = (1=0)")F'(s) < g5(0) < (1+6)" = (1= 0)")F'(s),

which implies
2aF"(5)0 < go(0) < 2°F'(s)0. O

Remark. The proposition is equivalent to the statement that F” is quasi-
symmetric; see [8] for the precise definition. Not every tame Orlicz function
satisfies the conditions of this proposition. In fact, these conditions imply
that u = d?>F is absolutely continuous with respect to Lebesgue measure,
and not every doubling measure is absolutely continuous (see [8] p. 107 for
a discussion).

3. Convex functions on Banach spaces

We now turn to the study of tameness for a continuous convex function
on a Banach space X. We will say that a convex function f : X — R is
proper if lim o0 f(7) = 00.

The following theorem follows immediately from Theorem 2.3. We refer
to [3] for background on differentiability of convex functions.

Theorem 3.1. Let X be a Banach space and let f : X — R be a continuous
convez function. The following are equivalent:

(i) f is tame.
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(ii) f is Gateaux differentiable and there exists a constant A < oo such that
B-1) (y=2,VI(y)=Vf(2)) <AMf(y)=(Vf(2),y—2)-f(z)), wyeX

As in the scalar case we define the indez A = A\(f) of a tame continuous
convex function to be the optimal constant such that for z,y € X,

(y—z,Vfy) = Vi) <Af(y) = (Vf(2),y — ) = f(z))
Notice that (3.1) implies the estimate

(3.2) (y—=,Vf(y) - Vf@) = N(fly) = (Vf(@)y—z) - f2)),
z,y € X.

where as before A = A/(A —1).

Corollary 3.2. Let X be a Banach space and let f : X — R be a tame
continuous convex function. Suppose X = X(f) is the index of f. If f
attains a minimum at a then there is a constant C' so that

f(x) = f(a) < Cmax(||z - al*, ||z — a| ).

Proof. Let C = max{f(z) — f(a) : |Jz —al| = 1}. The result follows from
the fact that

X (fla+tx —a) = f(a)
is increasing and

A (fa+t(z —a)) — f(a))
is decreasing in t for ¢ > 0 by Theorem 3.1. U
Corollary 3.3. Let X be a Banach space and let f : X — R be a tame

continuous convex function. Then f is continuously Fréchet differentiable
and f — V[ is locally Hélder continuous.

Proof. For any a € X the function g(x) = f(z)— (z—a, Vf(a)) is tame and
assumes a minimum at x = a. The estimate in Corollary 3.2 then implies
Fréchet differentiability. Furthermore for any u,z € X and 7 € R, we have

(Tu, Vf(z) = Vf(a)) < gz +71u) —g(z) < g(z + Tu) — g(a).
If0 < [x—al < 1/2 and |lu|| = 1 take 7 = ||z —a||; then we have an estimate
(u, Vf(x) = V() < Clz—a|¥!
by Corollary 3.2 where C' = C(a, f). Since u is arbitrary
IVf(@) = V@] <Clz—a¥",  |z—a| <1 O

Theorem 3.4. Let X be a Banach space and let f : X — R be a tame
continuous convex function with index N\ = X(f). If f is proper then f
assumes its minimum at a unique point a and there is a constant ¢ > 0 so
that

emin(|z —a|*, lz — a|¥) < f(2) - f(a).
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Proof. First we assume f attains its minimum at x = a. Pick R > 0 so
that inf{f(x) : |z —a| = R} = > 0. Then arguing as in the proof of
Corollary 3.2 we obtain

f(z) = f(a) > §min(|lz — al RN, o —a|YRTY)  zeX

and we also obtain the uniqueness of a.

We now turn to the general case; we show that f attains a minimum.
Note that f is uniformly continuous on bounded sets and bounded below.
Now let U be a nonprincipal ultrafilter on N let X;; be the corresponding
ultraproduct, i.e., the quotient of /o (X) by the subspace ¢y (X) of all
sequences & = (&), such that limy ||&,|| = 0. If we define fi; on £oo(X)
by fu(§) = limy f(&,). Then f = g o q where q : loo(X) — Xy is the
quotient map and g is easily seen to be a proper tame continuous convex
function. Thus g attains a unique minimum.

