The relative Riemann-Roch theorem from Hochschild homology

Ajay C. Ramadoss

Abstract

This paper attempts to clarify a preprint of Markarian (2001). Markarian's preprint proves the relative Riemann-Roch theorem using a result describing how the HKR map fails to respect comultiplication. This paper elaborates on the core computations in Markarian's preprint. These computations show that the HKR map twisted by the square root of the Todd genus "almost preserves" the Mukai pairing. This settles a part of a conjecture of Caldararu, 2005. The relative Riemann-Roch theorem follows from this and a result of Caldararu, preprint, 2003.

Contents

Introduction 644

1. The main results 646
1.1. The crux of this paper 647
1.2. The Mukai pairing 649
1.3. The relative Riemann-Roch theorem 652
2. Two "connections" on the Hochschild chain complex $\widehat{C}^{\bullet}(X)$ 653
2.1. The completed bar and Hochschild chain complexes 653
2.2. Two connections on $\widehat{C}(X)$ 656
2.3. Remark - the beginning of a dictionary 659
2.4. More on the maps α_{R} and α_{L} 660
2.5. A long remark - enlarging the dictionary 663
3. Some essential linear algebra 667
3.1. Some propositions and a lemma of linear algebra 668
3.2. Applying the linear algebra to $\mathbf{S}^{\bullet}(\Omega[1])$ 682

[^0]4. The adjoint of Φ_{R} 688
4.1. Stating the main lemma of this section 688
4.2. Comparing two "sections" of $D_{n} \otimes \Omega^{n}[n]$ 690
4.3. Another long remark - Lemma 4 and our dictionary 696
4.4. Proof of Lemma 3 698
5. Proof of Theorem 1 701
5.1. Unwinding some definitions 701
5.2. The final (long) computation proving Theorem 1 708
5.3. Proving Lemma 5 714
References 717

Introduction

The purpose of this paper is to explain in detail an alternative approach to the relative Riemann-Roch theorem which first appeared in a very interesting but cryptic preprint [5] of Markarian. This approach leads to a proof of the relative Riemann-Roch theorem by a direct computation of the pairing on Hodge cohomology to which the Mukai pairing on Hochschild homology defined by Caldararu [1] descends via the Hochschild-Kostant-Rosenberg map multiplied by the square root of the Todd genus. In the framework of this approach, the fundamental reason for the appearance of the Todd genus in the Riemann-Roch theorem is the failure of the Hochschild-KostantRosenberg map $I_{H K R}$ introduced in Section 2 to respect comultiplication. One of the main theorems in [5] (Theorem 1 of [5]) describes the Duflo like error term that measures by how much $\mathrm{I}_{\mathrm{HKR}}$ fails to respect comultiplication. The proof supplied in [5] however, has a nontrivial error. A "dual" version of this result equivalent to the original theorem has since been correctly proven by the author in [7]. A correct proof of another version of this result has been outlined by Markarian himself in a revised version [6] of [5]. Theorem 1 of [5] appears as Theorem 2^{\prime} in this paper.

Let X be a smooth proper scheme over a field \mathbb{K} of characteristic 0 . We use Theorem 2^{\prime} of this paper to prove the main result (Theorem 1) of the current paper. This explicitly interrelates the Hochschild-Kostant-Rosenberg map, the twisted HKR map introduced in Section 1 and a map which we call the duality map between $\operatorname{RHom}_{X}\left(\mathcal{O}_{X}, \Delta^{*} \mathcal{O}_{\Delta}\right)$ and $\operatorname{RHom}_{X}\left(\Delta^{*} \mathcal{O}_{\Delta}, S_{X}\right)$. Here, S_{X} is the shifted line bundle on X tensoring with which is the Serre duality functor on $\mathrm{D}^{b}(X)$. Theorem 1 of this paper is equivalent to a corrected version of an erroneous result (Theorem 8 of [5]) that appears in [5].

Theorem 1 enables us to compute the pairing on Hodge cohomology to which the Mukai pairing on Hochschild homology defined by Caldararu [1] descends via the HKR-map twisted by the square root of the Todd genus. Given Theorem 1, doing this computation is fairly easy. This pairing on

Hodge cohomology (see Proposition 5 of this paper) is very similar to the generalized Mukai pairing Caldararu defined in [2]. In particular, it satisfies the adjointness property one expects from the Mukai pairing. Moreover, it coincides with the Mukai pairing defined by Caldararu [2] on Mukai vectors (see [2]) of elements of $\mathrm{D}^{b}(X)$. However, the pairing obtained in Proposition 5 is not exactly the same as Caldararu's Mukai pairing on Hodge cohomology. This settles a part of Caldararu's conjecture in [2] regarding the equivalence between the Hochschild and Hodge structures of a smooth proper complex variety - to be able to say that the HKR map twisted by the square root of the Todd genus preserves the Mukai pairing, one has to replace the Mukai pairing defined by Caldararu [2] with the pairing that shows up in Proposition 5. Since pairing in Proposition 5 does not in general coincide with the Mukai pairing on Hodge cohomology for K3-surfaces, we stay contented by saying that the HKR map twisted by the square root of the Todd genus "almost preserves" the Mukai pairing.

The relative Riemann-Roch theorem follows from Proposition 5 and the adjointness property of the Mukai pairing on Hochschild homology. The adjointness property of the Mukai pairing on Hochschild homology was proven in a paper [1] of Caldararu.

In order to prove Theorem 1, we elaborate upon the core computations in [5]. These computations appeared in [5] in a very cryptic way. Some of these computations do not appear in [6], whose approach differs in some details from [5]. In particular, unlike [5], [6] does not contain a result equivalent to Theorem 1 and does not compute the Mukai pairing on Hochschild homology at the level of Hodge cohomology.

The key steps in this computational approach are covered by Theorem 2^{\prime} and Lemmas 2, 3 and 4 of this paper. The most crucial computations, Theorem 2^{\prime} and Lemma 4 are related to very familiar computations in elementary Lie theory. Theorem 2^{\prime} is related to computing the pullback of a left invariant 1-form on a Lie group G via the exponential map. Similarly, Lemma 4 is related computing the pullback of a left invariant volume form on G via the the map $\overline{\exp }$ where $\overline{\exp }(Z)=\exp (-Z)$ for any element Z of the Lie algebra \mathfrak{g} of G. We aim to make these relations transparent by developing a "dictionary" in this paper in three separate subsections containing remarks meant for this purpose only.

The layout of this paper. Section 1 begins by introducing the notations and conventions that shall be used for the rest of this paper. It then goes on to state Theorem 1 after defining the various maps involved in Theorem 1. The pairing on Hodge cohomology to which the Mukai pairing on Hochschild homology descends (via the HKR map twisted by the square root of the Todd genus) is then computed. Finally, Section 1 uses this computation to prove the relative Riemann-Roch theorem. The remaining sections of this paper are devoted to proving Theorem 1.

Section 2 introduces two "connections" on the complex of completed Hochschild chains of a smooth scheme X. Their properties are proven in various propositions in this section. This section also proves Theorem 2'. Sections 2.3 and 2.5 develop the "dictionary" making the analogy between Theorem 2^{\prime} and its counterpart in elementary Lie theory more transparent.

Section 3 consists of a number of definitions, technical propositions and two lemmas (Lemma 1 and Lemma 2) pertaining mainly to linear algebra. These are used in later sections at various points. The definitions of this section are important to understand later sections. Proofs of propositions in later sections time and again refer to propositions in this section.

The key result of Section 4 is Lemma 3. This in turn follows from Lemma 4 and Lemma 2. Besides proving Lemma 3 and Lemma 4, Section 4 has a subsection (Section 4.3) which explains the analogy between Lemma 4 and its counterpart in basic Lie theory. Section 4.3 is the last of the three sections (2.3, 2.5 and 4.3) developing the "dictionary" in this paper.

Section 5 undertakes the final computations leading to the proof of Theorem 1.

Acknowledgements. I thank Prof. Victor Ginzburg for introducing me to the works of Markarian and Caldararu and for useful discussions. I also thank Prof. Madhav Nori for useful discussions and Prof. Andy Magid and Dr. Victor Protsak for useful suggestions regarding the presentation of this paper.

1. The main theorem, the Mukai pairing and the relative Riemann-Roch theorem

We begin this section by clarifying some notation and conventions that shall be followed throughout this paper. Immediately after that, in Section 1.1, we state the main theorem (Theorem 1) of this paper after describing the maps involved. This section then goes on to explain in detail why Theorem 1 implies the relative Riemann-Roch theorem. This is done in Sections 1.2 and 1.3.

Notation and conventions. Let X be a smooth proper scheme over a field \mathbb{K} of characteristic 0 . All schemes and complex varieties that we encounter in this paper are assumed to be proper. Let $\Delta: X \rightarrow X \times X$ denote the diagonal embedding. Let p_{1} and p_{2} denote the projections from $X \times X$ onto the first and second factors respectively. As usual, \mathcal{O}_{X} denotes the structure sheaf of X.
$\mathrm{Ch}^{b}\left(\mathcal{O}_{X}-\bmod \right)\left(\right.$ resp. $\mathrm{Ch}^{-}\left(\mathcal{O}_{X}-\bmod \right)$ and $\left.\mathrm{Ch}^{+}\left(\mathcal{O}_{X}-\bmod \right)\right)$ denotes the category of bounded (resp. bounded above and bounded below) chain complexes of \mathcal{O}_{X}-modules with coherent cohomology. $\mathrm{D}^{b}(X)$ denotes the
bounded derived category of complexes of \mathcal{O}_{X}-modules with coherent cohomology. Similarly, $\mathrm{D}^{b}(X \times X)$ denotes the bounded derived category of complexes of $\mathcal{O}_{X \times X}$-modules with coherent cohomology.

Whenever $f: X \rightarrow Y$ is a morphism of schemes, $f^{*}: \mathrm{D}^{b}(Y) \rightarrow \mathrm{D}^{b}(X)$ denotes the left derived functor of the pullback via f. Similarly, $f_{*}: \mathrm{D}^{b}(X) \rightarrow$ $\mathrm{D}^{b}(Y)$ denotes the right derived functor of the push-forward via $f . \mathcal{O}_{\Delta}$ will denote $\Delta_{*} \mathcal{O}_{X}$. Similarly, when we refer to a tensor product, we will mean the corresponding left-derived functor unless stated otherwise explicitly. Also, if \mathcal{E} is an object of $\mathrm{D}^{b}(X)$ and φ is a morphism in $\mathrm{D}^{b}(X), \mathcal{E} \otimes \varphi$ shall denote the morphism $\mathbf{1}_{\mathcal{E}} \otimes \varphi$. At times, \mathcal{E} shall be used to denote the morphism $1_{\mathcal{E}}$.

If \mathcal{E} and \mathcal{F} are objects of $\mathrm{D}^{b}(X)$, we shall denote $\operatorname{RHom}_{\mathrm{D}^{b}(X)}(\mathcal{E}, \mathcal{F})$ by $\operatorname{RHom}_{X}(\mathcal{E}, \mathcal{F})$. Also, we denote $\operatorname{RHom}_{\mathrm{D}^{b}(X \times X)}(-,-)$ by $\mathrm{RHom}_{X \times X}(-,-)$.
Ω_{X} denotes the cotangent bundle of $X . \mathbf{S}^{\bullet}\left(\Omega_{X}[1]\right)$ will denote the symmetric algebra generated over \mathcal{O}_{X} by Ω_{X} concentrated in degree -1 . Note that $\mathbf{S}^{\bullet}\left(\Omega_{X}[1]\right)=\oplus_{i} \wedge^{i} \Omega_{X}[i]$. We shall often denote $\wedge^{i} \Omega_{X}$ by Ω_{X}^{i}. From Section 2 onwards, Ω_{X} and $\mathbf{S}^{\bullet}\left(\Omega_{X}[1]\right)$ shall be denoted by Ω and $\mathbf{S}^{\bullet}(\Omega[1])$ respectively. The tangent bundle of X shall be denoted by T_{X} in this section and T from Section 2 onwards.

Where convenient, we shall denote the Hodge cohomology $\oplus_{p, q} \mathrm{H}^{q}\left(X, \Omega_{X}^{p}\right)$ by $\mathrm{H}^{*}(X)$ and $\mathrm{H}^{q}\left(X, \Omega_{X}^{p}\right)$ by $\mathrm{H}^{p, q}(X)$. Note that

$$
\mathrm{H}^{*}(X)=\operatorname{RHom}_{X}\left(\mathcal{O}_{X}, \mathbf{S}^{\bullet}\left(\Omega_{X}[1]\right)\right)
$$

The product on $\mathrm{H}^{*}(X)$ induced by the wedge product on $\mathbf{S}^{\bullet}\left(\Omega_{X}[1]\right)$ will be denoted by \wedge. However, we shall often suppress the \wedge : If $a, b \in \mathrm{H}^{*}(X)$, $a b$ should be understood to mean $a \wedge b \in \mathrm{H}^{*}(X)$.

Despite our attempts to minimize abuse of notation, it does happen at times. There are many situations in this paper where we encounter maps between tensor products of various objects in $\mathrm{D}^{b}(X)$ that rearrange factors. Very often, such maps are denoted by the symbol τ. In each such situation, we specify what τ means unless we feel it is obvious to the reader.
1.1. The crux of this paper. Recall from Yekutieli [9] that the completed complex of Hochschild chains $\widehat{C}^{\bullet}(X) \in \mathrm{Ch}^{-}\left(\mathcal{O}_{X}-\bmod \right)$ is a complex of flat \mathcal{O}_{X}-modules that represents $\Delta^{*} \mathcal{O}_{\Delta}$ in $\mathrm{D}^{b}(X)$. Upper indexing is used here to convert what was originally a chain complex into a cochain complex.

