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Heegaard splittings and virtually Haken
Dehn filling. II

Joseph D. Masters, William Menasco and Xingru
Zhang

Abstract. We use Heegaard splittings to give a criterion for a tunnel
number one knot manifold to be nonfibered and to have large cyclic
covers. We also show that a knot manifold satisfying the criterion admits
infinitely many virtually Haken Dehn fillings. Using a computer, we
apply this criterion to the 2 generator, nonfibered knot manifolds in
the cusped Snappea census. For each such manifold M , we compute a
number c(M), such that, for any n > c(M), the n-fold cyclic cover of
M is large.
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1. Introduction

This paper continues the project, begun in [18], of using Heegaard split-
tings to construct closed essential surfaces in finite covers of 3-manifolds.
The idea, based on the work of Casson and Gordon [5], is to lift a Hee-
gaard splitting of a 3-manifold to a finite cover in which there are disjoint
compressing disks on each side. By compressing the lifted Heegaard surface
along an appropriate choice of such disks, we hope to arrive at an essential
surface.

By a knot manifold we mean a connected, compact, orientable 3-manifold
whose boundary is a single torus. A tunnel system for a knot manifold M is
a collection {t1, . . . , tn} where the ti’s are disjoint, properly embedded arcs
in M , such that M −N(

⋃
ti) is homeomorphic to a handlebody. The tunnel

number of M , denoted t(M), is the minimal cardinality of a tunnel system
for M .

We focus attention on tunnel number one, nonfibered knot manifolds.
These are obtained by attaching a single 2-handle to a genus two handle-
body. We shall give a condition on the 2-handle which, if satisfied, ensures
that in all large enough cyclic covers, the lifted Heegaard splitting can be
compressed to obtain an essential surface. There is also a statement about
incompressibility after Dehn surgery.

Freedman and Freedman ([9]) have already proved that for any nonfibered
knot manifold, all but finitely many cyclic covers are large (i.e., contain
closed essential surfaces). Cooper and Long [7] then proved a result about
virtually Haken Dehn surgery for these manifolds, and also obtained a bound
on the number of excluded covers in terms of the genus of the knot.

However, our results provide a computational benefit. We computed, for
all of the 453 nonfibered, 2-generator knot manifolds in the SnapPea census,
a covering degree past which all cyclic covers are large, and the bounds
obtained are typically improvements over known bounds.

For other connections between Heegaard splittings and virtually Haken
3-manifolds, see [13], [14], [15], [17].

We wish to thank the referee for carefully reading the paper, and making
a number of helpful suggestions.

2. Definitions, notation, and statement of results

Let F be a connected, closed, orientable surface of positive genus. Recall
that a compression body W is a 3-manifold obtained from (F × I) by first
attaching a collection of 2-handles along disjoint curves in one component of
∂(F × I), and then capping off all resulting 2-sphere boundary components
with 3-balls. One of the boundary components of W is homeomorphic to F ,
and is called the outer boundary ofW , denoted ∂+W . The other components
of ∂W form the inner boundary, denoted ∂−W .
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If X is a 3-manifold with boundary, and S ⊂ X is a collection of disjoint
compression disks for ∂X, we let X/S = X − N̊(S). If X is a 3-dimensional
submanifold of a 3-manifold Y , and if S ⊂ Y − X̊ is a collection of disjoint
compression disks for ∂X, then we let X[S] denote X ∪N(S), where N(S)
is a regular neighborhood of S in Y − X̊ .

A disk system S for a compression body W is a set of disjoint compress-
ing disks for ∂W of minimal cardinality such that W/S has incompressible
boundary. We shall use some basic facts about compression bodies, which
can be found in [2].

A Heegaard splitting of a compact 3-manifold is a decomposition

M = W1 ∪F W2,

where the Wi’s are compression bodies with outer boundary homeomorphic
to F . The Heegaard genus of M , denoted g(M), is the minimal genus of
F for all such decompositions. If M has boundary, then a tunnel system
for M is a collection of properly embedded arcs in M , whose exterior is
a handlebody. The tunnel number of M , denoted t(M), is the minimal
cardinality among all tunnel systems for M . It is an elementary fact that,
if M is a knot manifold, then g(M) = t(M) + 1.

For the remainder of the paper, M will be a fixed knot manifold, with
incompressible boundary, and with t(M) = 1 and b1(M) = 1. Thus there is
a Heegaard splitting M = H ∪F W , where H is a genus 2 handlebody, and
W is a genus 2 compression body. Let D = D1 ∪D2 be a disk system for
H, and let E be the unique (up to isotopy) nonseparating compression disk
for W . We assume that E has been isotoped so that every component of
∂E − N̊(D) represents an essential arc in F − N̊(D).

