
New York Journal of Mathematics
New York J. Math. 15 (2009) 265–282.

A pseudoconformal compactification of
the nonlinear Schrödinger equation and

applications

Terence Tao

Abstract. We interpret the lens transformation (a variant of the pseu-
doconformal transformation) as a pseudoconformal compactification of
spacetime, which converts the nonlinear Schrödinger equation (NLS)
without potential with a nonlinear Schrödinger equation with attrac-
tive harmonic potential. We then discuss how several existing results
about NLS can be placed in this compactified setting, thus offering a
new perspective to view this theory.
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1. Introduction

Let d ≥ 1 be an integer. We consider solutions u : I ×Rd → C of the free
(i.e., zero-potential) nonlinear Schrödinger equation

(1)
(

i∂t +
1
2
Δ
)

u = μ|u|p−1u

on a (possibly infinite) time interval I, where p > 1 is an exponent and
μ = ±1. For the algebraic manipulations below we shall assume that our
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solution has sufficient regularity and decay to justify all the formal calcula-
tions; standard limiting arguments (see, e.g., [8]) then allow us to utilise the
same computations for any regularity class for which one has a strong local
wellposedness theory.

The case μ = +1 is defocusing, while the case μ = −1 is focusing. This
equation enjoys the scale-invariance

(2) u(t, x) �→ 1
λ2/(p−1)

u

(
t

λ2
,
x

λ

)
for λ > 0, and also has the conserved mass

M(u) = M(u(t)) :=
∫
Rd

|u(t, x)|2 dx.

The L2-critical or pseudoconformal power p = 1+ 4
d is of special interest for

a number of reasons. Firstly, the conserved mass M(u) becomes invariant
under the scaling (2). Secondly, one also acquires an additional invariance,
the pseudoconformal invariance u �→ upc, where upc : −I−1 × Rd → C is
defined on the time interval −I−1 := {−1/t : t ∈ I} (assuming 0 �∈ I) by
the formula

(3) upc(t, x) :=
1

|t|d/2
u

(−1
t

,
x

t

)
ei|x|2/2t.

The pseudoconformal transform is an involution (thus (upc)pc = u) and
preserves the conserved mass

M(upc) = M(u)

and (as observed in [2]) more generally preserves the Lq
tL

r
x Strichartz norms

for all admissible (q, r) (i.e., 2 ≤ q, r ≤ ∞ and 2
q + d

r = d
2 with (d, q, r) �=

(2, 2,∞)):
‖upc‖Lq

t Lr
x(−I−1×Rd) = ‖u‖Lq

t Lr
x(I×Rd).

In particular we have

‖upc‖L
2(d+2)/d
t,x (−I−1×Rd)

= ‖u‖
L

2(d+2)/d
t,x (I×Rd)

.

We remark that if p is not the pseudoconformal power, and u solves (1),
then upc does not solve (1), but instead solves the very similar equation(

i∂t +
1
2
Δ
)

upc = μt
d
2
(p−1)−2|upc|p−1upc.

Note that the pseudoconformal transformation inverts the time variable,
sending t = 0 to t = ±∞ and vice versa. Because of this fact, this trans-
form has been very useful in understanding the asymptotic behaviour of free
nonlinear Schrödinger equations.

The purpose of this note is to highlight a close cousin of the pseudoconfor-
mal transformation, namely the lens transform which we will define shortly.
This transform, introduced in the study of NLS in [22], [25], [4], compactifies
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the time interval to (−π/2, π/2) rather than inverting it, and is thus very
analogous to the conformal compactification map of Penrose [24], which
has been useful in studying the asymptotic behaviour of nonlinear wave
equations (see, e.g., [11]). The one “catch” is that the lens transform intro-
duces an attractive quadratic potential 1

2 |x|2 to the linear component of the
Schrödinger equation, which changes the long-time dynamics (for instance,
the propagators for the linear equation are now time-periodic with period
2π). The lens transform was used in [5], [7] to study nonlinear Schrödinger
equations with harmonic potential, but we argue here that it can also be
used to clarify much of the theory concerning the free nonlinear Schrödinger
equation, particularly the portion of the theory concerning scattering and
uniform spacetime bounds. (Similar ideas appeared in [10].) In particular,
asymptotics at t → ±∞ are converted to asymptotics at t → ±π/2, thus
converting the global-in-time theory to local-in-time theory.

The results we present here are not new, being essentially due to earlier
work by other authors; thus the paper here is more of a survey than a
research paper. However we believe that the unifying perspective afforded
by the lens transform is not widely known, and thus hopefully of interest to
readers.

The author thanks Tonci Cmaric for pointing out that the results of Be-
gout and Vargas imply an inverse Strichartz theorem, and Remi Carles and
Jim Colliander for helpful corrections, references, and comments. The au-
thor also thanks the anonymous referee for helpful comments and correc-
tions.

2. The lens transform

Given any function u : I × Rd → C, we define the lens transform

Lu : tan−1(I) × Rd → C

of u on the time interval tan−1(I) := {tan−1(t) : t ∈ I} ⊂ (−π/2, π/2),
where tan−1 : R → (−π/2, π/2) is the arctangent function, by the formula

Lu(t, x) :=
1

cosd/2 t
u
(
tan t,

x

cos t

)
e−i|x|2 tan t/2.

Thus for instance, Lu(0, x) = u(0, x), or in other words the lens transform
does not distort the initial data. Its inverse is given by

L−1v(t, x) =
1

(1 + t2)d/4
v

(
tan−1 t,

x√
1 + t2

)
ei|x|2t/2(1+t2).

Like the pseudoconformal transform, the lens transform also preserves the
mass and Strichartz norms:

M(Lu) = M(u); ‖Lu‖Lq
t Lr

x(tan−1(I)×Rd) = ‖u‖Lq
t Lr

x(I×Rd).
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In particular the map u(tan t) �→ Lu(t) is unitary in L2
x(Rd) for each t, and

the pure Strichartz norm is preserved:

‖Lu‖
L

2(d+2)/d
x (tan−1(I)×Rd)

= ‖u‖
L

2(d+2)/d
x (I×Rd)

.