The Hochschild-Kostant-Rosenberg (HKR) map $\mathrm{I}_{\mathrm{HKR}}$ from $\widehat{C}^{\bullet}(X)$ to $S^{\bullet}\left(\Omega_{X}[1]\right)$ is a map of complexes of \mathcal{O}_{X} modules. We describe this in greater detail in Section 2. We identify $\Delta^{*} \mathcal{O}_{\Delta}$ with $\widehat{C}^{\bullet}(X)$. Thus, the HKR map $\mathrm{I}_{\mathrm{HKR}}$ can be thought of as a map in $\mathrm{D}^{b}(X)$ from $\Delta^{*} \mathcal{O}_{\Delta}$ to $\mathbf{S}^{\bullet}\left(\Omega_{X}[1]\right)$.

Let S_{X} denote the object $\Omega^{n}[n]$ in $\mathrm{D}^{b}(X)$. Let π_{n} denote the projection from $\mathbf{S}^{\bullet}\left(\Omega_{X}[1]\right)$ to the direct summmand $\Omega^{n}[n]$. Consider the pairing

$$
\langle-,-\rangle: \mathbf{S}^{\bullet}\left(\Omega_{X}[1]\right) \otimes \mathbf{S}^{\bullet}\left(\Omega_{X}[1]\right) \rightarrow S_{X}
$$

given by the composite

$$
\mathbf{S}^{\bullet}\left(\Omega_{X}[1]\right) \otimes \mathbf{S}^{\bullet}\left(\Omega_{X}[1]\right) \xrightarrow{(-\wedge-)} \mathbf{S}^{\bullet}\left(\Omega_{X}[1]\right) \xrightarrow{\pi_{n}} S_{X}
$$

of morphisms in $\mathrm{D}^{b}(X)$. One also has a twisted HKR map from $\mathbf{S}^{\bullet}\left(\Omega_{X}[1]\right)$ to $\mathrm{RHom}_{X}\left(\Delta^{*} \mathcal{O}_{\Delta}, S_{X}\right)$. This arises out of the composite

$$
\begin{equation*}
\Delta^{*} \mathcal{O}_{\Delta} \otimes \mathbf{S}^{\bullet}(\Omega[1]) \xrightarrow{\mathrm{I}_{\mathrm{HKR}} \otimes \mathbf{1}_{\mathbf{S}} \bullet\left(\Omega_{X}^{[1])}\right.} \mathbf{S}^{\bullet}\left(\Omega_{X}[1]\right) \otimes \mathbf{S}^{\bullet}\left(\Omega_{X}[1]\right) \xrightarrow{\langle,\rangle} S_{X} . \tag{1}
\end{equation*}
$$

of morphisms in $\mathrm{D}^{b}(X)$. We denote the twisted HKR map by $\widehat{\mathrm{I}_{\mathrm{HKR}}}$.
The duality map. The material in this paragraph is recalled from Caldararu [1]. Recall that $\Delta^{*}: \mathrm{D}^{b}(X \times X) \rightarrow \mathrm{D}^{b}(X)$ is the left adjoint of $\Delta_{*}: \mathrm{D}^{b}(X) \rightarrow \mathrm{D}^{b}(X \times X)$. Also recall that the functor of tensoring by the shifted line bundle S_{X} is the Serre duality functor on $\mathrm{D}^{b}(X)$. Similarly, tensoring by the shifted line bundle $S_{X \times X}$ is the Serre duality functor on $\mathrm{D}^{b}(X \times X)$. We denote the functor given by tensoring by a shifted line bundle \mathcal{L} by \mathcal{L} itself. The left adjoint $\Delta_{!}: \mathrm{D}^{b}(X) \rightarrow \mathrm{D}^{b}(X \times X)$ of Δ^{*} is given by $S_{X \times X^{-1}} \Delta_{*} S_{X}$.

Since $\Delta_{!}$is the left adjoint of Δ^{*} we have an isomorphism

$$
\begin{equation*}
\mathcal{I}: \operatorname{RHom}_{X}\left(\mathcal{O}_{X}, \Delta^{*} \mathcal{O}_{\Delta}\right) \simeq \operatorname{RHom}_{X \times X}\left(\Delta_{!} \mathcal{O}_{X}, \mathcal{O}_{\Delta}\right) . \tag{2}
\end{equation*}
$$

Now, $\Delta_{!} \mathcal{O}_{X}=S_{X \times X}{ }^{-1} \Delta_{*} S_{X} \simeq \Delta_{*} S_{X}^{-1}$. We also have an isomorphism

$$
\begin{equation*}
\mathcal{T}: \operatorname{RHom}_{X \times X}\left(\Delta_{!} \mathcal{O}_{X}, \mathcal{O}_{\Delta}\right) \simeq \operatorname{RHom}_{X \times X}\left(\mathcal{O}_{\Delta}, \Delta_{*} S_{X}\right) \tag{3}
\end{equation*}
$$

given by tensoring an element of $\operatorname{RHom}_{X \times X}\left(\Delta_{!} \mathcal{O}_{X}, \mathcal{O}_{\Delta}\right)$ on the right by the shifted line bundle $p_{2}^{*} S_{X}$ and making the obvious identifications. Now, since Δ^{*} is the left adjoint of Δ_{*} we have an isomorphism

$$
\begin{equation*}
\mathcal{J}: \operatorname{RHom}_{X \times X}\left(\mathcal{O}_{\Delta}, \Delta_{*} S_{X}\right) \simeq \operatorname{RHom}_{X}\left(\Delta^{*} \mathcal{O}_{\Delta}, S_{X}\right) \tag{4}
\end{equation*}
$$

Let $D_{\Delta}: \operatorname{RHom}_{X}\left(\mathcal{O}_{X}, \Delta^{*} \mathcal{O}_{\Delta}\right) \rightarrow \operatorname{RHom}_{X}\left(\Delta^{*} \mathcal{O}_{\Delta}, S_{X}\right)$ denote the composite $\mathcal{J} \circ \mathcal{T} \circ \mathcal{I}$. We refer to D_{Δ} as the duality map.

The main theorem. The main theorem of this paper relates the HKR, twisted HKR and duality maps. This is a corrected version of Theorem 8 of Markarian's preprint [5].

Note that $\mathrm{I}_{\mathrm{HKR}}$ induces a map

$$
\mathrm{I}_{\mathrm{HKR}}: \operatorname{RHom}_{X}\left(\mathcal{O}_{X}, \Delta^{*} \mathcal{O}_{\Delta}\right) \rightarrow \operatorname{RHom}_{X}\left(\mathcal{O}_{X}, \mathbf{S}^{\bullet}\left(\Omega_{X}[1]\right)\right)=\mathrm{H}^{*}(X)
$$

Similarly, $\widehat{\mathrm{I}_{\mathrm{HKR}}}$ induces a map

$$
\widehat{\mathrm{I}_{\mathrm{HKR}}}: \mathrm{H}^{*}(X)=\operatorname{RHom}_{X}\left(\mathcal{O}_{X}, \mathbf{S}^{\bullet}\left(\Omega_{X}[1]\right)\right) \rightarrow \operatorname{RHom}_{X}\left(\Delta^{*} \mathcal{O}_{\Delta}, S_{X}\right)
$$

Let J denote the endomorphism on $\mathbf{S}^{\bullet}\left(\Omega_{X}[1]\right)$ that multiplies $\wedge^{i} \Omega_{X}[i]$ by $(-1)^{i}$. J induces an endomorphism on $\mathrm{H}^{q}\left(X, \Omega_{X}^{p}\right)$. Let

$$
\operatorname{td}\left(T_{X}\right) \in \oplus_{i} \mathrm{H}^{i}\left(X, \Omega_{X}^{i}\right)
$$

denote the Todd genus of the tangent bundle of X. Recall that the wedge product $(-\wedge-): \mathbf{S}^{\bullet}\left(\Omega_{X}[1]\right)^{\otimes 2} \rightarrow \mathbf{S}^{\bullet}\left(\Omega_{X}[1]\right)$ induces a product on $\mathrm{H}^{*}(X)$. We are now in a position to state the main theorem.
Theorem 1. The following diagram commutes.

The map in the bottom row of the above diagram takes an element $\alpha \in$ $\mathrm{H}^{*}(X)$ to

$$
J(\alpha) \wedge \operatorname{td}\left(T_{X}\right)
$$

Theorem 1 can be thought of as an explicit computation of the duality map.
1.2. The Mukai pairing. We now try to understand how Theorem 1 leads to the relative Riemann-Roch theorem. It is in this attempt that we see how Theorem 1 helps us calculate what the Mukai pairing on Hochschild homology [1] descends to in Hodge cohomology. This settles a part of a conjecture by Caldararu in [2].

Let $\operatorname{HH}_{i}(X)$ denote $\operatorname{Hom}_{\mathrm{D}^{b}(X)}\left(\mathcal{O}_{X}, \Delta^{*} \mathcal{O}_{\Delta}[i]\right) . \mathrm{HH}_{i}(X)$ is called the i th Hochschild homology of X. Let \mathcal{I}, \mathcal{T} and \mathcal{J} be as in (2), (3), and (4) respectively. Let tr_{X} and $\operatorname{tr}_{X \times X}$ denote the canonical identifications of $\operatorname{Hom}_{\mathrm{D}^{b}(X)}\left(\mathcal{O}_{X}, S_{X}\right)$ and $\operatorname{Hom}_{\mathrm{D}^{b}(X \times X)}\left(\Delta_{*} S_{X}^{-1}, \Delta_{*} S_{X}\right)$ with \mathbb{K} respectively. We recall that Caldararu [1] defined a Mukai pairing on Hochschild homology. This was a pairing

$$
\begin{gather*}
\mathrm{HH}_{i}(X) \times \mathrm{HH}_{-i}(X) \rightarrow \mathbb{K} \tag{5}\\
(v, w) \mapsto \operatorname{tr}_{X \times X}(\mathcal{T}(\mathcal{I}(v)) \circ \mathcal{I}(w)) .
\end{gather*}
$$

On the other hand we can consider the pairing

$$
\begin{align*}
& \operatorname{HH}_{i}(X) \times \mathrm{HH}_{-i}(X) \rightarrow \mathbb{K} \tag{6}\\
& (v, w) \mapsto \operatorname{tr}_{X}\left(D_{\Delta}(v) \circ w\right) .
\end{align*}
$$

Proposition 1. The pairings on Hochschild homology defined in (5) and (6) are identical.

Proof. By definition, $D_{\Delta}(v)=\mathcal{J}(\mathcal{T}(\mathcal{I}(v)))$. The proposition would follow if we can check that

$$
\begin{equation*}
\operatorname{tr}_{X}(\mathcal{J}(\alpha) \circ \beta)=\operatorname{tr}_{X \times X}(\alpha \circ \mathcal{I}(\beta)) \tag{7}
\end{equation*}
$$

for any $\alpha \in \operatorname{Hom}_{D^{b}(X \times X)}\left(\mathcal{O}_{\Delta}, \Delta_{*} S_{X}[i]\right)$ and $\beta \in \operatorname{Hom}_{D^{b}(X)}\left(\mathcal{O}_{X}[i], \Delta^{*} \mathcal{O}_{\Delta}\right)$. This is just saying that \mathcal{I} is the map "dual" to the map \mathcal{J} in (4).

We remark here that the assertion (7) is similar to the last part of Proposition 3.1 of Caldararu's paper [1]. Proposition 3.1 of [1] describes the
construction of a right adjoint to a functor from $\mathrm{D}^{b}(X)$ to $\mathrm{D}^{b}(Y)$ given a left adjoint (via Serre duality). In our situation, $\Delta_{!}$is a left adjoint to $\Delta^{*}: \mathrm{D}^{b}(X \times X) \rightarrow \mathrm{D}^{b}(X) . \Delta_{!}$was constructed in [1] using the right adjoint Δ_{*} of Δ^{*} and Serre duality.

Moreover, let $\int_{X}: \mathrm{H}^{*}(X) \rightarrow \mathbb{K}$ denote the linear functional that is 0 on $\mathrm{H}^{p, q}(X)$ if $(p, q) \neq(n, n)$ and coincides with the identification of $\mathrm{H}^{n}\left(X, \Omega_{X}^{n}\right)=\operatorname{Hom}_{\mathrm{D}^{b}(X)}\left(\mathcal{O}_{X}, S_{X}\right)$ with \mathbb{K} on $\mathrm{H}^{n, n}(X)$. Recall the definition of the twisted HKR map $\widehat{\mathrm{I}_{\mathrm{HKR}}}$. The following proposition is immediate from the definition of $\widehat{\mathrm{I}_{\mathrm{HKR}}}$.
Proposition 2. If $a \in \mathrm{H}^{*}(X)$ and $b \in \operatorname{RHom}_{X}\left(\mathcal{O}_{X}, \Delta^{*} \mathcal{O}_{\Delta}\right)$, then

$$
\operatorname{tr}_{X}\left(\widehat{\mathrm{I}_{\mathrm{HKR}}}(a) \circ b\right)=\int_{X} \mathrm{I}_{\mathrm{HKR}}(b) \wedge a
$$

Let J be as in Theorem 1. Let \langle,$\rangle denote the Mukai pairing on Hochschild$ homology in this subsection only. The following proposition is immediate from Proposition 1, Proposition 2 and Theorem 1.