If f fails to attain a minimum there is a bounded sequence (&,)22, so
that, for some € > 0, ||&,, — &,|| > € for m # n and

7}1_)11;0]"({“) =inf{f(z): z€ X} =0,

say. But then
Ju(§1,62,...) = fu(§2,83,...) =0

so that
Q(§17 {27 .. ) = q(€27 637 .. )
and hence
liLI{Il ||£n - £n+1|| =0
contrary to hypothesis. U

If f: X — R is a tame proper continuous convex function we can define
its Fenchel dual f*: X* — R by

fr(@®) = sup((z, %) = f(x)) 2" € X"
reX

Note that by Theorem 3.4 the function © — f(z)— (z,z*) is also proper and
tame. Theorem 3.4 then implies that f* is well-defined and the supremum
is attained uniquely. Furthermore f* is continuous and convex.

Theorem 3.5. If f : X — R is a tame proper continuous convex function
with index A = X(f). Then f*: X* — R is also a tame proper continuous
convex function. Furthermore X is reflexive and A\(f*) = \.

Proof. It is clear that f* is proper since

fr@®) Z "] = sup f().

rEBx

Suppose z* € X*. Then there is a unique z € X such that
fa) + f(@") = (z,27),
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and then V f(x) = z*. Hence for any y* € X* we have

P = P = @y =) 2 0
so that x regarded as an element of X** belongs to the subdifferential
Vf*(y*) (which we do not yet know to be single-valued). Next suppose

y* € X* and let y be the unique solution of (y,y*) = f(y) + f*(y*), so that
y* =V f(y). Thus by Theorem 3.1 we have

(y—zy" —27) <Af(@) = (& —y,97) = [(v))
=A@, 2%) = f(=%) = (x =y, 4") = (W, 4") + F7(y7))
= M) = ) = Gy — ),
Now, for fixed z*,u* € X*, consider the function
(D) = £+ tu) = £(") — tlo o)
(where as before (z,z*) = f(z) + f*(z*). If h is differentiable at some ¢
then setting y* = a* + tu* it is clear that h/(t) = (y — x, u*) where (y,y*) =
F@W)+f*(y*). Hence th'(t) < Ah(t) for —oo < t < co. Since h is nonnegative,
convex and h(0) = 0 we deduce that h(t) + h(—t) satisfies a Ay-condition
with constant 2*. Thus f* is tame and is Gateaux differentiable everywhere.
We deduce that V f*(z*) can be identified with € X where f(x)+ f*(z*) =
(x,z*). Hence A(f*) < A.
To see X is reflexive, suppose z** € X**. Then z* — (z*, ™) — f*(a™)
attains its minimum at some z*; but then z** = Vf*(2*) € X. Now since

= f we deduce \(f*) = A(f). U

We conclude this section by showing that the weak dual greedy algo-
rithm can be used to find the minimum of a proper tame continuous convex
function.

Theorem 3.6. Let f be a proper tame continuous convex function on a
Banach space X. Then for any dictionary and any initial point, the weak
dual greedy algorithm with weakness 0 < ¢ < 1 yields a sequence converging
to the minimizer of f.

Proof. We suppose a is the unique minimizer of f. Let D be a dictionary
and suppose xg € X. We define the sequences (z,,)72, C X, (d,)2>, C D
and (£,)2°, € [0,00) so that

(33) <dn7 Vf(ajn—l» > csup(d, Vf(ajn—l» n = 17 27 ey
deD

(3.4) fan_1 —tndy) = ;Izlgf(l‘n_l — tdy)
and

(3.5) Ty = Tp_1 — tndy.
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First suppose Y o~ t, < oo. Then the sequence ()22, is convergent
to some u € X. Then V f(z,) is also norm convergent to V f(u) by Corol-
lary 3.3. But, since (d,,,Vf(x,)) =0,

(dn, Vf(u))| < [V f(u) =V f(zn)]l
and
(dn, Vf(u) = Vf(@n-1))] < [IVf(u) =V f(zna)l
so that
lim [(d,,Vf(xn,-1))] =0

which implies
lim sup |(d, V' (z)])] = 0.