As observed in [22], [25], [4], if u solves (1), then Lu solves a nonlinear
Schrödinger equation with attractive harmonic potential:

(4)
(

i∂t +
1
2
Δ − 1

2
|x|2
)
Lu = μ| cos t| d

2
(p−1)−2|Lu|p−1Lu.

This is especially useful in the pseudoconformal case p = 1 + 4
d , in which

case we simply have

(5)
(

i∂t +
1
2
Δ − 1

2
|x|2
)
Lu = μ|Lu|4/dLu.

More generally, the equation (4) can be sensibly extended to all times t ∈ R
provided that we are in the scattering-subcritical regime p > 1 + 2

d , so that
the weight | cos t| d

2
(p−1)−2 is locally integrable. In the case of the scattering-

critical power p = 1 + 2
d or the scattering-supercritical powers p < 1 + 2

d the
equation (4) has more serious singularities at t = ±π/2 and the asymptotics
are more nonlinear here; see [23].

The lens transform is closely related to the pseudoconformal transforma-
tion, indeed one easily verifies the formula

Lupc(t, x) = Lu(t + π/2 mod π, x) for t ∈ (−π/2, π/2)

where s mod π is the unique translate of s by an integer multiple of π which
lies in the fundamental domain (−π/2, π/2]; note that tan(t+π/2 mod π) =
−1/ tan(t). Thus the lens transform conjugates the pseudoconformal trans-
formation to (essentially) a translation in the lens time variable (which is
the arctangent of the original time variable). Because of this, many argu-
ments in the literature which rely on the pseudoconformal transformation
can easily be recast using the lens transform instead. To give one very simple
example, observe that the harmonic energy of Lu(t),
(6)∫

Rd

1
2
|∇Lu(t, x)|2 +

1
2
|x|2|Lu(t, x)|2 +

μ

p + 1
| cos t| d

2
(p−1)−2|Lu(t, x)|p+1 dx

is equal to the classical energy of u(tan t),∫
Rd

1
2
|∇u(tan t, x)|2 +

μ

p + 1
|u(tan t, x)|p+1 dx

plus the pseudoconformal energy of u(tan t),∫
Rd

1
2
|(x + i tan t∇)u(tan t, x)|2 +

μ tan2 t

p + 1
|u(tan t, x)|p+1 dx.

In the pseudoconformal case p = 1 + 4
d , the harmonic energy of Lu is con-

served. Since the classical energy of u is also conserved, we conclude the
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conservation law for the pseudoconformal energy. For other values of p,
the harmonic energy of Lu enjoys a monotonicity formula, which yields the
standard monotonicity formula for the pseudoconformal energy. The scat-
tering space Σ = {u ∈ H1

x(Rd) : xu ∈ L2
x(Rd)}, which appears frequently in

the NLS theory, can now be interpreted naturally as the harmonic energy
space; a scattering result for Σ corresponds after the lens transformation to
a local wellposedness result in the harmonic energy class for (5) on the time
interval [−π/2, π/2].

Unfortunately, while the lens transform beautifully simplifies the pseudo-
conformal transformation, it makes the other symmetries of NLS, such as
space or time translation symmetry u(t, x) �→ u(t − t0, x − x0), the scaling
symmetry (2), and the Galilean invariance

(7) u(t, x) �→ eiv·xe−i|v|2tu(t, x − vt)

somewhat more complicated (though still explicit, of course). Only the com-
pact symmetries, namely the phase rotation symmetry u(t, x) �→ eiθu(t, x),
rotation symmetry u(t, x) �→ u(t, U−1x), and the time reversal symmetry
u(t, x) �→ u(−t, x), remain unaffected by the lens transform. Thus the lens
transformation (which can be viewed as a quantization of the lens map
(t, x) �→ (tan t, x

cos t)) “straightens out” the pseudoconformal transformation
while distorting some of the other symmetries.

The lens transform also clarifies the relationship between the free Schrö-
dinger equation (

i∂t +
1
2
Δ
)

u = 0

and the linear Schrödinger equation with attractive harmonic potential(
i∂t +

1
2
Δ − 1

2
|x|2
)

v = 0,

as it maps solutions of the former to solutions of the latter without distorting
initial data. Indeed, since the former equation has the fundamental solution

u(t, x) = eitΔ/2u0(x) :=
1

(2πit)d/2

∫
Rd

ei|x−y|2/2tu(0, y) dy

we obtain the Mehler formula (see, e.g., [14]) for the fundamental solution
of the latter,1 namely

v(t, x) =
1

(2πi sin(t))d/2

∫
Rd

ei|x−y|2/2 tan(t)v(0, y) dy.

1Strictly speaking, the lens transformation only permits one to verify the Mehler for-
mula in the time interval t ∈ (−π/2, π/2). However, one then sees that solutions to this
equation are periodic in time with period 2π, either from this formula or via Hermite
function expansion. Of course, once a nonlinearity is introduced, there is no reason why
the solution to the equation (4) should continue to be time-periodic.



270 Terence Tao

The lens transform shows that the evolution of the NLS equation does
not really “stop” at time t = +∞ or t = −∞ (which correspond to the
times t = +π/2 and t = −π/2 in the lens-transformed coordinates), but in
fact continues on indefinitely beyond these points, providing of course that
the equation (4) is globally wellposed; thus the apparent noncompactness
of the time interval R is really an artefact of the coordinates rather than a
true noncompactness of the flow (at least in the scattering-subcritical case
p > 1 + 2

d). If the original solution u : R×Rd → C existed globally in time
and enjoyed the asymptotic completeness relations

(8) lim
t→±∞ ‖u(t) − eitΔ/2u±‖L2

x(Rd) = 0

for some u± ∈ L2
x(R

d) (which we refer to as the asymptotic states of u at
t = ±∞), then an easy computation using (recalling that L is linear and
unitary on L2 for any fixed time, and approximating u± in L2 by Schwartz
functions) shows that2

lim
t→±π/2

‖Lu(t) − û±‖L2
x(Rd) = 0

where û± is the Fourier transform of u±:

û±(x) :=
∫
Rd

e−ixyu±(y) dy.