Proposition 3. If $a \in \mathrm{HH}_{i}(X)$ and $b \in \mathrm{HH}_{-i}(X)$ then

$$
\langle a, b\rangle=\int_{X} \mathrm{I}_{\mathrm{HKR}}(b) \wedge J\left(\mathrm{I}_{\mathrm{HKR}}(a)\right) \wedge \operatorname{td}\left(T_{X}\right) .
$$

Note that the product on $\mathrm{H}^{*}(X)$ is graded commutative. Also note that \int_{X} is nonvanishing only on $\mathrm{H}^{2 n}(X)$. Therefore,

$$
\int_{X} v \wedge w=\int_{X} \bar{w} \wedge v
$$

where \bar{w} is obtained from w by multiplying its component in $\mathrm{H}^{k}(X)$ by $(-1)^{k}$. Note that if $w \in \mathrm{H}^{*}(X), \overline{J(w)}=K(w)$ where K is the endomorphism on $\mathrm{H}^{*}(X)$ multiplying $\mathrm{H}^{q}\left(X, \Omega_{X}^{p}\right)$ by $(-1)^{q}$. Since $\operatorname{td}\left(T_{X}\right) \in \oplus_{i} \mathrm{H}^{2 i}(X)$, $\operatorname{td}\left(T_{X}\right)$ commutes with every element of $\mathrm{H}^{*}(X)$. Proposition 3 may therefore, be rewritten as

$$
\begin{equation*}
\langle a, b\rangle=\int_{X} K\left(\mathrm{I}_{\mathrm{HKR}}(a)\right) \wedge \mathrm{I}_{\mathrm{HKR}}(b) \wedge \operatorname{td}\left(T_{X}\right) . \tag{8}
\end{equation*}
$$

A Mukai like pairing on Hodge cohomology. Now suppose that X is a smooth complex variety. Recall that a generalized Mukai pairing \langle,\rangle_{C} has been defined by Caldararu [2] on the Hodge cohomology $\mathrm{H}^{*}(X)$. Let $\omega_{X}=$ Ω_{X}^{n} and let τ denote the endomorphism on $\mathrm{H}^{*}(X)$ that is multiplication by $\sqrt{(-1)}^{p+q}$ on $\mathrm{H}^{q}\left(X, \Omega_{X}^{p}\right)$. Let ch : $\mathrm{D}^{b}(X) \rightarrow \mathrm{H}^{*}(X)$ denote the Chern character. Recall from [2] that $\sqrt{\operatorname{ch}\left(\omega_{X}\right)}$ is a well-defined element of $\mathrm{H}^{*}(X)$. Then, if $v, w \in \mathrm{H}^{*}(X)$,

$$
\begin{equation*}
\langle v, w\rangle_{C}=\int_{X} \frac{\tau(v)}{\sqrt{\operatorname{ch}\left(\omega_{X}\right)}} \wedge w \tag{9}
\end{equation*}
$$

Let $\bar{\tau}$ denote the endomorphism on $\mathrm{H}^{*}(X)$ given by multiplication by $\sqrt{(-1)}^{q-p}$ on $\mathrm{H}^{q}\left(X, \Omega_{X}^{p}\right)$. Then, $K=\tau \circ \bar{\tau}=\bar{\tau} \circ \tau$. Define a pairing \langle,\rangle_{M} on $\mathrm{H}^{*}(X)$ by setting

$$
\begin{equation*}
\langle v, w\rangle_{M}=\langle\bar{\tau}(v), w\rangle_{C}=\int_{X} \frac{K(v)}{\sqrt{\operatorname{ch}\left(\omega_{X}\right)}} \wedge w \tag{10}
\end{equation*}
$$

Proposition 4. If $f: X \rightarrow Y$ is a proper morphism of smooth complex varieties, then

$$
\left\langle f^{*}(v), w\right\rangle_{M}=\left\langle v, f_{*}(w)\right\rangle_{M}
$$

for all $v \in \mathrm{H}^{*}(Y)$ and $w \in \mathrm{H}^{*}(X)$.
Proof. We recall from Caldararu [2] that $\left\langle f^{*}(v), w\right\rangle_{C}=\left\langle v, f_{*}(w)\right\rangle_{C}$ for all $v \in \mathrm{H}^{*}(Y)$ and $w \in \mathrm{H}^{*}(X)$. Now, $f^{*}(\bar{\tau} v)=\bar{\tau}\left(f^{*}(v)\right)$ for any $v \in \mathrm{H}^{*}(Y)$. Thus,

$$
\begin{aligned}
\left\langle f^{*}(v), w\right\rangle_{M} & =\left\langle\bar{\tau}\left(f^{*}(v)\right), w\right\rangle_{C}=\left\langle f^{*}(\bar{\tau}(v)), w\right\rangle_{C} \\
& =\left\langle\bar{\tau}(v), f_{*}(w)\right\rangle_{C}=\left\langle v, f_{*}(w)\right\rangle_{M}
\end{aligned}
$$

for all $v \in \mathrm{H}^{*}(Y)$ and $w \in \mathrm{H}^{*}(X)$.
Proposition 5. If $a \in \mathrm{HH}_{i}(X)$ and $b \in \mathrm{HH}_{-i}(X)$ then

$$
\langle a, b\rangle=\left\langle\mathrm{I}_{\mathrm{HKR}}(a) \wedge \sqrt{\operatorname{td}\left(T_{X}\right)}, \mathrm{I}_{\mathrm{HKR}}(b) \wedge \sqrt{\operatorname{td}\left(T_{X}\right)}\right\rangle_{M} .
$$

Proof. Since $\sqrt{\operatorname{td}\left(T_{X}\right)}$ is a linear combination of elements in $\mathrm{H}^{i}\left(X, \Omega_{X}^{i}\right)$, it commutes with other elements in $\mathrm{H}^{*}(X)$. The RHS of the equation in this proposition is therefore,

$$
\int_{X} \frac{K\left(\mathrm{I}_{\mathrm{HKR}}(a) \wedge \sqrt{\operatorname{td}\left(T_{X}\right)}\right)}{\sqrt{\operatorname{ch}\left(\omega_{X}\right)}} \wedge \sqrt{\operatorname{td}\left(T_{X}\right)} \wedge \mathrm{I}_{\mathrm{HKR}}(b) .
$$

But K is a ring endomorphism of $\mathrm{H}^{*}(X)$. Thus

$$
K\left(\mathrm{I}_{\mathrm{HKR}}(a) \wedge \sqrt{\operatorname{td}\left(T_{X}\right)}\right)=K\left(\mathrm{I}_{\mathrm{HKR}}(a)\right) \wedge K\left(\sqrt{\operatorname{td}\left(T_{X}\right)}\right)
$$

But $K\left(\sqrt{\operatorname{td}\left(T_{X}\right)}\right)=\tau\left(\sqrt{\operatorname{td}\left(T_{X}\right)}\right)$ since both K and τ are multiplication by $(-1)^{i}$ on $\mathrm{H}^{i}\left(X, \Omega_{X}^{i}\right)$. It has also been shown in Caldararu [2] that

$$
\frac{\tau\left(\sqrt{\operatorname{td}\left(T_{X}\right)}\right)}{\sqrt{\operatorname{ch}\left(\omega_{X}\right)}}=\sqrt{\operatorname{td}\left(T_{X}\right)} .
$$

It follows that

$$
\begin{aligned}
& \int_{X} \frac{K\left(\mathrm{I}_{\mathrm{HKR}}(a) \wedge \sqrt{\operatorname{td}\left(T_{X}\right)}\right)}{\sqrt{\operatorname{ch}\left(\omega_{X}\right)}} \wedge \sqrt{\operatorname{td}\left(T_{X}\right)} \wedge \mathrm{I}_{\mathrm{HKR}}(b) \\
& =\int_{X} K\left(\mathrm{I}_{\mathrm{HKR}}(a)\right) \wedge \operatorname{td}\left(T_{X}\right) \wedge \mathrm{I}_{\mathrm{HKR}}(b) \\
& =\int_{X} K\left(\mathrm{I}_{\mathrm{HKR}}(a)\right) \wedge \mathrm{I}_{\mathrm{HKR}}(b) \wedge \operatorname{td}\left(T_{X}\right) .
\end{aligned}
$$

The desired proposition now follows from (8).
Remark 1. Recall that if $\mathcal{E} \in \mathrm{D}^{b}(X)$, then $\operatorname{ch}(\mathcal{E}) \cdot \sqrt{\operatorname{td}\left(T_{X}\right)}$ is called the Mukai vector of \mathcal{E} (Caldararu [2]). The pairing \langle,\rangle_{M} is slightly different from the generalized Mukai pairing \langle,\rangle_{C} defined by Caldararu [2]. However, if v and w are Mukai vectors of elements of $\mathrm{D}^{b}(X)$, then $\langle v, w\rangle_{M}=\langle v, w\rangle_{C}$.

Remark 2. Let X and Y be smooth complex varieties. Recall the definition of an integral transform $\Phi: \mathrm{D}^{b}(X) \rightarrow \mathrm{D}^{b}(Y)$ from Caldararu [2], [1]. An integral transform Φ induces a map $\Phi_{*}: \mathrm{H}^{*}(X) \rightarrow \mathrm{H}^{*}(Y)$. We remark that the pairing \langle,\rangle_{M} satisfies the adjointness one expects from a Mukai pairing. More precisely, if $\Phi: \mathrm{D}^{b}(X) \rightarrow \mathrm{D}^{b}(Y)$ and $\Psi: \mathrm{D}^{b}(Y) \rightarrow \mathrm{D}^{b}(X)$ are integral transforms such that Ψ is a left adjoint of Φ, then

$$
\left\langle\Psi_{*} v, w\right\rangle_{M}=\left\langle v, \Phi_{*} w\right\rangle_{M}
$$

for all $v \in \mathrm{D}^{b}(Y)$ and $w \in \mathrm{D}^{b}(X)$. This follows from the analogous property for the pairing \langle,\rangle_{C} and the fact (see Caldararu [2]) that integral transforms preserve the columns of the Hodge diamond. We are thus justified when we refer to the pairing \langle,\rangle_{M} as a Mukai like pairing.

Remark 3. A part of the main conjecture of Caldararu [2] was that the HKR map twisted by the square root of the Todd genus of X preserves the Mukai pairing. However, instead of taking the Mukai pairing on Hochschild homology to \langle,\rangle_{C}, it takes it to \langle,\rangle_{M} by Proposition 5. The latter pairing is itself a Mukai like pairing and is very similar to the former pairing. However, \langle,\rangle_{M} does not coincide with the Mukai pairing on the Hodge cohomology of a K3-surface in general. In particular, if $v \in \mathrm{H}^{2,0}(X)$ and $w \in \mathrm{H}^{0,2}(X)$ then $\langle v, w\rangle_{M} \neq\langle v, w\rangle_{C}$. This is why we do not go so far as to call \langle,\rangle_{M} a generalized Mukai pairing. We can however, justifiably say that the HKR map twisted by the square root of the Todd genus of X "almost preserves" the Mukai pairing.
1.3. The relative Riemann-Roch theorem. Recall that Caldararu [1] defined a Chern character

$$
\mathrm{Ch}: \mathrm{D}^{b}(X) \rightarrow \mathrm{HH}_{0}(X) .
$$

He also showed in [1] that if $f: X \rightarrow Y$ is a proper morphism of smooth schemes, then

$$
\begin{equation*}
\operatorname{Ch}\left(f_{*} \mathcal{E}\right)=f_{*} \operatorname{Ch}(\mathcal{E}) \tag{11}
\end{equation*}
$$

for any $\mathcal{E} \in \mathrm{D}^{b}(X)$. Also, in [2], it was shown that

$$
\mathrm{I}_{\mathrm{HKR}} \circ \operatorname{Ch}(\mathcal{E})=\operatorname{ch}(\mathcal{E})
$$

The relative Riemann-Roch theorem follows from Proposition 5.