= deD
Thus
(d,Vf(u)) =0, deD
and this means that Vf(u) =0, i.e., u = a.
Now let us consider the case when >, ¢, = oo. In this case we must

have t,, > 0 for all n, since ¢, = 0 implies ¢; = 0 for j > n.
Now since (dy,, V f(z,)) =0,

tn<dn, Vf(xn—l» < )\(f(l‘n—l) - f(ajn))
and hence by (3.3),
(3.6) sup tul(d, V.f(@n-1))] < AT (f(@n-1) = f(@n))-

Notice that the sequence (f(zy))52; is monotonically decreasing and
bounded below by f(a). If s, = t; + --- + t, then arguing as in [7] we
have > t, /s, = oo and since > (f(xn—1) — f(zn)) < oo we may find a
subsequence M of N so that

sn((f(ajn—l) - f(ajn))

lim =0.
neM tn

Hence by (3.6)

(3.7) lim s, sup [(d, V f(x,—1)| = 0.
neM  gep

Let 2* be any weak*-cluster point of the (bounded) sequence (V f(2y,—1))nem-
Then by (3.7) and since lim,, . s, = 00 we have (d, z*) = 0 for every d € D,
which implies that z* = 0. Thus 0 is the only weak*-cluster point of the
sequence (Vf(xn—1))nem. It follows that the sequence (V f(zp—1))nem is
weak™*-convergent to 0.

Returning to (3.7), we deduce that

n—1
;L%Etj<dj, Vf(wn-1)) =0,
]:
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or

(3.8) lim <1‘0 — Tn—1, Vf(l‘n_l» =0.

neM

Since (V f(zp—1))nem is weak*-convergent to 0,

lim (2,1 — a,V f(zp—1)) = 0.
neM

Now
0 < f(zn-1) — fla) < (@n-1 —a,Vf(zn-1))

and so lim,en f(2,—1) = f(a). By monotonicity this implies
lim f(zn) = f(a)
n—oo

and by Corollary 3.2, lim,,_,« ||z, — al| = 0. O

4. Property (T')

We start by giving an equivalent formulation of property (I'). We recall
the definition of property (I') was given in (1.1).

Proposition 4.1. Let X be a Banach with a Gateauzx differentiable norm.
Then X has property (T') if and only if there is a constant (3 such that

(4.1) 1= (z,Jy) <B(L—(y,Jx)), |zl =[lyl =1.
Proof. Suppose X has property (T'), i.e., there is a constant C' so if (z, Jz) =
0 then
(2, J(z + 2)) < C(lo + z[| = [l])-

We may assume C' > 1. Assume [jz| = [ly]| = 1 and let (y,Jx) = o
and (z,Jy) = 7. If 0 < (C —1)/(C + 1) then since 7 > —1 we have
l1-7)<(C+1)(1—-0). Ifo>(C—-1)/(C+1) we have

1-7)=(@'=7)= (71 =1)

-1

= <O-_1y_$v<]y> (U - 1)
<C(loe 'yl =1) = (7" = 1)
=(C—-1)o (1 -0)

< (C+1)(1 - o).

Thus (4.1) holds with g = C + 1.
Conversely assume (4.1) holds. Assume that ||z]| = 1 and (y, Jx) = 0.
Let 0 = ||z + y||. Then we have

1— (v, J(x+y) =1—(z,J(c (z+y) <A -0z +y, Jz)).
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Hence
(v, J(x +y)) =0 — (2, J(x +y))
<o—-1+81-071
<(B+1)(c—1).
Thus (1.1) holds with C'= g + 1. O

Theorem 4.2. Let X be a Banach space and let f : X — [0,00) be a proper
tame continuous function such that f(0) =0 and f(x) = f(—x) forz € X.
Let

|z||f =inf{A>0: f(z/\) <1} r e X.

Then || - ||¢ is an equivalent norm on X with property (I).
Proof. Let A be the index f. Then
(42)  min(jz]}, 2]}) < f(2) < max(e|}, 2l}) @€ X.

By Theorem 3.4 this ensures that || - || is equivalent to the original norm
on X. Suppose z € X and f(x) = 1. Then if (y, Vf(z)) = 0 we have

i & 1Y) — f(2)

t—0 t

=0

and hence by (4.2)
el -1
t—0 t
This implies that V f(z) is a multiple of the unique norming functional Jz
for (X,||-|lf) at . In particular the norm || - || s is Gateaux differentiable. It
also follows from (4.2) that, if J denotes the duality map for || - ||, we have
Jx = 0(z)" 'V f(z) whenever |z|/; = 1, where N < 6(z) < .
Next suppose ||z||f = [|z]|f =1, i.e., f(z) = f(z) = 1. Then

(z=2,Vf(z) = V[(2)) < Mz -2, Vf(z))