Thus, asymptotic completeness in L2
x(Rd) transforms under the lens trans-

form to continuity in L2 at the endpoint times t = ±π/2; conversely, con-
tinuity of the lens-transformed solution at these times implies asymptotic
completeness. One can now cast the wave and scattering operators as the
nonlinear propagators of (4) between the times t = 0, t = +π/2, and
t = −π/2, composed with the Fourier or inverse Fourier transform at appro-
priate places; we omit the details. This may conceptually clarify some of the
scattering theory for NLS, such as that in [8], [23], [2]. The long-time non-
linear propagator of (4) can thus be factored into a product of the nonlinear
propagator of (1), the scattering operator, and the Fourier transform. The
long-time evolution of (4) is not well understood, even for small, spherically
symmetric data in the defocusing case, precisely because it involves iterating
the scattering operator (which can be viewed as a kind of Poincaré map for
this flow), which is itself not well controlled. See [6] for further discussion
of this iterated scattering operator.

Remark 2.1. One can think of the lens time variable tan−1 t as an angular
variable living on the unit circle S1, or more precisely on the universal cover
R of the circle. Since the circle S1 is the punctured plane R2\{0} quotiented

2Another way of viewing this is by observing that the Hermite propagator eit(Δ/2−|x|2/2)

(which quantizes a rotation of the phase plane {(x, ξ) : x, ξ ∈ Rd} by an angle t) is simply
equal to the Fourier transform at t = π/2, which gives another explanation of the fact
that this propagator is periodic of period 2π.
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out by dilations, the lens time variable can thus be thought of as living in
the universal cover of that punctured plane, quotiented out by dilations.
The ordinary time variable t then lives on a vertical line {(1, y) : y ∈ R}
of the punctured plane, lifted up to the universal cover and quotiented by
dilations. The pseudoconformal transformation (3) 1/t for t > 0 uses a
different coordinate chart, based on the horizontal line {(x, 1) : x ∈ R} in
the punctured plane, lifted up and quotiented as before. (For t < 0 one
uses the horizontal line {(x,−1) : x ∈ R}.) Thus the universal cover of the
punctured plane, quotiented by dilations, can be viewed as a “universal”
time axis, and all the other time variables viewed as co-ordinate charts.

Remark 2.2. There is an analogue of the lens transform for the repulsive
harmonic potential, in which the trigonometric functions are replaced by
their hyperbolic counterparts. This transform is no longer a time compact-
ification (it transforms t to tanh−1 t; instead, its inverse is a time compact-
ification, thus a bounded interval in the original time variable maps to an
unbounded interval in the transformed variable. See [4].

3. Application to pseudoconformal NLS

To illustrate the simplifying conceptual power of the lens transform, we
review the recent result in [1], [18] regarding equivalent formulations of the
L2 global existence problem for the pseudoconformal NLS

(9)
(

i∂t +
1
2
Δ
)

u = μ|u|4/du.

It is known (see [15], [9], [8]) that for initial data u0 ∈ L2
x(Rd), there is

a unique maximal Cauchy development u : I × Rd → C in the space
C0

t,locL
2
x(I × Rd) ∩ L

2(d+2)/d
t,loc L

2(d+2)/d
x (I × Rd) for some interval I ⊂ R,

and that this solution is global (so I = R) if the mass M(u) = M(u0)
is sufficiently small. A similar statement is known for the lens-transformed
equation

(10)
(

i∂t +
1
2
Δ − 1

2
|x|2
)

v = μ|v|4/dv

(see [4], [5]; one can also deduce this fact from the preceding one via the
lens transform and time translation invariance). We remark that the time-
translation invariance v(t, x) �→ v(t − t0, x) of (10) is manifestly obvious
for the lens-transformed solution v, but corresponds to a rather unintuitive
invariance for the original solution u, namely

u(t, x) �→ (1 + s2)d/4

(1 + ts)d/2
u

(
t − s

1 + ts
,
x
√

1 + s2

1 + ts

)
ei|x|2s/2(1+ts)

where s := tan t0; note that the pseudoconformal transformation (3) is the
limiting case s = ±∞. The power of the lens transform lies in the fact
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that this nontrivial invariance of the original equation can be manipulated
effortlessly in the lens-transformed domain.

It is conjectured that the equation (9) has global solutions (with globally
finite L

2(d+2)/d
t,x norm) for any finite-mass initial data in the defocusing case

μ = +1, while in the focusing case μ = −1, the same is conjectured for
masses M(u) < M(Q) less than that of the ground state Q, defined as
the unique positive radial Schwartz solution to the ground state equation
1
2ΔQ + Q1+ 4

d = Q. Furthermore, the L2(d+2)/d norm is conjectured to be
bounded by a quantity depending only on the mass. As is well-known,
by starting with the soliton solution u(t, x) = eitQ(x) to (9) and applying
the pseudoconformal transform one can obtain solutions of this equation
with mass M(Q) which blow up in finite time, which shows that this above
conjecture is sharp.

As mentioned earlier, this conjecture is known to be true for sufficiently
small mass, and has also recently been established for spherically symmetric
data in a series of papers [32], [33], [20], [19]. At this time of writing, the
conjecture remains open in general.

Ordinarily, global existence is a weaker statement than asymptotic com-
pleteness, or of global spacetime bounds. However, a curious fact, recently
established in [18] in one and two dimensions, and in [1] in general dimen-
sions (with the connection to (10) essentially in [4]), is that these statements
are in fact logically equivalent:

Theorem 3.1 ([18], [1], [4]). Let p = 1 + 4
d , μ = ±1, and m > 0 be fixed.

Then the following claims are equivalent.

(i) (Global wellposedness of (9)) For every u0 ∈ L2
x(Rd) with M(u0) < m,

the maximal Cauchy development u to the equation (9) with data u0 is
global in time.

(ii) (Asymptotic completeness of (9)) For every u0 ∈ L2
x(Rd) with M(u0) <

m, the maximal Cauchy development u to the equation (9) with data
u0 is global in time, and furthermore there exist u+, u− ∈ L2

x(Rd) for
which (8) holds.