Relative Riemann-Roch Theorem. Let $f: X \rightarrow Y$ be a proper morphism of smooth proper complex varieties. Then, if \mathcal{E} is a vector bundle on X,

$$
\int_{X} f^{*}(l) \operatorname{ch}(\mathcal{E}) \operatorname{td}\left(T_{X}\right)=\int_{Y} l \operatorname{ch}\left(f_{*} \mathcal{E}\right) \operatorname{td}\left(T_{Y}\right)
$$

for any $l \in \mathrm{H}^{*}(Y)$.
Proof. Note that $\mathrm{I}_{\mathrm{HKR}}: \mathrm{HH}_{*}(X) \rightarrow \mathrm{H}^{*}(X)$ is an isomorphism of complex vector spaces. Let

$$
a=\mathrm{I}_{\mathrm{HKR}}^{-1}(K(l)) \in \mathrm{HH}_{*}(Y) .
$$

Then,

$$
\begin{equation*}
\left\langle f^{*} a, \operatorname{Ch}(\mathcal{E})\right\rangle=\left\langle a, f_{*} \operatorname{Ch}(\mathcal{E})\right\rangle=\left\langle a, \operatorname{Ch}\left(f_{*} \mathcal{E}\right)\right\rangle . \tag{12}
\end{equation*}
$$

The first equality in (12) is due to the adjointness property of the Mukai pairing (see Caldararu [1]). The second equality in (12) is due to (11). By Proposition 5 and the fact that $\operatorname{td}\left(T_{X}\right)$ commutes with other elements of $\mathrm{H}^{*}(X)$,

$$
\begin{align*}
\left\langle f^{*} a, \operatorname{Ch}(\mathcal{E})\right\rangle & =\int_{X} K\left(\mathrm{I}_{\mathrm{HKR}}\left(f^{*} a\right)\right) \mathrm{I}_{\mathrm{HKR}}(\operatorname{Ch}(\mathcal{E})) \operatorname{td}\left(T_{X}\right) \tag{13}\\
\left\langle a, \operatorname{Ch}\left(f_{*} \mathcal{E}\right)\right\rangle & =\int_{Y} K\left(\mathrm{I}_{\mathrm{HKR}}(a)\right) \mathrm{I}_{\mathrm{HKR}}\left(\operatorname{Ch}\left(f_{*} \mathcal{E}\right)\right) \operatorname{td}\left(T_{Y}\right)
\end{align*}
$$

Now recall that $\mathrm{I}_{\mathrm{HKR}} \circ f^{*}=f^{*} \circ \mathrm{I}_{\mathrm{HKR}}$ (Theorem 7 of [5]) and note that $K \circ f^{*}=f^{*} \circ K$. Also $\mathrm{I}_{\mathrm{HKR}} \circ \mathrm{Ch}=\mathrm{ch}$. Now, applying these facts to (13) and using (12), the desired theorem follows.

Remark 4. Note that the Chern character to Hochschild homology actually commutes with push-forwards as shown in Caldararu [1]. The Todd genus in the relative Riemann-Roch theorem thus occurs as a consequence of the fact that the Mukai pairing on Hochschild homology does not correspond to a Mukai like pairing on Hodge cohomology under $\mathrm{I}_{\text {HKR }}$. For the Mukai pairing on Hochschild homology to be "preserved" in any sense, one has to twist $\mathrm{I}_{\text {HKR }}$ by $\sqrt{\operatorname{td}\left(T_{X}\right)}$.

2. Two "connections" on the Hochschild chain complex $\widehat{C}^{\bullet}(\boldsymbol{X})$

2.1. The completed bar and Hochschild chain complexes. Let $U=$ $\operatorname{Spec} R$ be an open affine subscheme of X. The restriction of \mathcal{O}_{Δ} to $U \times U$ has a free $R \otimes R$-module resolution given by the bar resolution:

$$
\begin{aligned}
& B^{-n}(R)=R^{\otimes(n+2)} \\
d\left(r_{0} \otimes \cdots \otimes r_{n+1}\right)= & r_{0} r_{1} \otimes \cdots \otimes r_{n+1}-r_{0} \otimes r_{1} r_{2} \otimes \cdots \otimes r_{n+1} \\
& +\cdots+(-1)^{n} r_{0} \otimes \cdots \otimes r_{n} r_{n+1}
\end{aligned}
$$

$r_{i} \in R$.

The $R \otimes R$-module structure is given by multiplication with the extreme factors. Let I_{n} denote the kernel of the $(n+2)$-fold multiplication $R^{\otimes(n+2)} \rightarrow$ R. Let

$$
\widehat{B}^{-n}(R)=\lim _{k} \frac{B^{-n}(R)}{I_{n}^{k}} .
$$

Note that each summand of the differential d takes I_{n} to I_{n-1}. It follows that the differential on $B^{\bullet}(R)$ extends to yield a differential on $\widehat{B} \bullet(R)$. Yekutieli [9] shows that completing the bar resolution in this manner yields a complex $\widehat{B}^{\bullet}(X)$ of coherent sheaves on $X \times X$. He also shows that $\widehat{B}^{\bullet}(X)$ is a resolution of \mathcal{O}_{Δ} by flat $\mathcal{O}_{X \times X}$-modules.

It follows that $\Delta^{*} \mathcal{O}_{\Delta}$ is represented by the complex

$$
\widehat{C}^{\bullet}(X):=\mathcal{O}_{X} \otimes_{\Delta^{-1}} \mathcal{O}_{X \times X} \Delta^{-1} \widehat{B}^{\bullet}(X) .
$$

$\widehat{C}^{\bullet}(X)$ is called the complex of completed Hochschild chains on X.
On an open subscheme $U=\operatorname{Spec} R$ of X before completion,

$$
\begin{aligned}
& C^{-n}(R)=R^{\otimes(n+1)} \\
d\left(r_{0} \otimes \cdots \otimes r_{n}\right)= & r_{0} r_{1} \otimes \cdots \otimes r_{n}-r_{0} \otimes r_{1} r_{2} \otimes \cdots \otimes r_{n} \\
& +\cdots+(-1)^{n-1} r_{0} \otimes \cdots \otimes r_{n-1} r_{n} \\
& +(-1)^{n} r_{n} r_{0} \otimes \cdots \otimes r_{n-1} \\
\widehat{C}^{-n}(R)= & \lim _{k} \frac{B^{-n}(R)}{I_{n}^{k}} \otimes_{R^{\otimes(n+2)}} C^{-n}(R) .
\end{aligned}
$$

Yekutieli [9] also showed that $\operatorname{RD}\left(\widehat{C}^{\bullet}(X)\right)$ is represented in $\mathrm{D}^{b}(X)$ by the complex $\mathrm{D}_{\text {poly }}^{\bullet}(X)$ of poly-differential operators on X equipped with Hochschild coboundary.

Let us describe some operations on $\widehat{C}^{\bullet}(X)$ that endow it with the structure of a Hopf algebra in $\mathrm{Ch}^{-}\left(\mathcal{O}_{X}-\bmod \right)$ (and therefore in $\left.\mathrm{D}^{b}(X)\right)$.

Product on $\widehat{C}^{\bullet}(X)$: The product $m: \widehat{C}^{\bullet}(X) \otimes \mathcal{O}_{X} \widehat{C}^{\bullet}(X) \rightarrow \widehat{C}^{\bullet}(X)$ is given by the signed shuffle product. Recall that a (p, q)-shuffle σ is a permutation of $\{1, \ldots, p+q\}$ such that $\sigma(1)<\cdots<\sigma(p)$ and $\sigma(p+1)<\cdots<\sigma(p+q)$. Denote the set of (p, q)-shuffles by $\mathrm{Sh}_{p, q}$. On an open subscheme $U=\operatorname{Spec} R$ of X before completion, this product is given by

$$
\begin{aligned}
\left(r_{0} \otimes r_{1} \otimes \cdots \otimes r_{p}\right) \otimes_{R} & \left(r_{0}^{\prime} \otimes r_{p+1} \otimes \cdots \otimes r_{p+q}\right) \\
& \mapsto \sum_{\sigma \in \operatorname{Sh}_{p, q}} \operatorname{sgn}(\sigma) r_{0} r_{0}^{\prime} \otimes r_{\sigma^{-1}(1)} \otimes \cdots \otimes r_{\sigma^{-1}(p+q)} .
\end{aligned}
$$

This is easily seen to be a (graded) commutative product.

Coproduct on $\widehat{C}^{\bullet}(X)$. The coproduct $\widehat{C}^{\bullet}(X) \rightarrow \widehat{C}^{\bullet}(X) \otimes \mathcal{O}_{X} \widehat{C}^{\bullet}(X)$ is given by the cut coproduct. Contrary to the usual practise, we denote the coproduct by \mathbf{C} to avoid confusion with Δ which denotes the diagonal map $X \rightarrow X \times X$ in this paper. On an open subscheme $U=\operatorname{Spec} R$ of X before completion,

$$
\mathbf{C}\left(r_{0} \otimes \cdots \otimes r_{n}\right)=\sum_{p+q=n} r_{0} \otimes r_{1} \otimes \cdots \otimes r_{p} \otimes_{R} 1 \otimes r_{p+1} \otimes \cdots \otimes r_{n}
$$

Unit for $\widehat{C}^{\bullet}(X)$. There is a unit map $\epsilon: \mathcal{O}_{X} \rightarrow \widehat{C}^{\bullet}(X)$. On an open subscheme $U=\operatorname{Spec} R$ of X before completion, ϵ is given by the composite

$$
R \simeq C^{0}(R) \hookrightarrow C^{\bullet}(R)
$$

Counit for $\widehat{C}^{\bullet}(X)$. There is a counit $\eta: \widehat{C}^{\bullet}(X) \rightarrow \mathcal{O}_{X}$. On an open subscheme $U=\operatorname{Spec} R$ of X before completion, this is given by the projection from $C^{\bullet}(R)$ to $C^{0}(R)$.
Proposition 6. $\widehat{C}^{\bullet}(X)$ is a Hopf algebra in $\mathrm{Ch}^{-}\left(\mathcal{O}_{X}-\bmod \right)$ via M, \mathbf{C}, ϵ and η.

Proof. Yekutieli [9] showed that applying the functor $\mathcal{H o m}_{\mathcal{O}_{X}}^{\text {cont }}\left(-, \mathcal{O}_{X}\right)\left(\mathcal{O}_{X}\right.$ is given the discrete topology) to $\widehat{C}^{\bullet}(X) \in \mathrm{Ch}^{-}\left(\mathcal{O}_{X}-\bmod \right)$ yields

$$
\mathrm{D}_{\text {poly }}^{\bullet}(X) \in \mathrm{Ch}^{+}\left(\mathcal{O}_{X}-\bmod \right) .
$$

It is easy to verify that this functor takes the product, coproduct, unit and counit of $\widehat{C}^{\bullet}(X)$ to the coproduct, product, counit and unit of $\mathrm{D}_{\text {poly }}^{\bullet}(X)$ respectively. The desired proposition then follows from Proposition 2 of [7].

Antipode on $\widehat{C}^{\bullet}(X) . \widehat{C}(X)$ also comes equipped with an antipode map. We will denote this map by S. On $U=\operatorname{Spec} R$ before completion,

$$
S\left(r_{0} \otimes \cdots \otimes r_{n}\right)=(-1)^{\frac{n(n+1)}{2}} r_{0} \otimes r_{n} \otimes r_{n-1} \otimes \cdots \otimes r_{1}
$$

The Hochschild-Kostant-Rosenberg (HKR) map. There is a quasiisomorphism (see Yekutieli [9])

$$
\mathrm{I}_{\mathrm{HKR}}: \widehat{C}^{\bullet}(X) \rightarrow \mathbf{S}^{\bullet}(\Omega[1])
$$

of complexes of \mathcal{O}_{X}-modules. On an open subscheme $U=\operatorname{Spec} R$ of X before completion,

$$
\mathrm{I}_{\mathrm{HKR}}\left(r_{0} \otimes \cdots \otimes r_{n}\right)=\frac{1}{n!} r_{0} d r_{1} \wedge \cdots \wedge d r_{n} .
$$

2.2. Two connections on $\widehat{\boldsymbol{C}}^{\bullet}(\boldsymbol{X})$. Let $\pi_{k}: \mathbf{S}^{\bullet}(\Omega[1]) \rightarrow \Omega^{k}[k]$ denote the natural projection. Denote by α_{R} the composite

$$
\widehat{C}^{\bullet}(X) \xrightarrow{\mathrm{C}} \widehat{C}^{\bullet}(X) \otimes \widehat{C}^{\bullet}(X) \xrightarrow{\left(\mathbf{1}_{\widehat{C}} \bullet(X) \otimes \pi_{1} \circ \mathrm{I}_{\mathrm{HKR}}\right)} \widehat{C}^{\bullet}(X) \otimes \Omega[1] .
$$

More concretely, on an open subscheme $U=\operatorname{Spec} R$ of X before completion,

$$
\alpha_{R}\left(r_{0} \otimes \cdots \otimes r_{n}\right)=r_{0} \otimes \cdots \otimes r_{n-1} \otimes d r_{n}
$$

Let $\alpha_{L}: \widehat{C}^{\bullet}(X) \rightarrow \widehat{C}^{\bullet}(X) \otimes \Omega[1]$ be the map such that

$$
\alpha_{L}\left(r_{0} \otimes \cdots \otimes r_{n}\right)=(-1)^{n-1} r_{0} \otimes r_{2} \otimes \cdots \otimes r_{n} \otimes d r_{1}
$$

on any open subscheme $U=\operatorname{Spec} R$ of X before completion.
Then, $\alpha_{L}=-(S \otimes \Omega[1]) \circ \alpha_{R} \circ S$. Let $\alpha_{R} \otimes \widehat{C}(X)$ denote the composite

$$
\begin{aligned}
& \quad \widehat{C}(X) \otimes \widehat{C}(X) \\
& \alpha_{R} \otimes \widehat{C}(X) \downarrow \\
& \widehat{C}(X) \otimes \Omega[1] \otimes \widehat{C} \cdot(X) \xrightarrow{\widehat{C}^{\bullet}(X) \otimes \tau} \widehat{C}^{\bullet}(X) \otimes \widehat{C}(X) \otimes \Omega[1]
\end{aligned}
$$

where $\tau: \Omega[1] \otimes \widehat{C}^{\bullet}(X) \rightarrow \widehat{C}^{\bullet}(X) \otimes \Omega[1]$ is the map that swaps factors. Similarly, let $\alpha_{L} \otimes \widehat{C}^{\bullet}(X)$ denote the composite

$$
\begin{aligned}
& \quad \widehat{C}^{\bullet}(X) \otimes \widehat{C}^{\bullet}(X) \\
& \alpha_{L} \otimes \widehat{C}(X) \downarrow \\
& \widehat{C} \cdot(X) \otimes \Omega[1] \otimes \widehat{C}^{\bullet}(X) \xrightarrow{\widehat{C}(X) \otimes \tau} \widehat{C} \cdot(X) \otimes \widehat{C}^{\bullet}(X) \otimes \Omega[1] .
\end{aligned}
$$

We now have the following proposition.
Proposition 7. The following diagrams commute in $\mathrm{Ch}^{-}\left(\mathcal{O}_{X}-\bmod \right)$.