Since b1(M) = 1, there is a unique surjective homomorphism φ : π1M →
Z, where Z is the free factor of H1(M). Let Mn denote the corresponding
n-fold cyclic cover, with M∞ denoting the infinite cyclic cover. Let Hn,Wn

and Fn be the preimages in Mn of H,W and F , respectively. Then

Mn = Hn ∪Fn Wn

is a Heegaard splitting of Mn of genus n+ 1.
Let α1, α2 ⊂ F be simple closed curves transverse to ∂D such that

|αi ∩Dj| = δij

(the Kronecker delta function). We also assume that α1 and α2 intersect
(nontransversely) in a single point p, which will be the base point for π1M ,
and we assign orientations to αi and ∂Di so that the algebraic intersection
numbers I(αi, ∂Di) are both +1. We call such pair of curves {α1, α2} dual
curves for the disk system {D1,D2} of H.

Lemma 2.1. We may choose a disk system D so that φ(α1) = 0 and
φ(α2) = 1.
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Proof. Suppose φ(αi) = ni, and that |n1| ≤ |n2|. Let δ be an oriented
embedded arc in α1∪α2 such that δ∩(D1∪D2) = ∂δ, and that its orientation
agrees with the orientation on α2, but disagrees with the orientation on α1.
Let D′

1 be a properly embedded disk in H obtained by band sum of D1 and
D2 along the arc δ, and let D′

2 = D2. Then obviously we may assume that
D′

1 and D′
2 are disjoint, and see that they form a disk system for H. Choose

α′
1 = α1, α′

2 = α2α
−1
1 . Then up to an obvious homotopy of α′

2 in ∂H,
we may consider α′

2 as a simple closed curve, and see that {α′
1, α

′
2} form a

dual curve pair for the disk system D′ = {D′
1,D

′
2} (with a suitable choice of

orientation for ∂D′
1). Further we have that φ(α′

1) = n1, and φ(α′
2) = n2−n1.

Now we replace the disk system D with the disk system D′, and repeat the
above procedure. Applying the Euclidean Algorithm, we may continue until
we have a disk system D for which φ(α1) = 0 (say) and φ(α2) = gcd(n1, n2).
Since Image(φ) = Z, n1 and n2 are relatively prime, so the resulting disk
system satisfies the requirements of Lemma 2.1. �

For the remainder of the paper, we shall assume that the disk system D
has been chosen as in Lemma 2.1.

Let p ∈ F − ∂D be a base point for M , and let p1, . . . , pn be the lifts to
Mn (where n ∈ Z+ ∪ {∞}), with the natural indexing. Let δ1, δ2 in F − ∂D
be arcs connecting p with ∂Di. Let Dj

i ⊂ Mn denote the lift of Di to Mn

corresponding to the lift of δi with base point pj. (In our notation, we have
suppressed the dependence of Dj

i on n, trusting the meaning to be clear
from context.) Note that Dj

1 is between Dj−1
2 and Dj

2. See Figure 1.
Let Igeo(·, ·) be the geometric intersection pairing, and for a loop � in F∞,

define the width of � to be:

width(�) = Max(j | Igeo(�,Dj
2) 	= 0) − Min(j | Igeo(�,Dj

2) 	= 0) + 2;

in the special case where � is disjoint from all Dj
2’s, we define the width

to be one. If � is a loop in F which lifts to F∞, and �̃ and �̃′ are any two
lifts to F∞, then width(�̃) = width(�̃′). Thus for any such loop, we define
width(�) = width(�̃), where �̃ is any lift of � to F∞.

Since E bounds a disk in W , then ∂E lifts to F∞, and we set (for the
remainder of the paper)

k = width(∂E).
Since ∂M is incompressible, then E intersects D1 and D2 nontrivially. If
n ≥ k, let Ej ⊂ Mn denote the lift of E to Mn which intersects Dj

1, but
is disjoint from Dj

2. Then D1
2 ∪ ⋃n

j=1D
j
1 forms a disk system for Hn and⋃n

j=1E
j forms a disk system for Wn (cf. Figure 1 for an example with k = 3

and n = 4).
Set H ′

n = Hn/D
1
2, set Ej = {E1, . . . , Ej}, and E(i)

j = Ej − Ei, 1 ≤ i ≤ j.
Recall that a collection C of disjoint simple closed curves in the boundary
of a handlebody X is disk busting if ∂X − C is incompressible in X.
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Figure 1. An example of a 4-fold cyclic cover

Definition 2.2. Let m ≥ 1 be an integer. We say that E satisfies the m-lift
condition if:
(1) The set ∂Em is disk-busting in H ′

m+k−1.

(2) The set ∂E(i)
m is not disk-busting in H ′

m+k−1, for all 1 ≤ i ≤ m.
(3) For each 1 ≤ i ≤ m, there is a compression disk

Δi ⊂ H ′
m+k−1 − ∂E(i)

m

such that [∂Δi] is linearly independent from {[∂Ei+1], . . . , [∂Em]} in
H1(∂H ′

m+k−1; Q).