(iii) (Nonuniform spacetime bounds for (9)) For every u0 ∈ L2
x(Rd) with

M(u0) < m, the maximal Cauchy development u to the equation (9)
with data u0 is global in time, and the L

2(d+2)/d
t,x (R×Rd) norm of u is

finite.
(iv) (Uniform spacetime bounds for (9)) There exists a function

f : [0,m) → [0,+∞)

such that for every I ⊂ R and u ∈ C0
t L2

x(I × Rd) ∩ L
2(d+2)/d
t,x (I × Rd)

solving (9) with M(u) < m, we have the a priori spacetime bound

‖u‖
L

2(d+2)/d
t,x (I×Rd)

≤ f(M(u)).
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(v) (Global wellposedness of (10)) For every u0 ∈ L2
x(R

d) with M(u0) <
m, the maximal Cauchy development u to the equation (10) with data
u0 is global in time.

(vi) (Uniform spacetime bounds for (10)) There exists a function

f : [0,m) → [0,+∞)

such that for every I ⊂ R and v ∈ C0
t L2

x(I × Rd) ∩ L
2(d+2)/d
t,x (I × Rd)

solving (10) with M(v) < m, we have the a priori spacetime bound

‖v‖
L

2(d+2)/d
t,x (I×Rd)

≤ (1 + |I|)d/2(d+2)f(M(v)).

Proof. Equivalence of (i) and (v). From the lens transformation (which is
mass-preserving, and also preserves the C0

t L2
x and L

2(d+2)/d
t,x norms) we see

that global wellposedness of (9) is equivalent to local wellposedness of (10)
on the time interval (−π/2, π/2). But from time translation invariance (and
mass conservation and uniqueness) we see that the local wellposedness of
(10) on this interval is equivalent to global wellposedness.

Equivalence of (v) and (ii). Clearly (ii) implies (i), which we know to be
equivalent to (v). On the other hand, (v) implies (ii) from the lens transform
and the discussion in the introduction concerning (8).

Equivalence of (v) and (iii). Clearly (iii) implies (i), which we know to
be equivalent to (v). On the other hand, (v) implies (iii) since the lens
transform preserves L

2(d+2)/d
t,x norms. Note how the local spacetime norm of

Lu is used to control the global spacetime norm of u.
Equivalence of (iv) and (vi). The implication of (vi) from (iv) follows

from the fact that the lens transform preserves L
2(d+2)/d
t,x norms. Conversely,

from (iv) and the lens transform we obtain (vi) for intervals I contained in
(−π/2, π/2); the claim then follows from time translation invariance (and
mass conservation and the triangle inequality).

Implication of (i) from (iv). This follows immediately from the local
wellposedness theory in [9], which among other things asserts that the max-
imal Cauchy development of an L2 solution to (9) is not global only if the
L

2(d+2)/d
t,x norm is infinite.
Implication of (iv) from (i). Note that we already know that (i) is equiv-

alent to (ii), (iii), (v), so we may use these results freely. This implication
was established in [1], following the induction-on-energy ideas of Keraani
[18] (see also [21]; related arguments also appear in [3], [12], [33]); in higher
dimensions d > 2 the key harmonic analysis tool being the bilinear restric-
tion estimate of the author [28]. We can sketch a slightly simpler version of
their argument (avoiding the full concentration-compactness machinery) as
follows. Here we will avoid using the lens transform as it distorts the other
symmetries G of the NLS equation, which we will now need to exploit.

Let δ0 be the supremum of all m for which (iv) holds; our task is to
show that δ0 ≥ m. Suppose for contradiction that δ0 < m. Then we could
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find a sequence un of global solutions to (9) with M(un) < δ0 such that
‖un‖L

2(d+2)/d
t,x (R×Rd)

was finite (by (iii)) but unbounded. Let un,− be the

asymptotic scattering state at t = −∞, thus M(un,−) < δ0 and un(t) ap-
proaches eitΔ/2un,− in L2

x(R
d) as t → −∞. From the small data theory

we know that ‖eitΔ/2un,−‖L
2(d+2)/d
t,x (R×Rd)

≥ εd > 0 for some absolute con-

stant εd depending only on dimension, as otherwise un would be bounded
in L

2(d+2)/d
t,x (R×Rd) norm. Applying the inverse Strichartz theorem (The-

orem A.1 in the appendix) in the contrapositive, we thus see that un,− is
not weakly convergent with concentration to zero, or in other words there
exist group elements gn ∈ G (where G is defined in the appendix) such that
gnun,− does not weakly converge to zero. We observe that the group G acts
on C0

t L2
x∩L

2(d+2)/d
t,x solutions to (9) in a natural manner3 which is consistent

with its action on the scattering data at −∞, and which also preserves the
mass and the L

2(d+2)/d
t,x (R × Rd) norm. Thus without loss of generality we

may take gn to be the identity for all n.
Since un,− is bounded in L2

x(Rd) and not weakly convergent to zero, we
thus conclude by weak sequential compactness of the L2

x ball that after
passing to a subsequence (which we continue to call un,−), there exists a
nonzero u− ∈ L2

x(Rd) with 0 < M(u−) ≤ δ0 < m such that un,− converges
weakly to u−. By the hypothesis (v) and the lens transform, we can find a
global solution u ∈ C0

t L2
x∩L

2(d+2)/d
t,x with finite L

2(d+2)/d
t,x norm which has u−

as its asymptotic state at −∞. Also, if we split un,− = u− +vn,−, then from
Pythagoras’s theorem and the weak convergence of vn,− to zero we have

lim sup
n→∞

M(vn,−) = lim sup
n→∞

M(un,−) − M(u−) ≤ δ0 − M(u−) < δ0.

Thus by construction of δ0, we thus see that (for n sufficiently large) there
are global solutions vn ∈ C0

t L2
x ∩ L

2(d+2)/d
t,x to (9) which have vn,− has their

asymptotic state, and whose L
2(d+2)/d
t,x norms are uniformly bounded in n.

Since vn,− converges weakly to zero, it is not difficult (using the Strichartz
wellposedness theory and the uniform spacetime bounds) to show that vn

also converges weakly to zero.4

Now split
un = u + vn + e.

3In particular, the linear time translation operator (12) acts on solutions to (9) by time
translation (i.e., by the nonlinear propagator), while the modulation operator (13) acts
on solutions to (9) by the galilean invariance (7).