Proof. This proposition is proven by a combinatorial argument. On an open subscheme $U=\operatorname{Spec} R$ of X before completion,

$$
\begin{align*}
& \left(\alpha_{R} \otimes \widehat{C}^{\bullet}(X)+\widehat{C}^{\bullet}(X) \otimes \alpha_{R}\right) \tag{16}\\
& \quad\left(\left(r_{0} \otimes r_{1} \otimes \cdots \otimes r_{p}\right) \otimes_{R}\left(1 \otimes r_{p+1} \otimes \cdots \otimes r_{p+q}\right)\right) \\
& \quad=(-1)^{q}\left(r_{0} \otimes r_{1} \otimes \cdots \otimes r_{p-1}\right) \otimes_{R}\left(1 \otimes r_{p+1} \otimes \cdots \otimes r_{p+q}\right) \otimes d r_{p} \\
& \quad+\left(r_{0} \otimes r_{1} \otimes \cdots \otimes r_{p}\right) \otimes_{R}\left(1 \otimes r_{p+1} \otimes \cdots \otimes r_{p+q-1}\right) \otimes d r_{p+q} .
\end{align*}
$$

Note that if σ is a (p, q)-shuffle, then $\sigma^{-1}(p+q)=p$ or $\sigma^{-1}(p+q)=p+q$. Let $\operatorname{Sh}_{p, q}^{1}$ denote the set of all (p, q)-shuffles σ such that $\sigma^{-1}(p+q)=p$. Let $\mathrm{Sh}_{p, q}^{2}$ denote $\mathrm{Sh}_{p, q} \backslash \mathrm{Sh}_{p, q}^{1}$.

Also note that there is a sign preserving bijection from $\mathrm{Sh}_{p, q-1}$ to $\mathrm{Sh}_{p, q}^{2}$ the inverse of which takes an element σ of $\mathrm{Sh}_{p, q}^{2}$ to its restriction to the set $\{1, \ldots, p+q-1\}$. Denote this bijection by $I: \mathrm{Sh}_{p, q-1} \rightarrow \mathrm{Sh}_{p, q}^{2}$.

We also have a bijection from $\mathrm{Sh}_{p, q}^{1}$ to $\mathrm{Sh}_{p-1, q}$. Let

$$
\psi:\{1, \ldots, p+q-1\} \rightarrow\{1, \ldots, p-1, p+1, \ldots, p+q-1\}
$$

be the unique order-preserving map. The permutation in $\mathrm{Sh}_{p-1, q}$ corresponding to a permutation σ in $\operatorname{Sh}_{p, q}^{1}$ is given by the composite

$$
\{1, \ldots, p+q-1\} \xrightarrow{\psi}\{1, \ldots, p-1, p+1, \ldots, p+q\} \xrightarrow{\sigma}\{1, \ldots, p+q-1\} .
$$

This bijection from $\mathrm{Sh}_{p, q}^{1}$ to $\mathrm{Sh}_{p-1, q}$ however, changes the sign by $(-1)^{q}$. Denote the inverse of this bijection by $J: \mathrm{Sh}_{p-1, q} \rightarrow \mathrm{Sh}_{p, q}^{1}$.

Then

$$
\begin{aligned}
m & \left(\left(r_{0} \otimes r_{1} \otimes \cdots \otimes r_{p}\right) \otimes R\left(1 \otimes r_{p+1} \otimes \cdots \otimes r_{p+q}\right)\right) \\
= & \sum_{\sigma \in \operatorname{Sh}_{p, q}} \operatorname{sgn}(\sigma) r_{0} \otimes r_{\sigma^{-1}(1)} \otimes \ldots r_{\sigma^{-1}(p+q)} \\
= & \sum_{\sigma \in \operatorname{Sh}_{p, q}^{1}} \operatorname{sgn}(\sigma) r_{0} \otimes r_{\sigma^{-1}(1)} \otimes \ldots r_{\sigma^{-1}(p+q)} \\
& +\sum_{\sigma \in \operatorname{Sh}_{p, q}^{2}} \operatorname{sgn}(\sigma) r_{0} \otimes r_{\sigma^{-1}(1)} \otimes \ldots r_{\sigma^{-1}(p+q)} \\
= & \sum_{\sigma \in \operatorname{Sh}_{p-1, q}}(-1)^{q} \operatorname{sgn}(\sigma) r_{0} \otimes r_{J(\sigma)^{-1}(1)} \otimes \cdots \otimes r_{J(\sigma)^{-1}(p+q-1)} \otimes r_{p} \\
& +\sum_{\sigma \in \operatorname{Sh}_{p, q-1}} \operatorname{sgn}(\sigma) r_{0} \otimes r_{I(\sigma)^{-1}(1)} \otimes \cdots \otimes r_{I(\sigma)^{-1}(p+q-1)} \otimes r_{p+q} \\
= & (-1)^{q} m\left(\left(r_{0} \otimes r_{1} \otimes \cdots \otimes r_{p-1}\right) \otimes \otimes_{R}\left(1 \otimes r_{p+1} \otimes \cdots \otimes r_{p+q}\right)\right) \otimes r_{p} \\
& +m\left(\left(r_{0} \otimes r_{1} \otimes \cdots \otimes r_{p}\right) \otimes R\left(1 \otimes r_{p+1} \otimes \cdots \otimes r_{p+q-1}\right)\right) \otimes r_{p+q} .
\end{aligned}
$$

It follows that

$$
\begin{aligned}
& \alpha_{R}\left(m\left(\left(r_{0} \otimes r_{1} \otimes \cdots \otimes r_{p}\right) \otimes_{R}\left(1 \otimes r_{p+1} \otimes \cdots \otimes r_{p+q}\right)\right)\right) \\
& =(-1)^{q} m\left(\left(r_{0} \otimes r_{1} \otimes \cdots \otimes r_{p-1}\right) \otimes_{R}\left(1 \otimes r_{p+1} \otimes \cdots \otimes r_{p+q}\right)\right) \otimes d r_{p} \\
& \quad+m\left(\left(r_{0} \otimes r_{1} \otimes \cdots \otimes r_{p}\right) \otimes_{R}\left(1 \otimes r_{p+1} \otimes \cdots \otimes r_{p+q-1}\right)\right) \otimes d r_{p+q} .
\end{aligned}
$$

It follows from (16) that this is precisely

$$
\begin{aligned}
& (m \otimes \Omega[1])\left(\left(\alpha_{R} \otimes \widehat{C}^{\bullet}(X)+\widehat{C}^{\bullet}(X) \otimes \alpha_{R}\right)\right) \\
& \quad\left(\left(r_{0} \otimes r_{1} \otimes \cdots \otimes r_{p}\right) \otimes_{R}\left(1 \otimes r_{p+1} \otimes \cdots \otimes r_{p+q}\right)\right) .
\end{aligned}
$$

This proves that the diagram (14) commutes. Proving that the diagram (15) commutes is very similar and left to the reader.

Let $\alpha_{R}^{\circ i}$ denote the composite

$$
\begin{aligned}
& \widehat{C}^{\bullet}(X) \\
& { }^{\alpha_{R}} \downarrow \\
& \widehat{C}(X) \otimes \Omega[1] \\
& \alpha_{R} \otimes \Omega[1] \\
& \widehat{C}^{\bullet}(X) \otimes \Omega[1]^{\otimes 2} \longrightarrow \cdots \xrightarrow{\alpha_{R} \otimes \Omega[1]^{\otimes i-1}} \widehat{C}^{\bullet}(X) \otimes \Omega[1]^{\otimes i} .
\end{aligned}
$$

Let $p: \Omega[1]{ }^{\otimes i} \rightarrow \Omega^{i}[i]$ be the standard projection. On an open subscheme $U=\operatorname{Spec} R$, of X,

$$
p\left(r_{0} d r_{1} \otimes \cdots \otimes d r_{i}\right)=r_{0} d r_{1} \wedge \cdots \wedge d r_{i} .
$$

Let α_{R}^{i} denote the composite

$$
\widehat{C}^{\bullet}(X) \xrightarrow{\alpha_{R}^{o i}} \widehat{C}^{\bullet}(X) \otimes \Omega[1]^{\otimes i} \xrightarrow{\widehat{C}^{\bullet}(X) \otimes p} \widehat{C}^{\bullet}(X) \otimes \Omega^{i}[i] .
$$

Let $\exp \left(\alpha_{R}\right)$ denote the sum

$$
\sum_{i} \frac{1}{i!} \alpha_{R}^{i}: \widehat{C}^{\bullet}(X) \rightarrow \widehat{C}^{\bullet}(X) \otimes \mathbf{S}^{\bullet}(\Omega[1]) .
$$

We then have the following proposition.

Proposition 8.

$$
\left(\widehat{C}^{\bullet}(X) \otimes \mathrm{I}_{\mathrm{HKR}}\right) \circ \mathbf{C}=\exp \left(\alpha_{R}\right) .
$$

Proof. On an open subscheme $U=\operatorname{Spec} R$ before completion,

$$
\begin{aligned}
& \exp \left(\alpha_{R}\right)\left(r_{0} \otimes \cdots \otimes r_{n}\right) \\
& =\frac{1}{i!} \sum_{i} r_{0} \otimes \cdots \otimes r_{n-i} \otimes_{R} d r_{n-i+1} \wedge \cdots \wedge d r_{n} \\
& =\sum_{i} r_{0} \otimes \cdots \otimes r_{n-i} \otimes_{R} \mathrm{I}_{\mathrm{HKR}}\left(1 \otimes r_{n-i+1} \otimes \cdots \otimes r_{n}\right) \\
& =\left(\widehat{C}^{\bullet}(X) \otimes \mathrm{I}_{\mathrm{HKR}}\right)\left(\sum_{i} r_{0} \otimes \cdots \otimes r_{n-i} \otimes_{R} 1 \otimes r_{n-i+1} \otimes \cdots \otimes r_{n}\right) \\
& =\left(\widehat{C}^{\bullet} \otimes \mathrm{I}_{\mathrm{HKR}}\right) \circ \mathbf{C}\left(r_{0} \otimes \cdots \otimes r_{n}\right) .
\end{aligned}
$$

This verifies the desired proposition.
Let $\tau: \Omega[1] \otimes \Omega[1] \rightarrow \Omega[1] \otimes \Omega[1]$ denote the swap map. The following proposition tells us that α_{L} and α_{R} "commute" with each other.

Proposition 9.

$$
\left(\alpha_{R} \otimes \Omega[1]\right) \circ \alpha_{L}-\left(\widehat{C}^{\bullet}(X) \otimes \tau\right) \circ\left(\alpha_{L} \otimes \Omega[1]\right) \circ \alpha_{R}=0
$$

Proof. On an open subscheme $U=\operatorname{Spec} R$ before completion,

$$
\begin{aligned}
\left(\alpha_{R} \otimes \Omega[1]\right) \circ \alpha_{L}\left(r_{0} \otimes \cdots \otimes r_{n}\right) & =(-1)^{n-1}\left(r_{0} \otimes r_{2} \otimes \cdots \otimes r_{n-1}\right) \otimes_{R} d r_{n} \otimes_{R} d r_{1} \\
\left(\alpha_{L} \otimes \Omega[1]\right) \circ \alpha_{R}\left(r_{0} \otimes \cdots \otimes r_{n}\right) & =(-1)^{n-2}\left(r_{0} \otimes r_{2} \otimes \cdots \otimes r_{n-1}\right) \otimes_{R} d r_{1} \otimes_{R} d r_{n} \\
\left(\widehat{C}^{\bullet}(X) \otimes \tau\right)\left(\left(r_{0} \otimes r_{2} \otimes \cdots \otimes\right.\right. & \left.\left.r_{n-1}\right) \otimes_{R} d r_{1} \otimes_{R} d r_{n}\right) \\
& =-\left(r_{0} \otimes r_{2} \otimes \cdots \otimes r_{n-1}\right) \otimes_{R} d r_{n} \otimes_{R} d r_{1} .
\end{aligned}
$$

The desired proposition is now immediate.
2.3. Remark - the beginning of a dictionary. For reasons that will become clear later in this section, the reader should think of $\widehat{C}(X)$ as analogous to the ring of functions on an open "symmetric" neighborhood U_{G} of the identity of a Lie group G. By "symmetric" we mean that if $g \in U_{G}$ then $g^{-1} \in U_{G} . T[-1]$ is the analog of the Lie algebra \mathfrak{g} of the Lie group G. Thus, $\Omega[1]$ is the analog of \mathfrak{g}^{*}. Proposition 7 says that in this picture, both α_{L} and α_{R} are analogs of "connections" on the ring of functions of G.