Remark. If M = H[E] is fibered, then it follows from Lemma 4.1 below
that condition (1) fails, so E does not satisfy the m-lift condition for any m.

Recall that a 3-manifold M is large if it is irreducible, and contains a
closed essential surface, i.e., an incompressible surface which is not parallel
to a component of ∂M . We prove:
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Theorem 2.3. If E satisfies the m-lift condition, then Mn is large for any
n ≥ Max(m+ k − 1, 2k − 2).

Let λ be a longitude for M (i.e., a simple, closed, essential curve in ∂M
which lifts to a loop in M∞). Fix a meridian μ for M (i.e., a simple closed
curve in ∂M which intersects λ exactly once). A slope p/q in ∂M means
the pair of homology class ±(p[μ] + q[λ]) and (p, q) = 1. We use M(p/q) to
denote the closed manifold obtained by Dehn filling of M with slope p/q.
Let b = |φ(μ)|. Then b > 0 is a finite integer. Then we have:

Theorem 2.4. If E satisfies the m-lift condition, then M(np/q) is virtually
Haken for any p ≥ 2, n ≥ Max{m+ k− 1, 2k − 2,width(λ) + b}, and q with
(pn, q) = 1.

Given a 2-generator, 1-relator presentation of a 3-manifold group, there is
an algorithm to decide if this presentation corresponds to a genus 2 Heegaard
splitting (conjecturally it always does). From the data of such a geometric
presentation, it is possible to check if the m-lift condition holds for a given
m. Using the computer program GAP, we have shown:

Theorem 2.5. Every 2-generator, 1-relator 3-manifold M in the SnapPea
census of 1-cusped hyperbolic 3-manifolds has a genus 2 Heegaard splitting.
Moreover, if b1(M) = 1 and M is nonfibered, then M has a genus 2 Heegaard
splitting whose 2-handle satisfies the m-lift condition for some m.

A complete table of the values of m is available at
www.math.buffalo.edu/̃ jdmaster.

The first few values are given in Table 1.
To prove these theorems, consider the surface Fn (recall this is the preim-

age of the Heegaard surface F in Mn). Then Fn is a Heegaard surface forMn

of genus n + 1, which we shall compress to both sides. On the handlebody
side, we compress Fn along a single lift, D1

2, of D2; on the compression body
side we compress Fn along all the lifts of E which are disjoint from D1

2. We
shall show that if E satisfies the m-lift condition and n ≥ m + k − 1, then
the resulting surface is incompressible.

Let

Xn = (Wn/En−k+1)[D1
2 ],

Yn = (Hn/D
1
2)[En−k+1], and

Sn = ∂Yn.

Note that Mn − N̊(Sn) ∼= Xn � Yn.

Lemma 2.6. The surface Sn is connected, has genus = k − 1, and is not
parallel to ∂Mn.

Proof. To prove that Sn is connected, it is enough to show that

[∂D1
2 ], [∂E

1], . . . , [∂En]

www.math.buffalo.edu/~jdmaster
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are linearly independent in H1(Fn).
Let I(·, ·) denote the algebraic intersection pairing on the first homology

group of a surface. Recall from Lemma 2.1 that φ(α2) = 1 is a generator
of φ(π1(M)) = Z. It follows that I([∂E], [∂D2 ]) = 0 and that {[∂E], [∂D2 ]}
are linearly independent. We may complete {[∂E], [∂D2]} to a symplectic
basis {[∂E], [∂E]∗, [∂D2], [∂D2]∗}, i.e., a basis satisfying

I([∂E], [∂E]∗) = I([∂D2], [∂D2]∗) = 1,

I([∂E]∗, [∂D2]) = I([∂E]∗, [∂D2]∗) = I([∂E], [∂D2]) = I([∂E], [∂D2]∗) = 0.

Let α ⊂ F be an embedded loop representing [∂E]∗, and intersecting ∂E
geometrically exactly once (such representative always exists). Then α lifts
homeomorphically to loops α̃1, . . . , α̃n ⊂ Fn (since I([α], [∂D2]) = 0). As
∂E also lifts to Fn as ∂E1, . . . , ∂En, it is easy to see that I(α̃i, ∂E

j) = δij .
Also

I([α̃i], [∂D1
2 ])

= I([α̃i], [
⋃
j

∂Dj
2]/n)( since all lifts of ∂D2 are homologous in Fn)

= I([α], [∂D2])/n
= 0.

Recall that we have a map φ : π1M→Z; let β ⊂ ∂M be a loop with φ(β) 	= 0,
and let βn be the preimage in Mn. Then [βn], [α̃1], . . . , [α̃n] are dual classes
for [∂D1

2 ], [∂E
1], . . . , [∂En] in H1(Fn,Q), which proves the linear indepen-

dence, and completes the proof that Sn is connected.
The linear independence of [∂D1

2], [∂E
1], . . . , [∂En] also allows us to com-

pute:

genus(Sn) = genus(Hn/D
1
2) − |En−k+1|

= n− (n− k + 1) = k − 1.