4This is easiest to establish by duality, viewing vn as the linear evolution of the variable
coefficient (but self-adjoint) Schrödinger operator i∂t + 1

2
Δ − μ|vn|4/d with asymptotic

state vn,− at t = −∞. Testing vn against a spacetime test function ϕ then reduces
one to studying the solution w of the variable coefficient inhomogeneous equation (i∂t +
1
2
Δ − μ|vn|4/d)w = ϕ with asymptotic state 0 at t = +∞, but this can be controlled by

Strichartz estimates.
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One checks that e(t) → 0 in L2
x(Rd) norm as t → −∞, and that e solves the

equation

(i∂t + Δ)e = [F (u + vn + e) − F (u + vn)] + [F (u + vn) − F (u) − F (vn)]

where F (z) := μ|z|4/dz.
Since u, vn are uniformly bounded in L

2(d+2)/d
t,x (R×Rd) and vn converges

weakly to zero, one easily verifies that F (u + vn)− F (u) − F (vn) converges
strongly in L

2(d+2)/(d+4)
t,x (R × Rd) to zero (cf. [1, Lemma 5.5]). Standard

application of Strichartz wellposedness theory (estimating

F (u + vn + e) − F (u + vn)

pointwise by O(|e|(|e|+ |u|+ |vn|)4/d); see, e.g., [33]) and the uniform bounds
on u, vn then shows that e converges strongly in L

2(d+2)/d
t,x (R×Rd) to zero.

But this then implies that un is uniformly bounded in L
2(d+2)/d
t,x (R×Rd), a

contradiction. �
Remark 3.2. In one dimension d = 1, the equivalent statements in Theo-
rem 3.1 are also linked to the analogous statements for the L2-critical gen-
eralised Korteweg–de Vries equation, see [29]. These statements are also
stable under addition of further power nonlinearities which are larger than
the L2-critical power 1 + 4

d , but less than or equal to the H1-critical power
1 + 4

d−2 ; see [31].

Appendix A. The inverse Strichartz theorem

The standard Strichartz estimate (see, e.g., [27]) asserts that

(11) ‖eitΔ/2u0‖L
2(d+2)/d
t,x (R×Rd)

≤ Cd‖u0‖L2
x(Rd)

for all u0 ∈ L2
x(Rd) and some constant 0 < Cd < ∞. It is of interest to invert

this estimate by deducing necessary and sufficient conditions for which this
estimate is sharp. Such an inverse result is implicitly in [1] (following [18]
and [21]), but we state it explicitly here.

We first observe that both sides of (11) are invariant under the spatial
translation symmetry

u0(x) �→ u0(x − x0)
for any x0 ∈ R, the phase rotation symmetry

u0(x) �→ eiθu0(x)

for any θ ∈ R, the scaling symmetry

u0(x) �→ 1
λd/2

u0

(x

λ

)
for any λ > 0, the time translation symmetry

(12) u0(x) �→ e−it0Δ/2u0
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for any t0 ∈ R, and the modulation symmetry

(13) u0(x) �→ eiv·xu0

for any v ∈ Rd. — The latter is not immediately obvious, but follows from
the Galilean invariance (7) of the free linear Schrödinger equation

iut +
1
2
Δu = 0.

Let us use G to refer to the group of unitary transformations on L2
x(Rd)

generated by all these symmetries; this is a 2d + 3-dimensional noncompact
Lie group whose elements can be explicitly described, though we will not do
so here.5 Thus for all g ∈ G and u0 ∈ L2

x(Rd) we have

‖eitΔ/2gu0‖L
2(d+2)/d
t,x (R×Rd)

= ‖eitΔ/2u0‖L
2(d+2)/d
t,x (R×Rd)

and
‖gu0‖L2

x(Rd) = ‖u0‖L2
x(Rd).

We remark that this group G is a group of dislocations in the sense of
Schindler and Tintarev [26]. In other words, if gn ∈ G is any sequence of
group elements in G which has no strongly convergent subsequence (in the
strong operator topology on L2

x(Rd)), then gn necessarily converges to zero
in the weak operator topology.

Let us say that a bounded sequence un ∈ L2
x(Rd) converges weakly with

concentration to zero if the sequence gnun is weakly convergent to zero for
every choice of group element gn ∈ G, thus limn→∞〈gnun, v〉L2

x(Rd) = 0 for
all gn ∈ G and v ∈ L2

x(R
d). This convergence is a little stronger than weak

convergence, but certainly weaker than strong convergence. Nevertheless,
for the purposes of Strichartz estimates, it is “as good as” strong convergence
in the following sense:

Theorem A.1 (Inverse Strichartz theorem). Suppose that un ∈ L2
x(Rd) is

a bounded sequence in L2
x(Rd) which converges weakly with concentration to

zero. Then

(14) lim
n→∞ ‖eitΔ/2un‖L

2(d+2)/d
t,x (R×Rd)

= 0.

Proof. Fix the sequence �u = (un)∞n=1. We shall use the following asymptotic
notation:

• O(X) denotes any quantity bounded in magnitude by C(�u, d)X, where
0 < C(�u, d) < ∞ depends only on �u and d.

• o(X) denotes any quantity bounded in magnitude by c(n, �u, d)X, where
limn→∞ c(n, �u, d) = 0 for each fixed �u and d.

5The estimate (11) is also invariant under the pseudoconformal transformation, rota-
tion symmetry, the Fourier transform, and the quadratic modulation symmetry u0(x) �→
eiα|x|2u0(x), which increases the dimension of the symmetry group to d2

2
+ 3d

2
+ 4, but

we will not use these symmetries here as they are not needed for the inverse Strichartz
theorem.
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Thus for instance our hypotheses on �u imply that

‖un‖L2
x(Rd) = O(1) and 〈un, gnv〉 = ov(1)

for each fixed v ∈ L2
x(R

d) and all gn ∈ G, where we subscript o(1) by v to
indicate that the implied constant c(n, �u, d) can depend on v. Our objective
is to show that ‖eitΔ/2un‖

L
2(d+2)

d
t,x (R×Rd)

= o(1).