In the same picture, $\mathbf{S}^{\bullet}(\Omega[1])$ is to be thought of as analogous to the ring of functions on a neighborhood \mathcal{V} of 0 in \mathfrak{g} that is diffeomorphic to U_{G} via the exponential map. The Hochschild-Kostant-Rosenberg map is then the analog of the pullback by the exponential map exp*.

The antipode map S is the analog of the pullback by the map which takes an element of G to its inverse.
2.4. More on the maps $\alpha_{\boldsymbol{R}}$ and α_{L}. The question that arises at this stage is, "Can α_{L} and α_{R} be described by explicit formulae as maps in $\mathrm{D}^{b}(X)$ from $\mathbf{S}^{\bullet}(\Omega[1])$ to $\mathbf{S}^{\bullet}(\Omega[1]) \otimes \Omega[1] ? "$. Markarian sought to answer this in Theorem 1 of [5]. The proof there was however erroneous. A result dual to what we want is available in [7]. A later version [6] of [5] also contains a result equivalent to Theorem 1 of [5].

Recall from Kapranov [3] that $T[-1]$ is a Lie algebra object in $\mathrm{D}^{b}(X)$. The Lie bracket of $T[-1]$ is given by the Atiyah class

$$
\mathrm{At}_{T}: T[-1] \otimes T[-1] \rightarrow T[-1]
$$

of the tangent bundle of X. It is also known that the universal enveloping algebra of $T[-1]$ in $\mathrm{D}^{b}(X)$ is represented by the complex $\mathrm{D}_{\text {poly }}^{\bullet}(X)$. This was proven in [7]. Equivalent results have been proven using methods different from that in [7] by Markarian [6] and Roberts and Willerton [8].

Let μ denote the wedge product on $\mathbf{S}^{\bullet}(T[-1])$. Let

$$
\delta: \mathbf{S}^{\bullet}(T[-1]) \otimes T[-1] \rightarrow \mathbf{S}^{\bullet}(T[-1]) \otimes T[-1] \otimes T[-1]
$$

be the map

$$
\delta\left(v_{1} \wedge \cdots \wedge v_{k} \otimes y\right)=\sum_{i=1}^{i=k}(-1)^{k-i} v_{1} \wedge \widehat{\cdots i \cdots} \wedge v_{k} \otimes v_{i} \otimes y
$$

for sections v_{1}, \ldots, v_{k}, y of T over an open subscheme $U=\operatorname{Spec} R$ of X.
We have a map

$$
\begin{gathered}
\bar{\omega}: \mathbf{S}^{\bullet}(T[-1]) \otimes T[-1] \rightarrow \mathbf{S}^{\bullet}(T[-1]) \otimes T[-1] \\
\bar{\omega}=\left(\mathbf{1}_{\mathbf{S}}(T[-1]) \otimes \mathrm{At}_{T}\right) \circ \delta .
\end{gathered}
$$

Note that $\mu \circ \bar{\omega}$ yields the right adjoint action of the Lie algebra object $T[-1]$ on $\mathbf{S}^{\bullet}(T[-1])$.

The Hochschild-Kostant-Rosenberg map $\mathrm{I}_{\mathrm{HKR}}: \mathbf{S}^{\bullet}(T[-1]) \rightarrow \mathrm{D}_{\text {poly }}^{\bullet}(X)$ is the "dual" of the HKR map $\mathrm{I}_{\mathrm{HKR}}: \widehat{C}^{\bullet}(X) \rightarrow \mathbf{S}^{\bullet}(\Omega[1])$. The following theorem, which figures as Corollary 1 in [7] and Theorem 2 in [6], describes the Duflo-like error term that measures how the map

$$
\mathrm{I}_{\mathrm{HKR}}: \mathbf{S}^{\bullet}(T[-1]) \rightarrow \mathrm{D}_{\text {poly }}^{\bullet}(X)
$$

fails to commute with multiplication.
Theorem 2 (Recalled from [7]; [6] has a similar result). The following diagram commutes in $\mathrm{D}^{b}(X)$.

\[

\]

Note that applying the functor RD to $\bar{\omega}$ gives us a morphism in $\mathrm{D}^{b}(X)$

$$
\bar{\omega}: \mathbf{S}^{\bullet}(\Omega[1]) \otimes \Omega[1] \rightarrow \mathbf{S}^{\bullet}(\Omega[1]) \otimes \Omega[1] .
$$

Further, denote the comultiplication on $\mathbf{S}^{\bullet}(\Omega[1])$ by \mathbf{C}_{Ω}. Denote the map

$$
\left(\mathbf{S}^{\bullet}(\Omega[1]) \otimes \pi_{1}\right) \circ \mathbf{C}_{\Omega}: \mathbf{S}^{\bullet}(\Omega[1]) \rightarrow \mathbf{S}^{\bullet}(\Omega[1]) \otimes \Omega[1]
$$

by $\overline{\mathbf{C}}$.
We denote the map

$$
\frac{\bar{\omega}}{e^{\bar{\omega}}-1} \circ \overline{\mathbf{C}}: \mathbf{S}^{\bullet}(\Omega[1]) \rightarrow \mathbf{S}^{\bullet}(\Omega[1]) \otimes \Omega[1]
$$

by Φ_{L}. The map

$$
\frac{\bar{\omega}}{1-e^{-\bar{\omega}}} \circ \overline{\mathbf{C}}: \mathbf{S}^{\bullet}(\Omega[1]) \rightarrow \mathbf{S}^{\bullet}(\Omega[1]) \otimes \Omega[1]
$$

will be denoted by Φ_{R}.
We can now state the following theorem. This can be thought of as the starting point for the computations leading to Theorem 1.
Theorem 2'. The following diagrams commute in $\mathrm{D}^{b}(X)$.

$$
\begin{align*}
& \widehat{C}^{\bullet}(X) \xrightarrow{\alpha_{R}} \widehat{C}^{\bullet}(X) \otimes \Omega[1] \\
& \left.\quad \text { I }_{\mathrm{HKR}} \xrightarrow[{\mathrm{I}_{\mathrm{HKR}} \otimes \Omega[1}]\right]{ } \downarrow \tag{17}\\
& \mathbf{S}^{\bullet}(\Omega[1]) \xrightarrow{\Phi_{R}} \mathbf{S}^{\bullet}(\Omega[1]) \otimes \Omega[1] \\
& \widehat{C}^{\bullet}(X) \xrightarrow{\alpha_{L}} \widehat{C}^{\bullet}(X) \otimes \Omega[1] \\
& \quad \widehat{\mathrm{I}}_{\mathrm{HKR}} \xrightarrow{\mathrm{I}_{\mathrm{HKR}} \otimes \Omega[1]} \downarrow \tag{18}\\
& \mathbf{S}^{\bullet}(\Omega[1]) \xrightarrow{\Phi_{L}} \mathbf{S}^{\bullet}(\Omega[1]) \otimes \Omega[1] .
\end{align*}
$$

Proof. The fact that the diagram (17) commutes in $\mathrm{D}^{b}(X)$ is obtained by applying the functor RD to the diagram in Theorem 2.

Note that since $\alpha_{L}=-(S \otimes \Omega[1]) \circ \alpha_{R} \circ S$ the following diagram commutes in $\mathrm{Ch}^{-}\left(\mathcal{O}_{X}-\bmod \right)$ (and therefore in $\left.\mathrm{D}^{b}(X)\right)$.

$$
\begin{array}{cc}
\widehat{C}^{\bullet}(X) \xrightarrow{\alpha_{R}} & \widehat{C}^{\bullet}(X) \otimes \Omega[1] \\
\downarrow S & \tag{19}\\
{ }^{\bullet} \otimes \Omega[1] \\
\\
\widehat{C}^{\bullet}(X) \xrightarrow{-\alpha_{L}} & \widehat{C}^{\bullet}(X) \otimes \Omega[1] .
\end{array}
$$

Recall that J is the endomorphism of $\mathbf{S}^{\bullet}(\Omega[1])$ multiplying $\wedge^{i} \Omega[i]$ by $(-1)^{i}$. Then,

$$
\begin{equation*}
\mathrm{I}_{\mathrm{HKR}} \circ S=J \circ \mathrm{I}_{\mathrm{HKR}} . \tag{20}
\end{equation*}
$$

To see (20), note that on an open subscheme $U=\operatorname{Spec} R$ of X before completion,

$$
\begin{aligned}
\mathrm{I}_{\mathrm{HKR}} \circ S\left(r_{0} \otimes \cdots \otimes r_{n}\right) & =(-1)^{\frac{n(n+1)}{2}} \frac{1}{n!} r_{0} d r_{n} \wedge \cdots \wedge d r_{1} \\
& =(-1)^{\frac{n(n+1)}{2}}(-1)^{\frac{n(n-1)}{2}} \frac{1}{n!} r_{0} d r_{1} \wedge \cdots \wedge d r_{n} \\
& =(-1)^{n} \mathrm{I}_{\mathrm{HKR}}\left(r_{0} \otimes \cdots \otimes r_{n}\right)
\end{aligned}
$$

Further, note that applying the functor RD to J yields the endomorphism I of $\mathbf{S}^{\bullet}(T[-1])$ that multiplies $\wedge^{i} T_{X}[-i]$ by $(-1)^{i}$. For sections v_{1}, \ldots, v_{k}, y of T over an open subscheme $U=\operatorname{Spec} R$ of X,

$$
\begin{aligned}
& \delta\left(I\left(v_{1} \wedge \cdots \wedge v_{k}\right) \otimes y\right) \\
& =(-1)^{k} \sum_{i=1}^{i=k}(-1)^{k-i} v_{1} \wedge \widehat{\cdots i \cdots} \wedge v_{k} \otimes v_{i} \otimes y \\
& =(-1)^{k}(-1)^{k-1} \sum_{i=1}^{i=k}(-1)^{k-i} I\left(v_{1} \wedge \widehat{\cdots i \cdot \cdots} \wedge v_{k}\right) \otimes v_{i} \otimes y
\end{aligned}
$$

It follows from the above computation and the fact that

$$
\bar{\omega}=\left(\mathbf{S}^{\bullet}(T[-1]) \otimes \mathrm{At}_{T}\right) \circ \delta
$$

that the following diagram commutes in $\mathrm{D}^{b}(X)$.

$$
\begin{array}{cc}
\mathbf{S}^{\bullet}(T[-1]) \otimes T[-1] \xrightarrow{\bar{\omega}} & \mathbf{S}^{\bullet}(T[-1]) \otimes T[-1] \\
\downarrow I \otimes T[-1] & \downarrow I \otimes T[-1] \tag{21}\\
\mathbf{S}^{\bullet}(T[-1]) \otimes T[-1] \xrightarrow{-\bar{\omega}} & \mathbf{S}^{\bullet}(T[-1]) \otimes T[-1]
\end{array}
$$

Applying the functor RD to the diagram (21) we obtain the following diagram.

$$
\begin{gather*}
\mathbf{S}^{\bullet}(\Omega[1]) \otimes \Omega[1] \xrightarrow{\bar{\omega}} \mathbf{S}^{\bullet}(\Omega[1]) \otimes \Omega[1] \\
\downarrow J \otimes \Omega[1] \tag{22}\\
J \otimes \Omega[1] \downarrow \\
\mathbf{S}^{\bullet}(\Omega[1]) \otimes \Omega[1] \xrightarrow{-\bar{\omega}} \mathbf{S}^{\bullet}(\Omega[1]) \otimes \Omega[1] .
\end{gather*}
$$

A calculation similar to the one made to verify (21) also shows that the following diagram commutes.

$$
\begin{array}{lll}
\mathbf{S}^{\bullet}(\Omega[1]) \xrightarrow{\overline{\mathbf{C}}} & \mathbf{S}^{\bullet}(\Omega[1]) \otimes \Omega[1] \tag{23}\\
& \downarrow J & \\
& J \otimes \Omega[1] \\
\\
\mathbf{S}^{\bullet}(\Omega[1]) \xrightarrow{-\overline{\mathbf{C}}} & \mathbf{S}^{\bullet}(\Omega[1]) \otimes \Omega[1] .
\end{array}
$$

Combining (23) and (22) we obtain the following commutative diagram.

$$
\begin{align*}
& \mathbf{S}^{\bullet}(\Omega[1]) \xrightarrow{\frac{\overline{\bar{e}}}{1-\overline{e^{e}}} \circ \overline{\mathbf{C}}} \mathbf{S}^{\bullet}(\Omega[1]) \otimes \Omega[1] \tag{24}\\
& \quad \downarrow J \\
& \mathbf{S}^{\bullet}(\Omega[1]) \xrightarrow{-\frac{\bar{\omega}}{e^{\overline{\bar{\omega}}}-1} \circ \overline{\mathbf{C}}} \mathbf{S}^{\bullet}(\Omega[1]) \otimes \Omega[1] \downarrow .
\end{align*}
$$

It follows from (17) and (24) that all squares in the diagram below commute in $\mathrm{D}^{b}(X)$.