0.

and so
(z =z, Vf(2)) < (A= 1)z — 2, Vf(z))
From this we obtain
O(z)(1 —(x,Jz)) < (A—=1)0(x)(1 — (2, Jx)).
Using our estimate on 6(z),6(z) this implies
(4.3) (1—(x,J2)) < (A=1)*1 = (2, Jz)).
An application of Proposition 4.1 now gives the conclusion. ]

Theorem 4.3. Let (X,| - ||) be a Banach space. Then the following are
equivalent:
(i) X has property (I").
(ii) For some (respectively, every) 1 < r < oo the function f(z) = ||z||" is
tame.
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Proof. (i) = (ii). Let z — Jz be the duality map on X \ {0}. Then by
assumption there is a constant C' so that if (y, Jz) = 0 then

(v, J(x +y)) < Oz +yll = llz])-
Fix r > 1. For any z,y € X with |z|| = |ly|| = 1 let ¢ = v, , be defined by
Y(t) =z +ty]|" —rXt—1 t>0
where A = (y, Jx). Note that

sty = (1+ )@+ 1_f)\t(y—)\x)) 0<i<y.

Let
ot) =llz+ty —Az)| -1 t=0.

Note that

te'(t) = tly — Ao, J(z + t(y — Az))) < Cop(t) t>0.
Then

V)= Q4+ M)" 1+ o(1+M)"H)—rXxt—1  0<t< %
Now
YO =gl +h(0)  0<rsy
where
gt) =(1+X)" —rAXt—1

and

h(t) = (14 Xt)"@((1 + At) 7).
Here ¢ is convex but h need not be; h is, however, nonnegative for ¢ > 0.
Since the function [¢|" is tame there is a constant C; = C1(r) so that

1
tg'(t) < Chg(t) 0<t< 3
On the other hand
1
R(t) = rA(LHM) " Lo((T4HA) ) +(14+M)" 20 (14+A) M) 0<t< 3

Thus

th!(t) < Tl)‘++§h(t), 0<t< %
Since |A| <1 this gives a bound
th'(t) < Coh(t) 0<t< %
where Cy depends on C' and r. Combining we have
W) < Cl)  0<t<g

where C3 = max(C1, Cy).
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Now consider the function
p(t) = Yz y(t) + o, —y (@) = [z +tyl|" + [l —ty]" =2 t>0.

According to the above calculation we have

N

plt) < Cap(t)  t<

Note that
p(d) = (3/2) + (1/2) —2>0.
For ¢ > 2 we have
20" —1) < p(t) <2((t+1)" —1).
Combining these estimates it is clear that p satisfies a As-condition with
constant 7 independent of the choice of z,y with ||z|| = ||y|| = 1. Together
with the fact that [¢|” is a tame function we conclude by homogeneity that

||z||" is itself tame.
The converse follows from Theorem 4.2. O

We recall that a Banach space X is superreflexive if every ultraproduct
of X 1is reflexive and this is equivalent to the existence of an equivalent
uniformly convex norm on X (see [6] and [13]).

Theorem 4.4. Let X be a Banach space with property (I'). Then X has
a Fréchet differentiable norm and is both uniformly convexr and uniformly
smooth (hence X is superreflexive). Furthermore X* also has property (T').

Proof. Fréchet differentiability follows from Corollary 3.3.
Since ||z|? is tame with index A, say, if ||z|| = |ly| = 1 we have an
estimate

lz+tyl* + o —tyl> =2 < N (o +yIP + o -yl -2) <26 0<t<1L.
Similarly
Jo+tyl? + o — tyl? - 2> 2(¢/2  0<t<1.

These estimates imply that X is uniformly smooth and uniformly convex.
The function 1|/z||? is tame and hence so is its Fenchel dual £||z*||* on
X* by Theorem 3.5. Hence by Theorem 4.3 X* also has (I'). O

Remark. The fact that property (I') implies uniform convexity and uniform
smoothness was independently obtained by S. Gogyan and P. Wojtaszczyk.

Corollary 4.5. If X has property (I') and E is a subspace of a quotient of
X, then E also has property (T').

Remark. This is also proved in [7].