We consider the mesh of dyadic cubes Q in Rd (i.e., half-open cubes Q
with axes parallel to the coordinate axes, whose length 	(Q) is a power of
two, and whose corners have coordinates which are integer multiples of the
length). These cubes should be thought of as lying in Fourier space rather
than in physical space. We say that two cubes Q,Q′ are close if they have
the same length and are not adjacent (i.e., their closures do not intersect),
but their parents are adjacent. For any cube Q, let un,Q be the Fourier
restriction of un to Q, thus ûn,Q = 1Qûn. We write un,Q(t, x) for the free
solution eitΔ/2un,Q(x).

Observe that given any two distinct frequencies ξ, ξ′ ∈ Rd there is a unique
pair of close dyadic cubes Q,Q′ which contain ξ, ξ′ respectively. This gives
rise (as in [30]) to the Whitney decomposition

u2
n =

∑
Q,Q′ close

un,Qun,Q′

and hence

‖un‖2

L
2(d+2)

d
t,x (R×Rd)

=

∥∥∥∥∥
∑

Q,Q′ close
un,Qun,Q′

∥∥∥∥∥
L

d+2
d

t,x (R×Rd)

.

Thus it will suffice to show that

(15)

∥∥∥∥∥
∑

Q,Q′ close
un,Qun,Q′

∥∥∥∥∥
L

d+2
d

t,x (R×Rd)

= o(1).

Since un converges weakly to zero, one can easily show that un,Q(t, x)
converges pointwise to zero for each fixed t, x,Q. However, this convergence
is not uniform in t, x,Q. By using the stronger hypothesis that un converges
weakly with concentration to zero, however, one obtains the more uniform
estimate

(16) un,Q(t, x) = o(	(Q)d/2)

for all t, x,Q. Indeed one can use the group G to move t, x,Q to a compact
set, in which case the uniform estimate follows from the pointwise estimate
(observe that the frequency localisation to Q and the uniform L2 bounds on
un ensure that the un,Q are equicontinuous in n).

Let Q,Q′ be two close cubes. The bilinear restriction theorem from [28],
combined with a standard parabolic rescaling argument (see, e.g., [30] or [1,
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Corollary 2.3]) then ensures that

‖un,Qun,Q′‖Lq
t,x(R×Rd) = O

(
	(Q)d−

d+2
q

)
for any fixed d+2

d > q > d+3
d+1 . On the other hand, from (16) we have

‖un,Qun,Q′‖L∞
t,x(R×Rd) = o

(
	(Q)d

)
and hence by interpolation we have

(17) ‖un,Qun,Q′‖
L

d+2
d

t,x (R×Rd)
= o(1).

The point is that the right-hand side is uniform over all choices of close
cubes Q,Q′.

Now we sum over all close cubes Q,Q′. Observe (as in [30], [1], or in
the classical work of Córdoba [13]) that the spacetime Fourier transforms of
un,Qun,Q′ are supported in essentially disjoint cubes. Thus we may apply
the almost orthogonality estimate in [30, Lemma 6.1] to conclude∥∥∥∥∥

∑
Q,Q′ close

un,Qun,Q′

∥∥∥∥∥
L

d+2
d

t,x (R×Rd)

= O

(( ∑
Q,Q′ close

‖un,Qun,Q′‖p

L
d+2

d
t,x (R×Rd)

)1/p )

for some 1 < p < ∞ depending only on d. But from the bilinear restriction
estimate from [30, Theorem 2.3] (or by interpolating the estimate in [28]
with trivial estimates) and a parabolic rescaling argument we have

‖un,Qun,Q′‖
L

d+2
d

t,x (R×Rd)
= O(|Q|1− 2

q ‖ûn(0)‖Lq
ξ(Q)‖ûn(0)‖Lq

ξ(Q′))

for some 1 < q < 2 whose exact value is not important here.
Suppose for the moment that we could show

(18)

( ∑
Q,Q′ close

[|Q|1− 2
q ‖ûn(0)‖Lq

ξ(Q)‖ûn(0)‖Lq
ξ(Q′)]

r

)1/r

= Or

(
‖ûn(0)‖2

L2
ξ(Rd)

)
for all r > 1. Then by the uniform boundedness of un in L2

x we would have( ∑
Q,Q′ close

‖un,Qun,Q′‖r

L
d+2

d
t,x (R×Rd)

)1/r

= Or(1)
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and hence by (17) and by choosing 1 < r < p( ∑
Q,Q′ close

‖un,Qun,Q′‖p

L
d+2

d
t,x (R×Rd)

)1/p

= o(1)

from which (15) follows. Thus it suffices to show (18). Using the elementary
inequality ab ≤ 1

2a2 + 1
2b2 and noting that each cube Q has only O(1) cubes

Q′ that are close to it, we reduce to showing that(∑
Q

[|Q|1− 2
q ‖ûn(0)‖2

Lq
ξ(Q)]

r

)1/r

= O
(
‖ûn(0)‖2

L2
ξ(Rd)

)
.

This follows from [1, Theorem 1.3]; for the convenience of the reader we give
a short proof here. Setting f := |ûn(0)|q , p := 2/q, and s := rp it suffices to
show that (∑

Q

|Q| s
p
−s‖f‖s

L1
ξ(Q)

)1/s

= Os,p

(
‖f‖Lp

ξ(Rd)

)

for all s > p > 1 and f ∈ Lp
ξ(R

d). By the real interpolation method it
suffices to prove the restricted estimate(∑

Q

|Q| s
p
−s|Ω ∩ Q|s

)1/s

= Os,p(|Ω|1/p)

for all s > p > 1 and all sets Ω of finite measure. But since

|Ω ∩ Q|s ≤ |Ω ∩ Q|min(|Ω|, |Q|)s−1

we reduce to showing that∑
k

∑
Q:�(Q)=k

|Q| s
p
−s|Ω ∩ Q|min(|Ω|, |Q|)s−1 = Os,p(|Ω|s/p).

But the left-hand side sums to∑
k

(2dk)
s
p
−s|Ω|min(|Ω|, 2dk)s−1

which can be computed to be Os,p(|Ω|s/p) as claimed. �

Remark A.2. Theorem A.1 also follows immediately from the concentra-
tion compactness theorem in [1, Theorem 5.4]; conversely, that theorem
follows quickly from Theorem A.1, [1, Lemma 5.5], and the abstract concen-
tration compactness theorem in [26]. However the proof above, while using
many of the same ingredients as that in [1], uses slightly less machinery and
thus can be regarded as a more primitive (but nonquantitative) proof.