The diagram (25) says that

$$
-\Phi_{L} \circ J \circ \mathrm{I}_{\mathrm{HKR}}=\left[\left(J \circ \mathrm{I}_{\mathrm{HKR}}\right) \otimes \Omega[1]\right] \circ \alpha_{R} .
$$

But by (20)
$J \circ \mathrm{I}_{\mathrm{HKR}}=\mathrm{I}_{\mathrm{HKR}} \circ S \Longrightarrow-\Phi_{L} \circ \mathrm{I}_{\mathrm{HKR}} \circ S=\left(\mathrm{I}_{\mathrm{HKR}} \otimes \Omega[1]\right) \circ(S \otimes \Omega[1]) \circ \alpha_{R}$.
Since $\alpha_{L}=-(S \otimes \Omega[1]) \circ \alpha_{R} \circ S$ and $S \circ S=\mathbf{1}_{\widehat{C}} \bullet(X)$,

$$
\Phi_{L} \circ \mathrm{I}_{\mathrm{HKR}}=\left(\mathrm{I}_{\mathrm{HKR}} \otimes \Omega[1]\right) \circ \alpha_{L} .
$$

This proves that the diagram (18) commutes.
2.5. A long remark - enlarging the dictionary. This subsection is a continuation of Section 2.3. Recall that $\widehat{C}^{\bullet}(X)$ should be thought of as analogous to the ring of functions on a "symmetric" neighborhood U_{G} of the identity in a Lie group $G . T[-1]$ is analogous to the Lie algebra \mathfrak{g} of G. $\mathbf{S}^{\bullet}(\Omega[1])$ is analogous to the ring of functions on a neighborhood \mathcal{V} of 0 in \mathfrak{g} that is diffeomorphic to U_{G} via the exponential map.

$$
\mathrm{I}_{\mathrm{HKR}}: \widehat{C}^{\bullet}(X) \rightarrow \mathbf{S}^{\bullet}(\Omega[1])
$$

is analogous to the pullback of functions by the map $\exp : \mathfrak{g} \rightarrow G$.
2.5.1. The classical picture. I. Let us look at the classical picture for now. Choose a basis $\left\{X_{1}, \ldots, X_{n}\right\}$ of \mathfrak{g} and a basis $\left\{Y_{1}, \ldots, Y_{n}\right\}$ of \mathfrak{g}^{*} dual to $\left\{X_{1}, \ldots, X_{n}\right\}$. Then, $\sum_{i=1}^{i=n} X_{i} \otimes Y_{i}$ yields an element $\mathfrak{g} \otimes \mathfrak{g}^{*}$. Denote the ring of functions on U_{G} by $C(G)$. We identify elements of \mathfrak{g} (resp. elements of \mathfrak{g}^{*}) with left-invariant vector fields (resp. left-invariant 1-forms) on U_{G} whenever necessary. Given any element of $\mathfrak{g} \otimes \mathfrak{g}^{*}$, letting \mathfrak{g} act on $C(G)$ as a differential operator yields us a map from $C(G)$ to $C(G) \otimes \mathfrak{g}^{*}$ satisfying the Leibniz rule. Therefore, any element of $\mathfrak{g} \otimes \mathfrak{g}^{*}$ yields a global connection on $C(G)$. It is easy to verify that the connection on $C(G)$ yielded by $\sum_{i=1}^{n} X_{i} \otimes Y_{i}$ is precisely d_{G}, the de Rham differential from $C(G)$ to the sections of the cotangent bundle of U_{G}.

Denote the ring of functions on \mathcal{V} by $C(\mathfrak{g})$. Note that replacing $C(G)$ by $C(\mathfrak{g})$ in the previous paragraph enables us to conclude $\sum_{i=1}^{n} X_{i} \otimes Y_{i}$ yields the connection $d_{\mathfrak{g}}$ on $C(\mathfrak{g})$ where $d_{\mathfrak{g}}$ is precisely the de Rham differential from $C(\mathfrak{g})$ to the sections of the cotangent bundle of \mathcal{V}.

Note that elements of $C(G) \otimes \mathfrak{g}^{*}$ are smooth functions from U_{G} to \mathfrak{g}^{*}, i.e, sections of the cotangent bundle of U_{G}. Similarly, elements of $C(\mathfrak{g}) \otimes \mathfrak{g}^{*}$ are smooth functions from \mathcal{V} to \mathfrak{g}^{*}, i.e, sections of the cotangent bundle of \mathcal{V}.

Given a smooth function A from \mathcal{V} to $\operatorname{End}(\mathfrak{g})$ and a smooth function h from \mathcal{V} to \mathfrak{g} (resp. $\left.\mathfrak{g}^{*}\right)$, one can obtain a smooth function $A(h)$ from \mathcal{V} to \mathfrak{g} (resp. \mathfrak{g}^{*}) by setting

$$
A(h)(Z)=A(Z) h(Z)
$$

for every $Z \in \mathcal{V}$. Denote the smooth function $Z \mapsto \operatorname{ad}(Z)$ from \mathcal{V} to $\operatorname{End}(\mathfrak{g})$ by $\overline{\mathrm{ad}}$.

Consider the connection Φ on $C(\mathfrak{g})$ such that the following diagram commutes.

$$
\begin{aligned}
& C(G) \xrightarrow{d_{G}} C(G) \otimes \mathfrak{g}^{*} \\
& \quad \downarrow \exp ^{*} \quad \exp ^{*} \otimes \mathfrak{g}^{*} \downarrow \\
& C(\mathfrak{g}) \xrightarrow{\Phi} C(\mathfrak{g}) \otimes \mathfrak{g}^{*}
\end{aligned}
$$

We are interested in comparing Φ with $d_{\mathfrak{g}}$. This is done as follows:
Let f be any function on U_{G}. Then, $d_{G}(f)$ is a 1-form on U_{G}. The pullback of the 1 -form $d_{G}(f)$ via the exponential map is precisely the 1 form $d_{\mathfrak{g}}\left(\exp ^{*}(f)\right)$. Recall the formula

$$
d(\exp)_{Z}=\frac{1-\mathrm{e}^{-\mathrm{ad}(Z)}}{\operatorname{ad}(Z)} \Longrightarrow\left(\exp ^{*} \otimes d(\exp)^{*}\right)=\frac{1-\mathrm{e}^{-\overline{\mathrm{ad}}}}{\overline{\mathrm{ad}}} \circ\left(\exp ^{*} \otimes \mathfrak{g}^{*}\right)
$$

By definition,

$$
\Phi\left(\exp ^{*}(f)\right)=\left(\exp ^{*} \otimes \mathfrak{g}^{*}\right) d_{G}(f)
$$

The fact that $d_{\mathfrak{g}}\left(\exp ^{*}(f)\right)$ is the pullback of $d_{G}(f)$ via the exponential map implies that

$$
\begin{aligned}
d_{\mathfrak{g}}\left(\exp ^{*}(f)\right)=\left(\exp ^{*} \otimes d(\exp)^{*}\right)\left(d_{G}(f)\right) & =\frac{1-\mathrm{e}^{-\overline{\mathrm{ad}}}}{\overline{\mathrm{ad}}} \circ\left(\exp ^{*} \otimes \mathfrak{g}^{*}\right)\left(d_{G}(f)\right) \\
& =\frac{1-\mathrm{e}^{-\overline{\mathrm{ad}}}}{\overline{\mathrm{ad}}} \circ \Phi\left(\exp ^{*}(f)\right) .
\end{aligned}
$$

Since any smooth function on \mathcal{V} is of the form $\exp ^{*}(f)$,

$$
\begin{equation*}
d_{\mathfrak{g}}=\frac{1-\mathrm{e}^{-\overline{\mathrm{ad}}}}{\overline{\mathrm{ad}}} \circ \Phi \Longrightarrow \Phi=\frac{\overline{\mathrm{ad}}}{1-\mathrm{e}^{-\overline{\mathrm{ad}}}} \circ d_{\mathfrak{g}} . \tag{26}
\end{equation*}
$$

Now assume that U_{G} and \mathcal{V} are chosen so that \mathcal{V} is a sufficiently small open disc in \mathfrak{g} containing 0 . Also assume that G is not 1 -dimensional. Then, any closed 1-form on U_{G} is also exact. Let $Y \in \mathfrak{g}^{*}$. Since the left-invariant 1 -form $1 \otimes Y \in C(G) \otimes \mathfrak{g}^{*}$ is closed, it is exact as well. Thus, there is a function f_{Y} on U_{G} such that $d_{G}\left(f_{Y}\right)=1 \otimes Y$. Then, $\Phi\left(\exp ^{*}\left(f_{Y}\right)\right)=1 \otimes Y$. On the other hand, $d_{\mathfrak{g}}\left(\exp ^{*}\left(f_{Y}\right)\right)$ is the pullback of the 1-form $1 \otimes Y$ via the exponential map. The formula (26) thus amounts to the formula for the pullback of a left-invariant 1-form on U_{G} via the exponential map.

Note that the bracket ad : $\mathfrak{g} \otimes \mathfrak{g} \rightarrow \mathfrak{g}$ induces a map ad : $\mathfrak{g}^{*} \rightarrow \mathfrak{g}^{*} \otimes \mathfrak{g}^{*}$. Let $\mu: C(\mathfrak{g}) \otimes \mathfrak{g}^{*} \rightarrow C(\mathfrak{g})$ denote the product taken after treating an element of \mathfrak{g}^{*} as a function on \mathcal{V}. We now claim that as an endomorphism in the space of smooth sections of $\mathcal{V} \times \mathfrak{g}^{*}, \overline{\mathrm{ad}}$ is given by the following composite map

$$
C(\mathfrak{g}) \otimes \mathfrak{g}^{*} \xrightarrow{C(\mathfrak{g}) \otimes \mathrm{ad}} C(\mathfrak{g}) \otimes \mathfrak{g}^{*} \otimes \mathfrak{g}^{*} \xrightarrow{\mu \otimes \mathfrak{g}^{*}} C(\mathfrak{g}) \otimes \mathfrak{g}^{*}
$$

Denote the above composite map by $\omega_{\mathfrak{g}}$.
To verify this, choose a basis $\left\{X_{i}\right\}$ of \mathfrak{g} and a basis $\left\{Y_{i}\right\}$ of \mathfrak{g}^{*} dual to $\left\{X_{i}\right\}$. Suppose that $\left[X_{i}, X_{j}\right]=\sum_{k} C_{i j}^{k} X_{k}$. Then, $\operatorname{ad}\left(Y_{k}\right)=\sum_{i, j} C_{i j}^{k} Y_{i} \otimes Y_{j}$. Therefore, if $f \in C(\mathfrak{g})$, then

$$
\left(\mu \otimes \mathfrak{g}^{*}\right) \circ(C(\mathfrak{g}) \otimes \mathrm{ad})\left(f \otimes Y_{k}\right)\left(\sum_{i} a_{i} X_{i}\right)=f\left(\sum_{i} a_{i} X_{i}\right) \sum_{i, j} a_{i} C_{i j}^{k} Y_{j} .
$$

On the other hand,

$$
\overline{\mathrm{ad}}\left(f \otimes Y_{k}\right)\left(\sum_{i} a_{i} X_{i}\right)=f\left(\sum_{i} a_{i} X_{i}\right) \operatorname{ad}\left(\sum_{i} a_{i} X_{i}\right)\left(Y_{k}\right) .
$$

But ad $\left(X_{i}\right)\left(Y_{k}\right)=\sum_{j} C_{i j}^{k} Y_{j}$. Therefore,

$$
\overline{\operatorname{ad}}\left(f \otimes Y_{k}\right)\left(\sum_{i} a_{i} X_{i}\right)=f\left(\sum_{i} a_{i} X_{i}\right) \sum_{i, j} a_{i} C_{i j}^{k} Y_{j}
$$

It follows that

$$
\frac{\overline{\mathrm{ad}}}{1-\mathrm{e}^{-\overline{\mathrm{ad}}}}=\frac{\omega_{\mathfrak{g}}}{1-\mathrm{e}^{-\omega_{\mathfrak{g}}}}
$$

and that

$$
\Phi=\frac{\omega_{\mathfrak{g}}}{1-\mathrm{e}^{-\omega_{\mathfrak{g}}}} \circ d_{\mathfrak{g}}
$$

2.5.2. The classical picture. II. Let $\overline{\exp }$ denote the map from \mathcal{V} to U_{G} such that $Z \mapsto \exp (Z)^{-1}=\exp (-Z)$. The discussion in Section 2.5.1 with \exp replaced by $\overline{\exp }$ together with the fact that

$$
d(\overline{\exp })_{Z}=-\frac{1-\mathrm{e}^{-\operatorname{ad}(-Z)}}{\operatorname{ad}(-Z)}=-\frac{\mathrm{e}^{\operatorname{ad}(Z)}-1}{\operatorname{ad}(Z)}
$$

tells us that if

$$
\Psi=-\frac{\omega_{\mathfrak{g}}}{\mathrm{e}^{\omega_{\mathfrak{g}}}-1} \circ d_{\mathfrak{g}}
$$

then the following diagram commutes.

$$
\begin{array}{cc}
C(G) \otimes \mathfrak{g}^{*} & \xrightarrow{d_{G}} C(G) \otimes \mathfrak{g}^{*} \\
\downarrow \overline{\exp }^{*} & \\
C(\mathfrak{g}) & \xrightarrow{\exp ^{*}} \otimes \mathfrak{g}^{*} \downarrow \\
C(\mathfrak{g}) \otimes \mathfrak{g}^{*}
\end{array}
$$

This is equivalent to the formula,

$$
d_{\mathfrak{g}}=-\frac{\mathrm{e}^{\overline{\mathrm{ad}}}-1}{\overline{\mathrm{ad}}} \circ \Psi
$$