Finally, note that Sn is not parallel into ∂Mn, since every loop in Sn

projects to an element in ker(φ) (because S is disjoint from D1
2), but each

component of ∂Mn contains a loop whose projection is not in ker(φ). �
To prove Theorems 2.3 and Theorem 2.4, we shall show that when n ≥

Max{m+ k − 1, 2k − 2}, Sn is incompressible in both Xn and Yn, and that
when n ≥ Max{m + k − 1, 2k − 2,width(λ)}, Sn remains incompressible
in an equivariant Dehn filling of Mn along ∂Mn (which may have several
components) which is a free cyclic cover of M(np/q).

3. Background on 1-relator groups and
3-manifolds

We will require the following result of Magnus (see [16]). The statement
given here is easily seen to be equivalent to the standard statement.
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Theorem 3.1 (Freiheitsatz for 1-relator groups). Let

G = 〈x1, . . . , xn | w(x1, . . . , xn) = 1〉
be a 1-relator group, where w is a freely reduced word. Let X = {x1, . . . , xn},
let X ∗ ⊂ X , and suppose that some xi ∈ X − X ∗ appears in w. Then X ∗
freely generates a free subgroup of G. �
Corollary 3.2. Let w(x1, . . . , xk) be a word in which x1 and xk appear
nontrivially, and consider the group

G = 〈. . . , x−1, x0, x1, . . . | w(xi, . . . , xi+k−1) = 1,∀i ∈ Z〉.
Then for any i, the set {xi, . . . , xi+k−2} freely generates a free subgroup of
G.

Proof. Let Gi = 〈xi, . . . , xi+k−1 | w(xi, . . . , xi+k−1)〉, and let Ji = 〈xi+1〉 ∗
· · · ∗ 〈xi+k−1〉. By repeated applications of Theorem 3.1, the group G has
the structure of the following iterated amalgamated free product over free
subgroups: G ∼= · · · ∗Ji−1 Gi ∗Ji Gi+1 ∗Ji+1 · · · . By Theorem 3.1, each Ji

injects into Gi and Gi+1. Each Gi thus injects into G, and so we obtain the
corollary. �

Suppose G = 〈x, y | w(x, y)〉 is a 1-relator group (where w is a cyclically
reduced word) which admits a surjective homomorphism ψ : G → Z, such
that ψ(y) = 0. Let xi = x−iyxi. Then ker(ψ) is generated by the xi’s,
and the relation w lifts to a relation w̃ on the xi’s, so that ker(ψ) has a
presentation as in the statement of Corollary 3.2. Write w̃ = Πjxμj , and
consider the finite integer sequence (μj). Then we have:

Theorem 3.3 (Brown). If (μj) has a repeated minimum (or maximum)
(i.e., it assumes its minimum (or maximum) value more than once), then
ker(ψ) is not finitely generated.

The case of a repeated minimum is a special instance of Theorem 4.2 in
[4], and the case of a repeated maximum follows from a trivial modification
of the proof (which is an application of the Freiheitsatz).

We also need the following, a special case of Corollary 2.2 of [5], which is
in turn a slight modification of a theorem proved by Jaco in [12].

Theorem 3.4 (Handle Addition Lemma). Let M be an irreducible 3-mani-
fold with compressible boundary of genus at least 2, and suppose α ⊂ ∂M is
a simple closed curve, such that ∂M − α is incompressible in M . Then the
3-manifold obtained by adding a 2-handle to M along α is irreducible, and
has incompressible boundary.

4. 2-handles in nonfibered manifolds

The results presented in this section are essentially combinations of results
due to Brown ([4]) and Bieri–Neumann–Strebel ([1]).
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If D is a compressing disk for H∞, and α is a simple closed curve in H∞,
then let Igeo(α,D) be the geometric intersection number of α and D; in
other words, Igeo(α,D) is the minimal cardinality of α′ ∩D over all curves
α′ which is isotopic to α in H∞.

If D is a disk system for H, then there are dual simple loops which form
a free basis for π1H. If D ∈ D corresponds to the generator xD, and if α
is a simple loop in H, then Igeo(α,D) is the number of times the generator
xD appears in a cyclically reduced representative for the conjugacy class of
[α] in π1H.

Lemma 4.1. Suppose M is a knot manifold with t(M) = 1, and suppose
that Ei and Dj

i are as defined in Section 2.

(a) If M is fibered, then Igeo(∂E1,D1
1) = Igeo(∂E1,Dk

1 ) = 1 in H∞.
(b) If M is nonfibered, then Igeo(∂E1,D1

1) ≥ 2 and Igeo(∂E1,Dk
1) ≥ 2 in

H∞.