One can state Theorem A.1 in the contrapositive, in a manner which more
clearly explains the terminology “inverse Strichartz theorem”:
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Corollary A.3 (Inverse Strichartz theorem, again). Let d ≥ 1 and m, ε > 0.
Then there exists a finite set C ⊂ L2

x(Rd) of functions of norm 1 and an
η > 0 with the following property: whenever u ∈ L2

x(Rd) obeys the bounds

(19) ‖u‖L2
x(Rd) ≤ m; ‖eitΔ/2u‖

L
2(d+2)/d
t,x (R×Rd)

≥ ε

then there exists g ∈ G and v ∈ C such that |〈u, gv〉L2
x(Rd)| ≥ η.

Proof. Assume for contradiction that the corollary failed, then there exist
d,m, ε and a sequence un, each of which obeys (19), which is weakly con-
vergent with concentration to zero. But this contradicts Theorem A.1. �

Remark A.4. By going more carefully through the arguments in [1], one
can obtain more quantitative estimates here; indeed, for any fixed d, the
quantities η and #C will be some polynomial combination of m and ε. Fur-
thermore, for any fixed k ≥ 1, we can make the elements of C bounded in
the weighted Sobolev space Hk,k

x (Rd) with a norm which is polynomial in
m and ε. We omit the details.

References
[1] Bégout, Pascal; Vargas, Ana. Mass concentration phenomena for the L2-critical

nonlinear Schrödinger equation. Trans. Amer. Math. Soc. 359 (2007), no. 11, 5257–
5282. MR2327030 (2008g:35190).

[2] Blue, P.; Colliander, J. Global well-posedness in Sobolev space implies global
existence for weighted L2 initial data for L2-critical NLS. Preprint.

[3] Bourgain, J. Global solutions of nonlinear Schrödinger equations. American Mathe-
matical Society Colloquium Publications, 46. American Mathematical Society, Prov-
idence, RI, 1999. viii+182 pp. ISBN: 0-8218-1919-4. MR1691575 (2000h:35147),
Zbl 0933.35178.

[4] Carles, Rémi. Critical nonlinear Schrödinger equations with and without harmonic
potential. Math. Models Methods Appl. Sci. 12 (2002), no. 10, 1513–1523. MR1933935
(2004b:35298), Zbl 1029.35208.
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[7] Carles, Rémi. Linear vs. nonlinear effects for nonlinear Schrödinger equations
with potential. Commun. Contemp. Math. 7 (2005), no. 4, 483–508. MR2166662
(2006f:35260), Zbl 1095.35044.

[8] Cazenave, Thierry. Semilinear Schrödinger equations. Courant Lecture Notes in
Mathematics, 10. New York University, Courant Institute of Mathematical Sciences,
New York; American Mathematical Society, Providence, RI, 2003. xiv+323 pp. ISBN:
0-8218-3399-5. MR2002047 (2004j:35266), Zbl 1055.35003.

[9] Cazenave, Thierry; Weissler, Fred B. The Cauchy problem for the critical non-
linear Schrdinger equation in Hs. Nonlinear Anal. Theory Methods Appl. 14 (1990),
no. 10, 807–836. MR1055532 (91j:35252), Zbl 0706.35127.

http://www.emis.de/cgi-bin/MATH-item?0706.35127
http://www.ams.org/mathscinet-getitem?mr=1055532
http://www.emis.de/cgi-bin/MATH-item?1055.35003
http://www.ams.org/mathscinet-getitem?mr=2002047
http://www.emis.de/cgi-bin/MATH-item?1095.35044
http://www.ams.org/mathscinet-getitem?mr=2166662
http://www.emis.de/cgi-bin/MATH-item?1031.35119
http://www.ams.org/mathscinet-getitem?mr=1972872
http://www.emis.de/cgi-bin/MATH-item?1054.35090
http://www.ams.org/mathscinet-getitem?mr=2049023
http://www.emis.de/cgi-bin/MATH-item?1029.35208
http://www.ams.org/mathscinet-getitem?mr=1933935
http://www.emis.de/cgi-bin/MATH-item?0933.35178
http://www.ams.org/mathscinet-getitem?mr=1691575
http://www.ams.org/mathscinet-getitem?mr=2327030


Pseudoconformal compactification of NLS 281

[10] Cazenave, Thierry; Weissler, Fred B. Rapidly decaying solutions of the non-
linear Schrödinger equation. Comm. Math. Phys. 147 (1992) 75–100. MR1171761
(93d:35150), Zbl 0763.35085.

[11] Christodoulou, D.; Klainerman, S. Asymptotic properties of linear field equa-
tions in Minkowski space. Comm. Pure Appl. Math. 43 (1990) 137–199. MR1038141
(91a:58202), Zbl 0715.35076.

[12] Colliander, J.; Keel, M.; Staffilani, G.; Takaoka, H.; Tao, T. Global well-
posedness and scattering in the energy space for the critical nonlinear Schrodinger
equation in R3. Ann. of Math., to appear.

[13] Córdoba, Antonio. The Kakeya maximal function and the spherical summation
multipliers. Amer. J. Math. 99 (1977) 1–22. MR0447949 (56 #6259), Zbl 0384.42008.

[14] Feynman, R. P.; Hibbs, A. R. Quantum mechanics and path integrals (Interna-
tional Series in Pure and Applied Physics). Maidenhead, Berksh.: McGraw-Hill Pub-
lishing Company Ltd., 1965. 365 pp. Zbl 0176.54902.

[15] Ginibre, Jean; Velo, Giorgio. On a class of nonlinear Schrödinger equations.
I. The Cauchy problem, general case. J. Funct. Anal. 32 (1979) 1–32. MR0533218
(82c:35057), Zbl 0396.35028.

[16] Keel, Markus; Tao, Terence. Endpoint Strichartz estimates. Amer. J. Math. 120
(1998) 955–980. MR1646048 (2000d:35018), Zbl 0922.35028.