Corollary 4.6. Let X be a Banach space such that there is a proper tame
continuous convex function f: X — R. Then X is superreflexive.
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Proof. If f is proper tame convex function then so is $(f(z) + f(—x)).
Then we can apply Theorem 4.2 to show that X has an equivalent norm
with property I'. If X is a complex Banach space then we may use instead
2r)~ 27 f(e?z)df. O

5. Spaces with property (I')

If F' is an Orlicz function, we recall that F' is tame if t — F(|t|) is a tame
function on R.

Theorem 5.1. Let F' be an Orlicz function. Then Lp(0,00) has property
(") for the Orlicz norm (respectively the Luzemburg norm) if and only if the
Orlicz function F' is tame.

Proof. Suppose F' is tame; then F' satisfies the Ay condition and the A3-
condition. The functional

ﬂ@zémﬂmth

is continuous on L and is also clearly tame. Hence Ly has property (I') for
the Luxemburg norm by Theorem 4.2. If F* is the Fenchel dual of F' then
Lp~ also has property (I') for the Luxemburg norm. However L}. = Lp
with the Orlicz norm; now we can use Theorem 4.4 to deduce that L has
property (I') for the Orlicz norm.

Conversely suppose Ly (0,00) has property (I') for the Luxemburg norm.
Then L is superreflexive and so F' satisfies a Ay and a Aj-condition. This
implies the existence of 1 < p < g < 0o so that

min(o?, 0?)F(t) < F(ot) < max(o?,0?)F(t), 0<t<oo
and hence
min(|[z||”, [lz[|) < /0 F(lz(t)]) dt < max(||z|]”,[lz]|?), € Lp.

Now fix 0 < s < oo and define
Yo = (5 +DX(0,1(r(s)-1) T (5 = D)X
Let

L(F(s)~1,F(s)~1) —00 <t <oo.

%@Z/)NMWWM—L 0<t< o
0
and )
na(t) = lell® = 1 = (el + el =1, 0<t < oo

Then hg obeys a uniform As-condition for 0 < s < oo with constant Cp, say.
For ¢t > s we have

9s(2t)/gs(t) < 2F(3t)/F(2t) < Cy

where (1 is independent of s.
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For t < s we have
9s(2t) < (14 he(26)7% =1, g,(t) > (1 + hs(t))?/? —1
so that
q/2 _ q/2 _
gs(2t) (1 + hy(2t)) L oy L Cov) 1
gs(t) (14 hs(t))P/2 =1 ~o0<u<t (14+u)P/2 -1

say. Thus the functions g satisfy a uniform As-condition. However

<

= 027

gs(t) = %(S)(F(s b 1)+ F(s — 1) — 2F(s))

so we deduce that F' is tame.

If we assume Ly has property (I') for the Orlicz norm then we can argue
that F* is tame by the above reasoning and hence F' is also tame. U

If X is a Banach lattice we recall that X is said to be p-convex (where
p > 1) with constant M if we have
I(a1? + -+ |z < M|+ -+ e P)VP, 21 @0 € X
and g-concave (where g < oo) with constant M if we have
(lza )4 -+ DY < M (21 + -+ [l DV a2 € X

We refer to [12] pp. 40ff for a discussion of these concepts. If X is p-
convex and g-concave then it can always be renormed so that the respective
constants are both one ([12] p. 54). Furthermore X is superreflexive if and
only if X is p-convex and g-concave for some 1 < p < ¢ < oo (combine
Theorem 1.f.1 p. 80 and Corollary 1.£.13 p. 92 of [12].

Theorem 5.2. Let X be a Banach lattice which is p-convex with constant
one and g-concave with constant one, where 1 < p < q < co. Then X has
property (I').

Proof. First note that

(5.1) (1—|—t)p—1§§((1—|—t)q—1), 1<t < oo,
and
(5.2) (14 )UP -1 <2/Pp 0<t<1.

We next observe that there is a constant x > 2 such that

1+ 2¢7 + |1 — 2¢[ L4t + |1 —¢p\ VP
g L2+ ‘_19((' Hil | |> _1>

0<t<oo0.
Thus, using (5.3)

L Tt W Lt A
f— 2 .