Proof. (a) Suppose Igeo(∂E1,D1
1) ≥ 2 or Igeo(∂E1,Dk

1 ) ≥ 2. Then by
Theorem 3.3 (together with the note in the proceeding paragraph of the
present lemma), ker(φ) is not finitely generated, and so by [21], M is not
fibered.

(b) Suppose E1 intersects one of the disks, say Dk
1 , exactly once. We shall

show that in this case M is fibered.
Dual to each Di

1 is a generator xi for the fundamental group of M∞.
The boundary of the disk E1 gives a relation among these generators which
involves xk only once; therefore xk ∈ 〈x1, . . . , xk−1〉 ⊂ π1M∞. Similarly,
using the relation corresponding to the disk E2, we get that

xk+1 ∈ 〈x1, . . . , xk〉 = 〈x1, . . . , xk−1〉 ⊂ π1M∞.

Continuing in this way, we see that all of the generators xi with i ≥ k can
be expressed in terms of x1, . . . , xk−1.

Let H∗ be the component of H∞/D1
2 containing D1

1,D
2
1 , . . . , and let Q =

H∗[E1, E2, . . . ], which is a submanifold of M∞. The argument we just gave
shows that π1(Q) is finitely generated.

Note that there is a nonseparating incompressible surface S in M with
boundary slope λ such that M∞ is the infinite cover dual to S. Let S̃ be a
lift of S to M∞ which is disjoint from Q, and let Q+ be the component of
M∞− N̊(S̃) which contains Q. Then Q+− N̊(Q) is compact, and since π1Q
is finitely generated, π1Q

+ is finitely generated as well.
Let M−

0 = M − N̊(S), let S0 and S1 be the two preimages of S in ∂M−
0 ,

let S̃i be the preimages of S in M∞, and let M−
i be the submanifold of Q

bounded by S̃0 and S̃i. Since S̃i is incompressible, M−
i is π1-injective in

Q for each i. If neither of the maps i∗π1Sj → π1M0 is onto, then {π1Mi}
forms an an infinite sequence of subgroups of π1Q, with π1Mi+1 properly
containing π1Mi for each i, which is a contradiction, since π1Q is finitely
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generated. Therefore, one of the induced maps π1Sj → π1M0 is onto, and
so, as in the proof of Theorem 2 in [21], M is fibered. �
Corollary 4.2. If M is fibered, then E does not satisfy the m-lift condition
for any m.

Proof. SupposeM is fibered, letm ≥ 1 be an integer, and consider the cover
Fm+k−1 of F . In Fm+k−1, we have that Ej is disjoint from D1

1 for all 2 ≤
j ≤ m− k+ 1, and by Lemma 4.1(a), |∂E1 ∩ ∂D1

1 | = 1. Therefore there is a
compressing disk Δ in Hm+k−1 (whose boundary is equal to ∂N(∂E1∪∂D1

1))
with ∂Δ ∩ ∂Em = ∅, and so E fails condition (2). �

5. Proof of irreducibility of Mn

We shall now begin the proof of Theorem 2.3, which will occupy the next
three sections.

Lemma 5.1. Mn is irreducible for all n.

Proof. By Theorem 3.4, M1 = M is irreducible. By [19] (or [8]), the cover
of an irreducible manifold is irreducible, so Mi is irreducible for all i ≥ 2. �

6. Proof that Xn has incompressible boundary

We remark that the m-lift condition is not needed in this case; we only
use the assumption that ∂M is incompressible.

Let W ′
n = Wn/En−k+1. By Theorem 3.4 it is enough to prove:

Lemma 6.1. If n ≥ 2k − 2, then W ′
n − ∂D1

2 has incompressible boundary.

First we need:

Lemma 6.2. For each n there is a loop αn ⊂ ∂Mn such that I(αn,D
1
2) 	= 0.

Proof. By the exact sequence of the pair, there is a loop α ∈ ∂M such that
φ[α] = I(α,D1

2) 	= 0. Letting αn be the preimage of α in ∂Mn, we have
I(αn,

⋃n
i=1D

i
2) = nI(α,D2) 	= 0. Since [Di

2] = [Dj
2] ∈ H1(Mn) for all i, j,

then we have I(αn,D
1
2) = I(α,D2) 	= 0. �

Proof of Lemma 6.1. Suppose otherwise that there is a compressing disk
in W ′

n − ∂D1
2. First, if there is a compressing disk, we claim that there

must be a nonseparating one. To see this, suppose that Δ is a separating
compressing disk. If there are no nonseparating compressing disks, then one
of the components of W ′

n/Δ is homeomorphic to a surface cross an interval,
and the other component is a handlebody containing ∂D1

2. Every curve in
∂Mn lies on the surface cross interval side, but by Lemma 6.2, there is a curve
in ∂Mn which has nontrivial intersection with D1