[17] Keraani, Sahbi. On the defect of compactness for the Strichartz estimates of
the Schrödinger equations. J. Differential Equations 175 (2001), no. 2, 353–392.
MR1855973 (2002j:35281), Zbl 1038.35119.

[18] Keraani, Sahbi. On the blow-up phenomenon of the critical nonlinear Schrödinger
equation. J. Funct. Anal. 235 (2006) 171–192. MR2216444 (2007e:35260),
Zbl 1099.35132.

[19] Killip, Rowan; Tao, Terence; Visan, Monica. The cubic nonlinear Schrödinger
equation in two dimensions with radial data. Preprint.

[20] Killip, Rowan; Visan, Monica; Zhang, Xiaoyi. The mass-critical nonlinear
Schrödinger equation with radial data in dimensions three and higher. Analysis and
PDE 1 (2008) 229–266. MR2472890.

[21] Merle, F.; Vega, L. Compactness at blow-up time for L2 solutions of the critical
nonlinear Schrödinger equation in 2D. Internat. Math. Res. Not. 8 (1998) 399–425.
MR1628235 (99d:35156), Zbl 0913.35126.

[22] Niederer, U. The maximal kinematical invariance groups of Schrödinger equa-
tions with arbitrary potentials. Helv. Phys. Acta 47 (1974) 167–172. MR0366263
(51 #2511).

[23] Ozawa, Tohru. Long range scattering for nonlinear Schrödinger equations in one
space dimension. Commun. Math. Phys. 139 (1991) 479–493. MR1121130 (92j:35172),
Zbl 0742.35043.

[24] Penrose, Roger. Conformal treatment of infinity. Relativité, Groupes et Topolo-
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ness principle. Revista Mathemática Complutense 15 (2002) 417–436. MR1951819
(2003j:35050), Zbl 1142.35375.

[27] Strichartz, Robert S. Restrictions of Fourier transforms to quadratic surfaces and
decay of solutions of wave equations. Duke Math. J. 44 (1977) 705–774. MR0512086
(58 #23577), Zbl 0372.35001.

http://www.emis.de/cgi-bin/MATH-item?0372.35001
http://www.ams.org/mathscinet-getitem?mr=0512086
http://www.emis.de/cgi-bin/MATH-item?1142.35375
http://www.ams.org/mathscinet-getitem?mr=1951819
http://www.ams.org/mathscinet-getitem?mr=1796440
http://www.emis.de/cgi-bin/MATH-item?0148.46403
http://www.ams.org/mathscinet-getitem?mr=0195547
http://www.emis.de/cgi-bin/MATH-item?0742.35043
http://www.ams.org/mathscinet-getitem?mr=1121130
http://www.ams.org/mathscinet-getitem?mr=0366263
http://www.emis.de/cgi-bin/MATH-item?0913.35126
http://www.ams.org/mathscinet-getitem?mr=1628235
http://www.ams.org/mathscinet-getitem?mr=2472890
http://www.emis.de/cgi-bin/MATH-item?1099.35132
http://www.ams.org/mathscinet-getitem?mr=2216444
http://www.emis.de/cgi-bin/MATH-item?1038.35119
http://www.ams.org/mathscinet-getitem?mr=1855973
http://www.emis.de/cgi-bin/MATH-item?0922.35028
http://www.ams.org/mathscinet-getitem?mr=1646048
http://www.emis.de/cgi-bin/MATH-item?0396.35028
http://www.ams.org/mathscinet-getitem?mr=0533218
http://www.emis.de/cgi-bin/MATH-item?0176.54902
http://www.emis.de/cgi-bin/MATH-item?0384.42008
http://www.ams.org/mathscinet-getitem?mr=0447949
http://www.emis.de/cgi-bin/MATH-item?0715.35076
http://www.ams.org/mathscinet-getitem?mr=1038141
http://www.emis.de/cgi-bin/MATH-item?0763.35085
http://www.ams.org/mathscinet-getitem?mr=1171761


282 Terence Tao

[28] Tao, Terence. A sharp bilinear restriction estimate for paraboloids. Geom. Funct.
Anal. 13 (2003) 1359–1384. MR2033842 (2004m:47111), Zbl 1068.42011.

[29] Tao, Terence. Two remarks on the generalised Korteweg–de Vries equation.
Discrete Cont. Dynam. Systems 18 (2007) 1–14. MR2276483 (2007k:35428),
Zbl 1123.35059.

[30] Tao, Terence; Vargas, Ana; Vega, Luis. A bilinear approach to the restric-
tion and Kakeya conjectures. J. Amer. Math. Soc. 11 (1998) 967–1000. MR1625056
(99f:42026), Zbl 0924.42008.

[31] Tao, Terence; Visan, Monica; Zhang, Xiaoyi. The nonlinear Schrödinger equa-
tion with combined power-type nonlinearities. Comm. PDE 32 (2007) 1281–1343.
MR2354495 (2009f:35324).

[32] Tao, Terence; Visan, Monica; Zhang, Xiaoyi. Global well-posedness and scat-
tering for the defocusing mass-critical nonlinear Schrödinger equation for radial data
in high dimensions. Duke Math. J. 140 (2007) 165–202. MR2355070.

[33] Tao, Terence; Visan, Monica; Zhang, Xiaoyi. Minimal-mass blowup solutions
of the mass-critical NLS. Forum Mathematicum 20 (2008) 881–919. MR2445122.

Department of Mathematics, UCLA, Los Angeles CA 90095-1555

tao@math.ucla.edu

This paper is available via http://nyjm.albany.edu/j/2009/15-14.html.

http://nyjm.albany.edu/j/2009/15-14.html
mailto:tao@math.ucla.edu
http://www.ams.org/mathscinet-getitem?mr=2445122
http://www.ams.org/mathscinet-getitem?mr=2355070
http://www.ams.org/mathscinet-getitem?mr=2354495
http://www.emis.de/cgi-bin/MATH-item?0924.42008
http://www.ams.org/mathscinet-getitem?mr=1625056
http://www.emis.de/cgi-bin/MATH-item?1123.35059
http://www.ams.org/mathscinet-getitem?mr=2276483
http://www.emis.de/cgi-bin/MATH-item?1068.42011
http://www.ams.org/mathscinet-getitem?mr=2033842


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.5
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