2K 2K K
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Hence if z,y € X we have

1 1
2yt o2yl ot Y (el ey
2K 2K K - 2 '

Using g-concavity and p-convexity we have

1 1
lz+2yle |z =2l k=1, N (e eyl + Dz =yl
2K 2K K - 2 ’

Hence

lz + 2yl + ||z — 2y
2

(5.4) = [l

p _ P\ 4/P
Sﬁ<<||a:+y|| e ) _”qu>,

Now we show that x — ||x||? is tame. Thus we need show that all functions
of the form

1
p(t) = 5lla +tyl? +llo —tylP) =1, =0,

where ||z|| = |Jy|| = 1, satisfy a uniform As-condition. For ¢ > 1 we have an
estimate ct? < ¢(t) < CtP for uniform constants ¢, C. Hence we need only
consider the case t < 1. In this case, by (5.1), we have

<||96 +tyll? + [l —tyll? 1)

oty <2

=y 5

and by (5.2) we have

p _ P Q/P
<<ux+tyu ull tyl!) _1)9%@

Hence, combining with (5.4),

2ty||? — 2ty||?
oty < (Lt 200" a2t )
q

oy ((Haswyuu o — tyHP)‘f/p . 1)
< :

24/p
<™ ot
q
This then completes the proof. O

Remark. If X = Lr(0,00) is an Orlicz space then the hypotheses of The-
orem 5.2 hold if and only F(z/P) is convex and F(z'/9) is concave and this
implies that F’(z)/2P~! is increasing and F’(z)/29" ! is decreasing, i.e., we
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have the hypotheses of Proposition 2.11. Thus as remarked after Proposi-
tion 2.11 there are Orlicz spaces with property (I') which fail to be p-convex
and g-concave with constants one where 1 < p < g < o¢.

Corollary 5.3. A Banach lattice has an equivalent norm with property (I")
if and only if it is superreflexive.

Problem. Does every superreflexive space have a renorming with property
1?7

Theorem 5.4. Let X be a Banach space with property (I'). Then L,(R; X)
has property (I') whenever 1 < r < oo.

Proof. It is trivial to observe that || - ||" is tame on L,(R; X) since | - ||y is
tame. n

An even easier proof, which we omit, gives:

Theorem 5.5. Suppose X,Y have property (I'). Then X &,Y has property
(") whenever 1 < r < oo.

Theorem 5.6. Suppose X is a Banach space such that for some n € N,
|z + ty||*™ is a polynomial of degree 2n in t for all x,y € X. Then X has
property (I').

Proof. This follows from Proposition 2.6. U

Theorem 5.7. Let (Xg, X1) be a compatible pair of complex Banach spaces
each with property (I'). Then the complex interpolation spaces [Xo, X1lg
have (T') for 0 < 6 < 1.

Proof. The space [Xg, X1]g is isometric to a subspace of a quotient of
Ly(R; Xo) @2 La(R; X71) (see [1] p. 450). The conclusion follows from Theo-
rems 5.4 and 5.5. O

If H is a separable Hilbert space then, for 1 < p < oo, the Schatten
ideal S), consists of all compact operators 1" : H — ‘H whose singular values
(sn(T))5, satisty

[e%¢) 1/p
1T|s, = (Z sn(T)p> < 0.
n=1

Theorem 5.8. The Schatten ideals S, have property (I') when 1 < p < oc.

Proof. By Theorem 5.6 the spaces Sz, have property (I') as long as n € N.
Hence by Theorem 4.4 so do the spaces Sy, /(2n,—1). The result then follows
by complex interpolation (Theorem 5.7). O

Remark. It seems natural to ask if every two-dimensional real subspace of
S, embeds isometrically into L,, which would of course give an alternate
approach to such a result. This is true if p = 1 (since every two-dimensional
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real Banach space embeds into Li, see e.g., [11]), p = 2 and p = 4 (by a
result of Reznick [15] that every two-dimensional space such that ||z||* is a
polynomial embeds isometrically into L4 or even Ei. ).

Theorem 5.9. Let (X, X1) be a compatible pair of real Banach spaces
each with property (I'). Then the real interpolation spaces (Xo, X1)gp for
0<6<1andl<p<oo each have an equivalent norm with property (I').

Proof. We may define a norm on (X, X1)g, by

00 1/p
ol = ( [ty dt)
0

where
Ks(t; ac)2 = inf{||x0||§(0 + 7f2||91:1||§(1 Cx=ux9+ 11}

It is then clear that the functions Ks(¢; z)P are uniformly tame on X+ Xj.
Indeed (Xo + X1, Ks(t,-)) is isometric to a quotient of Xy @9 X7 which has
property (I') by Theorem 5.5. Hence ||z||P is also tame as a function on
(Xo, X1)a,p- O
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