2 , yielding a contradiction.
So we may assume that there is a nonseparating compressing disk Δ in
W ′

n − ∂D1
2.
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Consider the Heegaard surface Fn and the curves ∂Dj
2 and ∂Ej , j =

1, . . . , n, in Fn. Note that since n ≥ 2k − 2, {∂En−k+2, . . . , ∂En} are
all disjoint from ∂Dn−k+2

2 and ∂Dk
2 (by considering the definition of k =

width(E)). The two simple closed curves ∂Dn−k+2
2 and ∂Dk

2 cut Fn into
two components, F 1

n and F 2
n , one of which, say F 1

n , is disjoint from all
∂En−k+2, . . . , ∂En.

The curves ∂E1, . . . , ∂En−k+1 may intersect ∂Dn−k+2
2 and ∂Dk

2 . But by
the property of the width k again, any arc component of F 2

n ∩ (∪n−k+1
j=1 ∂Ej)

has either both endpoints in ∂Dn−k+2
2 or both endpoints in ∂Dk

2 . Further,
every arc component of F 2

n ∩ (∪n−k+1
j=1 ∂Ej) is disjoint from ∂D1

2 . Let F 3
n be

the subsurface of Fn which is the union of F 1
n and a small regular neighbor-

hood of the arcs F 2
n∩(∪n−k+1

j=1 ∂Ej) in F 2
n (in other words, F 3

n is F 1
n with some

bands attached, one for each arc component in F 2
n ∩ (∪n−k+1

j=1 ∂Ej)). Then
F 3

n is a connected subsurface of Fn which contains all ∂E1, . . . , ∂En−k+1 but
is disjoint from all ∂En−k+2, . . . ., ∂En and ∂D1

2 .
Let F 4

n be the surface obtained from F 3
n by surgery along the curves

∂E1, . . . , ∂En−k+1 (i.e., cut F 3
n open along {∂E1, . . . , ∂En−k+1} and fill each

of the new boundary circles with a disk), which may not be connected. Note
that {En−k+2, . . . , En} is a disk system for the compression body W ′

n and
W ′

n/{En−k+2, . . . , En} is an I-bundle over a surface. As F 4
n is disjoint from

{∂En−k+2, . . . , ∂En}, F 4
n is contained in the horizontal boundary of the

I-bundle. So ∂F 4
n × I are vertical annuli of this I-bundle. By standard

cut-and-paste operations along arcs and circles of Δ ∩ (∂F 4
n × I), we get a

nonseparating compressing disk, still denoted Δ, which is disjoint from the
annuli ∂F 4

n × I. It is easy to see that Δ cannot be contained in F 4
n × I, so

it follows that ∂Δ is disjoint from all ∂D1
2 , ∂D

k
2 ,. . . , ∂Dn−k+2

2 . Hence the
width of Δ is strictly less than k.

Let δ = ∂Δ, and let δ̃ be a lift of δ in M∞, The group π1M∞ has the
following presentation:

π1M∞ = 〈. . . , x−1, x0, x1, . . . | w(xi, . . . , xi+k−1) = 1, ∀i ∈ Z〉,

where the relations correspond to the lifts of E. Since width(δ) < k, the
loop δ̃ represents an element in the subgroup of π1M∞ generated by the
elements xi, . . . , xi+k−2, for some i. By Corollary 3.2, these elements are a
basis for a free subgroup; since δ̃ represents a trivial element in π1M∞, we
see that δ̃ represents the trivial word in xi, . . . , xi+k−2. Thus δ̃ bounds a
disk in H∞ by Dehn’s lemma, and thus δ bounds a disk in Hn. Thus there
is a nonseparating sphere in Mn, contradicting Lemma 5.1. �

Lemma 6.3. Suppose n ≥ 2k − 2. Then Xn has incompressible boundary.

Proof. This is a consequence of Lemma 6.1 and Theorem 3.4. �
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7. Proof that Yn has incompressible boundary

In this section, we are under the assumption that E satisfies the m-lift
condition. Recall that H ′

n = Hn/D
1
2 .

Lemma 7.1. The curve ∂En−k+1 cannot be isotoped in H ′
n[En−k] to inter-

sect Dn
1 fewer than two times.

Proof. We have

π1H
′
n[En−k] = 〈x1, . . . , xn | w1, . . . , wn−k〉

∼= 〈x1, . . . , xn−1 | w1, . . . , wn−k〉 ∗ 〈xn〉
where xj is dual to Dj

1, and the word wj corresponds to ∂Ej .
The word wn−k+1 can be cyclically permuted to have the form

wn−k+1 = W1x
�1
n W2x

�2
n . . .Wtx

�t
n ,

where the W’s are freely reduced words involving only xj ’s with n − k +
1 ≤ j ≤ n − 1, and each Wj represents a nontrivial element in the group
〈x1, . . . , xn | w1, . . . , wn−k〉.

Suppose ∂En−k+1 can be isotoped to be disjoint from Dn
1 in H ′

n[En−k].
Then, using the relations wj , j ≤ n− k, the word wn−k+1 can be rewritten
entirely in terms of xj’s, j ≤ n − 1, and this would imply that one of the
Wj’s must be trivial in π1H

′
n[En−k]. However, Wj is a freely reduced word

on xn−k+1, . . . , xn−1, which by Corollary 3.2 freely generate a free subgroup,
for a contradiction.

Suppose ∂En−k+1 can be isotoped to intersect Dn
1 exactly once. Then,

as in the proof of Lemma 4.1, M is fibered, and so by Corollary 4.2, E does
not satisfy the m-lift condition, for a contradiction. �
Lemma 7.2. If n ≥ m+ k − 1, then Yn has incompressible boundary.

Proof. Let n0 = m + k − 1. We first prove the result in the case where
n = n0.

Claim. The manifold Yn0 has incompressible boundary.

Proof. Recall H ′
n0

= Hn0/D
1
2 . By condition (2) of Definition 2.2, the man-

ifold
H ′

n0
− ∂E(m)

m = H ′
n0

− ∂Em−1

has compressible boundary, and by condition (1), H ′
n0
−∂Em has incompress-

ible boundary; therefore, by Theorem 3.4, the manifold (H ′
n0

− ∂Em−1)[Em]
has incompressible boundary.

Suppose for some i ∈ [1,m], that H ′
n0

[E i]−∂Ei has incompressible bound-
ary, where E i = Em − Ei. By condition (2) of Definition 2.2, there is
a compression disk for H ′

n0
− ∂E(i)

m which is also a compression disk for
H ′

n0
[E i] − ∂Ei−1. Therefore, by Theorem 3.4, H ′

n0
[E i−1] − ∂Ei−1 has incom-

pressible boundary.
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By induction on i, it follows that Yn0 = H ′
n0

[Em] has incompressible
boundary. �

Now, suppose n > n0. and proceed by induction on n. Suppose Yn has
incompressible boundary. The manifold Yn+1 is obtained from Yn by adding
a 1-handle Z to H ′

n, and then attaching a 2-handle En−k+2. We claim that
(Yn ∪ Z) − ∂En−k+2 has incompressible boundary.

Suppose otherwise, and let Δ be a compressing disk. Since Yn has in-
compressible boundary, the maximal compression body for ∂(Yn ∪Z) has a
unique disk system consisting only of Dn+1

1 . Therefore if Δ is nonseparat-
ing, it is isotopic to Dn+1

1 ; then ∂En−k+2 can be isotoped off of ∂Dn+1
1 in

Yn ∪ Z, contradicting Lemma 7.1.
Suppose Δ is separating, so it separates off a solid torus V ⊂ H ′

n+1, with
V ⊃ Dn+1

1 . Since ∂En−k+2 ∩Dn+1
1 	= ∅, we have ∂En−k+2 ⊂ V .

So Yn+1 contains the punctured lens space V [En−k+2]. By Lemma 7.1,
this lens space cannot be B3. So Yn is not irreducible, contradicting Lem-
ma 5.1. This completes the proof that (Yn∪Z)−∂En−k+2 has incompressible
boundary. Then by Theorem 3.4, Yn+1 has incompressible boundary. �

8. Proof of Theorem 2.3 and Theorem 2.4

Proof of Theorem 2.3. Assume M satisfies the hypotheses of Theorem
2.3. Then by Lemmas 6.3 and 7.2, Mn contains an incompressible closed
surface Sn, which is not parallel into ∂Mn by Lemma 2.6. �
Proof of Theorem 2.4. Suppose the hypotheses of Theorem 2.4 are satis-
fied. Let bn be the number of boundary components ofMn. Then it is easy to
see that bn is equal to the largest common divisor of n and b (recall from the
proceeding paragraph of Theorem 2.4 that b = |φ(μ)| is a finite integer). Let
each boundary component of ∂Mn have the coordinate basis induced from
the basis {μ, λ} of ∂M . Let Mn(bnp/q) denote the closed manifold obtained
by Dehn filling each component of ∂Mn with slope bnp/q. Then it is easy
to check that M(np/q) is cyclically covered by Mn(bnp/q). We have shown
that Mn contains an incompressible surface Sn. When n ≥ width(λ) + b
as well, there are b successive lifts of λ contained in Sn = ∂Yn, which im-
plies that Sn has an annular compression to each component of ∂Mn, with
slope 0. Since p > 1, then by repeatedly applying Theorem 2.4.3 of [6] bn
times, we see that Sn remains incompressible in Mn(bnp/q). Also, by [20],
Mn(bnp/q) is irreducible. Hence M(np/q) is virtually Haken. �

9. Brief description of algorithm

A. Checking that SnapPea presentations are geometric. Given an
algebraic word on x and y, we need to know if it can be represented by a
simple closed curve in the boundary of a genus 2 handlebody. To do this,
we attempt to draw a Heegaard diagram. So we start with four disks in the
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plane, corresponding to x, x−1, y and y−1. The word w is represented by a
collection of edges connecting these disks, and we need to find a representa-
tion which embeds in the plane.

To program this on the computer, we start placing edges on the graph
one by one, as indicated by the word w. When placing an edge, the intial
point is determined from the previous step, but there may be a choice of
terminal point. However, it is possible to keep track of the choices which are
made, and if an impossible situation is arrived at, we retreat to the previous
choice, and change it. In this way, the computer found for every given word,
a geometric representation.

B. Checking that the m-lift condition holds. The only nonelementary
step in checking the m-lift condition algorithmically is to find, for a given
collection of loops in the fundamental group of a handlebody H, a specific
compressing disk for H which is disjoint from the loops. An algorithm for
this was given by Whitehead ([23], or see [22]), which we implemented on
GAP.

Note that Whitehead’s algorithm allows one to determine the existence of
a compressing disk in polynomial time in the length of the word; however, to
construct the disk explicitly requires exponential time. For our application,
we are saved this difficulty, since for each compressing disk Δ we only need
to compute [∂Δ] ∈ H1(∂H). This allows the algorithm to run in polynomial
time.

Table 1. Data on SnapPea census manifolds

manifold name: width of 2-handle: satisfies m-lift for: n-fold cyclic
cover large for:

m006 k = 3 m = 2 n ≥ 4
m007 k = 3 m = 2 n ≥ 4
m015 k = 4 m = 2 n ≥ 6
m017 k = 3 m = 1 n ≥ 4
m029 k = 3 m = 2 n ≥ 4
m030 k = 3 m = 2 n ≥ 4
m032 k = 3 m = 2 n ≥ 4
m033 k = 3 m = 2 n ≥ 4
m035 k = 3 m = 1 n ≥ 4
m037 k = 3 m = 1 n ≥ 4
m045 k = 3 m = 1 n ≥ 4
m046 k = 3 m = 1 n ≥ 4
m053 k = 3 m = 1 n ≥ 4
m054 k = 3 m = 2 n ≥ 4
m058 k = 3 m = 1 n ≥ 4
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m059 k = 3 m = 1 n ≥ 4
m061 k = 3 m = 2 n ≥ 4
m062 k = 3 m = 2 n ≥ 4
m066 k = 3 m = 1 n ≥ 4
m067 k = 3 m = 1 n ≥ 4
m073 k = 3 m = 1 n ≥ 4
m074 k = 3 m = 2 n ≥ 4
m076 k = 3 m = 1 n ≥ 4
m077 k = 3 m = 1 n ≥ 4
m079 k = 3 m = 1 n ≥ 4
m080 k = 3 m = 1 n ≥ 4
m084 k = 3 m = 1 n ≥ 4
m085 k = 3 m = 1 n ≥ 4
m089 k = 3 m = 1 n ≥ 4
m090 k = 3 m = 1 n ≥ 4
m093 k = 3 m = 2 n ≥ 4
m094 k = 3 m = 2 n ≥ 4
m104 k = 3 m = 1 n ≥ 4
m105 k = 3 m = 3 n ≥ 5
m110 k = 3 m = 1 n ≥ 4
m111 k = 3 m = 1 n ≥ 4
m137 k = 3 m = 2 n ≥ 4
m139 k = 4 m = 3 n ≥ 6
m148 k = 3 m = 1 n ≥ 4
m149 k = 3 m = 1 n ≥ 4
m202 k = 4 m = 2 n ≥ 6
m203 k = 4 m = 1 n ≥ 6
m208 k = 4 m = 1 n ≥ 6
m249 k = 5 m = 4 n ≥ 8
m259 k = 5 m = 3 n ≥ 8
m260 k = 5 m = 3 n ≥ 8
m261 k = 3 m = 1 n ≥ 4
m262 k = 3 m = 1 n ≥ 4
m285 k = 3 m = 1 n ≥ 4
m286 k = 3 m = 1 n ≥ 4
m287 k = 5 m = 5 n ≥ 9
m288 k = 5 m = 3 n ≥ 8
m292 k = 5 m = 3 n ≥ 8
m319 k = 3 m = 1 n ≥ 4
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m320 k = 3 m = 1 n ≥ 4
m328 k = 4 m = 1 n ≥ 6
m329 k = 4 m = 2 n ≥ 6
m340 k = 5 m = 1 n ≥ 8
m357 k = 4 m = 2 n ≥ 6
m366 k = 4 m = 1 n ≥ 6
m388 k = 4 m = 1 n ≥ 6
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