The above formula is equivalent to giving a formula for the pullback by $\overline{\exp }$ of a left-invariant 1-form on U_{G}.
2.5.3. Enlarging our dictionary. The discussion in the previous two subsections helps us understand Theorem 2^{\prime} better. The discussion in Section 2.5 .1 says that if

$$
\Phi=\frac{\omega_{\mathfrak{g}}}{1-\mathrm{e}^{-\omega_{\mathfrak{g}}}} \circ d_{\mathfrak{g}}: C(\mathfrak{g}) \otimes \mathfrak{g}^{*} \rightarrow C(\mathfrak{g}) \otimes \mathfrak{g}^{*}
$$

then the diagram

$$
\begin{aligned}
& C(G) \xrightarrow{d_{G}} C(G) \otimes \mathfrak{g}^{*} \\
& \downarrow \exp ^{*} \quad \exp ^{*} \otimes \mathfrak{g}^{*} \downarrow \\
& C(\mathfrak{g}) \xrightarrow{\Phi} C(\mathfrak{g}) \otimes \mathfrak{g}^{*}
\end{aligned}
$$

commutes. The analogy between this and the diagram (17) of Theorem 2^{\prime} is now fairly explicit. $\widehat{C}^{\bullet}(X)$ is analogous to $C(G)$. The map α_{R} is analogous to the connection d_{G}. $\mathrm{I}_{\mathrm{HKR}}$ is analogous to $\exp ^{*} . T[-1]$ is analogous to \mathfrak{g}. $\Omega[1]$ is analogous to \mathfrak{g}^{*}. $\mathbf{S}^{\bullet}(\Omega[1])$ is analogous to $C(\mathfrak{g})$. The map $\overline{\mathbf{C}}$ is analogous to $d_{\mathfrak{g}}$. The map $\bar{\omega}: \mathbf{S}^{\bullet}(\Omega[1]) \otimes \Omega[1] \rightarrow \mathbf{S}^{\bullet}(\Omega[1]) \otimes \Omega[1]$ is analogous to $\omega_{\mathfrak{g}}$, and the $\operatorname{map} \Phi_{R}$ is analogous to Φ. In short, the diagram in (17) is analogous to the computation of the Duflo-like term describing the correction that needs to be applied to $d_{\mathfrak{g}}$ to yield the map Φ. This in turn is
equivalent to the formula for the pullback of a left-invariant 1-form on U_{G} via the exponential map.
$S: \widehat{C}^{\bullet}(X) \rightarrow \widehat{C}^{\bullet}(X)$ is analogous to the map $S_{G}: C(G) \rightarrow C(G)$ given by pulling back an element of $C(G)$ by the map $g \mapsto g^{-1}$. The map

$$
-\alpha_{L}=(S \otimes \Omega[1]) \circ \alpha_{R} \circ S
$$

is therefore analogous to $\left(S_{G} \otimes \mathfrak{g}^{*}\right) \circ d_{G} \circ S_{G}$. Moreover, $\exp ^{*} \circ S_{G}=\overline{\exp }{ }^{*}$. Therefore $\mathrm{I}_{\mathrm{HKR}} \circ S$ is analogous to $\overline{\exp }^{*}$. It follows that Φ_{L} is analogous to the map $-\Psi$ of the previous subsection. In short, the diagram (18) is analogous to the computation of the term describing the correction that has to be applied to $d_{\mathfrak{g}}$ to describe the map $-\Psi$. This in turn is equivalent to the formula for the pullback of a left-invariant 1-form on U_{G} via the map $\overline{\exp }$.

Finally we recall from [7] that the universal enveloping algebra in $\mathrm{D}^{b}(X)$ of the Lie algebra object $T[-1]$ was shown to be represented by the complex $\mathrm{D}_{\text {poly }}^{\bullet}(X)$ of polydifferential operators with Hochschild coboundary. Results equivalent to this statement were obtained using different methods by Roberts and Willerton [8] and Markarian [6] as well. Yekutieli [9] showed that the functor RD applied to $\mathrm{D}_{\text {poly }}^{\bullet}(X)$ yields $\widehat{C}^{\bullet}(X)$. It follows that the Hopf algebra object $\widehat{C}^{\bullet}(X)$ of $\mathrm{D}^{b}(X)$ is the "dual" in $\mathrm{D}^{b}(X)$ of the universal enveloping algebra in $\mathrm{D}^{b}(X)$ of the Lie algebra object $T[-1]$ of $\mathrm{D}^{b}(X)$.

We warn the reader that the material in the remaining part of this subsection is rather hazy. It can be verified that $\widehat{C}^{\bullet}(X)$ satisfies all the formal properties that a ring of functions on a Lie group is required to satisfy. It might therefore be possible to say that $\widehat{C}(X)$ corresponds to a "Lie group object" in $\mathrm{D}^{b}(X)$.

One has to be very careful here. Since the concept of a geometric object like a manifold in $\mathrm{D}^{b}(X)$ does not make sense by itself, the best we can do is to try to define such a notion by attempting to define a ring of functions on a manifold in $\mathrm{D}^{b}(X)$. This has to be a commutative algebra object in $\mathrm{D}^{b}(X)$. If such a definition is possible, $T[-1]$ thought of as a manifold in $\mathrm{D}^{b}(X)$ should correspond to the algebra object $\mathbf{S}^{\bullet}(\Omega[1])$ of $\mathrm{D}^{b}(X)$.

The Lie algebra of the Lie group object $\widehat{C}^{\bullet}(X)$ should be $T[-1]$. The diagrams (17) and (18) in Theorem 2^{\prime} could then be thought of as being equivalent to "computing the pullback of a 1 -form on on the Lie group object $\widehat{C}^{\bullet}(X)$ via the maps exp and $\overline{\text { exp }}$ respectively". Of course, exp and $\overline{\exp }$ are defined solely by what they are as maps from $\widehat{C}^{\bullet}(X)$ to $\mathbf{S}^{\bullet}(\Omega[1])$. However, for this to make any sense, one should be able to define the notion of a differential form on a manifold in $\mathrm{D}^{b}(X)$.

3. Some essential linear algebra

The first subsection of this section proves some propositions and a lemma in linear algebra. The second subsection describes their extensions pertaining to the object $\mathbf{S}^{\bullet}(\Omega[1])$ of $\mathrm{D}^{b}(X)$. We remind the reader that maps
between tensor products of graded \mathbb{K}-vector spaces (or graded \mathcal{O}_{X}-modules) that rearrange factors are assumed to take the appropriate signs into account. If x is a homogenous element of a graded \mathbb{K}-vector space $W,|x|$ will denote the degree of x.
3.1. Some propositions and a lemma of linear algebra. In this subsection, we will work with differential graded vector spaces over a field \mathbb{K} of characteristic 0 . Almost every dg-vector space in this section has 0 differential. We shall assume that the differential on a graded vector space is 0 unless we explicitly say otherwise. Let V be a finite-dimensional vector space over \mathbb{K}. Denote the dual of V by V^{*}. Denote the dimension of V in this subsection by m.

As usual $\mathbf{S}^{\bullet}(V[1])$ denotes the symmetric algebra $\oplus_{i} \wedge^{i} V[i]$ generated over \mathbb{K} by V concentrated in degree -1 . Similarly, $\mathbf{S}^{\bullet}\left(V^{*}[-1]\right)$ denotes the symmetric algebra $\oplus_{i} \wedge^{i} V^{*}[-i]$ generated over \mathbb{K} by V^{*} concentrated in degree 1. Note that the products on $\mathbf{S}^{\bullet}(V[1])$ and $\mathbf{S}^{\bullet}\left(V^{*}[-1]\right)$ are wedge products.

There is a map

$$
\begin{gathered}
\mathbf{i}_{V}: \mathbf{S}^{\bullet}(V[1]) \rightarrow \operatorname{End}\left(\mathbf{S}^{\bullet}(V[1])\right) \\
Z \mapsto(W \mapsto W \wedge Z) .
\end{gathered}
$$

\mathbf{i}_{V} takes an element Z of $\mathbf{S}^{\bullet}(V[1])$ to the endomorphism of $\mathbf{S}^{\bullet}(V[1])$ given by multiplication by Z on the right.

We will often denote the related map

$$
\begin{gathered}
\mathbf{S}^{\bullet}(V[1]) \otimes \mathbf{S}^{\bullet}(V[1]) \rightarrow \mathbf{S}^{\bullet}(V[1]) \\
W \otimes Z \mapsto W
\end{gathered}
$$

by $(-\wedge-)_{V}$. The subscript V may be dropped at times when it is obvious.
Choose a basis $\left\{x_{1}, \ldots, x_{m}\right\}$ of V. Let $\left\{y_{1}, \ldots, y_{m}\right\}$ be a basis of V^{*} dual to $\left\{x_{1}, \ldots, x_{m}\right\}$. Let $\mathbf{j}_{V^{*}}\left(y_{i}\right)$ be the endomorphism of $\mathbf{S}^{\bullet}(V[1])$ given by

$$
\begin{aligned}
\mathbf{j}_{V^{*}}\left(y_{i}\right)\left(x_{j}\right) & =\delta_{i j} \\
\mathbf{j}_{V^{*}}\left(y_{i}\right)(1) & =0
\end{aligned}
$$

$$
\begin{align*}
\mathbf{j}_{V^{*}}\left(y_{i}\right)\left(x_{i_{1}}\right. & \left.\wedge \cdots \wedge x_{i_{k}}\right) \tag{27}\\
& =\delta_{i i_{k}} x_{i_{1}}
\end{align*} \wedge \cdots \wedge x_{i_{k-1}}-\mathbf{j}_{V^{*}}\left(y_{i}\right)\left(x_{i_{1}} \wedge \cdots \wedge x_{i_{k-1}}\right) \wedge x_{i_{k}} .
$$

Note that $\mathbf{j}_{V^{*}}$ extends by linearity to a map from $V^{*}[-1]$ to $\operatorname{End}\left(\mathbf{S}^{\bullet}(V[1])\right)$. Let

$$
\circ: \operatorname{End}\left(\mathbf{S}^{\bullet}(V[1])\right)^{\otimes 2} \rightarrow \operatorname{End}\left(\mathbf{S}^{\bullet}(V[1])\right)
$$

denote the composition map. Extend $\mathbf{j}_{V^{*}}$ to a map

$$
\mathbf{j}_{V^{*}}: \mathbf{S}^{\bullet}\left(V^{*}[-1]\right) \rightarrow \operatorname{End}\left(\mathbf{S}^{\bullet}(V[1])\right)
$$

by setting

$$
\begin{equation*}
\mathbf{j}_{V^{*}}\left(Y_{1} \wedge Y_{2}\right)=\mathbf{j}_{V^{*}}\left(Y_{2}\right) \circ \mathbf{j}_{V^{*}}\left(Y_{1}\right) \forall Y_{1}, Y_{2} \in \mathbf{S}^{\bullet}\left(V^{*}[-1]\right) . \tag{28}
\end{equation*}
$$

We will often denote the related map

$$
\begin{gathered}
\mathbf{S}^{\bullet}(V[1]) \otimes \mathbf{S}^{\bullet}\left(V^{*}[-1]\right) \rightarrow \mathbf{S}^{\bullet}(V[1]) \\
W \otimes Y \mapsto \mathbf{j}_{V^{*}}(Y)(W)
\end{gathered}
$$

by $(-\bullet)_{V}$. The subscript V may be dropped at times when it is obvious.
Remark 5 (A geometric analogy). One can think of $\mathbf{S}^{\bullet}(V[1])$ as the ring of functions on an odd supermanifold M_{V}. For an element Z of $\mathbf{S}^{\bullet}(V[1])$, $\mathbf{i}_{V}(Z)$ is just the operator given by "multiplication on the right by Z ". All operators on $\mathbf{S}^{\bullet}(V[1])$ act on the right in our viewpoint. From this viewpoint, elements of $V^{*}[-1]$ yield vector fields on M_{V}. The map $\mathbf{j}_{V *}$ takes an element Y of $V^{*}[-1]$ to the constant vector field on M_{V} associated with Y. The reader can observe that the Leibniz rule is part of the definition of the map $\mathbf{j}_{V^{*}}: V^{*}[-1] \rightarrow \operatorname{End}\left(\mathbf{S}^{\bullet}(V[1])\right)$ (see Equation (27)). The equation (28) in the definition of $\mathbf{j}_{V^{*}}$ just says that the map $\mathbf{j}_{V^{*}}$ takes an element Y of $\mathbf{S}^{\bullet}\left(V^{*}[-1]\right)$ to the constant differential operator on M_{V} associated with Y.

Note that on $\operatorname{End}\left(\mathbf{S}^{\bullet}(V[1])\right)$ we have a natural product given by the composition \circ. Let $\circ^{\text {op }}$ denote the product on $\operatorname{End}\left(\mathbf{S}^{\bullet}(V[1])\right)^{\mathrm{op}}$. If $a, b \in$ $\operatorname{End}\left(\mathbf{S}^{\bullet}(V[1])\right)$ then $a \circ^{\text {op }} b=b \circ a$. We have the following proposition.

Proposition 10. The composite

$$
\begin{aligned}
\mathbf{S}^{\bullet}\left(V^{*}[-1]\right) \otimes \mathbf{S}^{\bullet}(V[1]) \xrightarrow{\mathbf{j}_{V} * \otimes \mathbf{i}_{V}} & \operatorname{End}\left(\mathbf{S}^{\bullet}(V[1])\right) \otimes \operatorname{End}\left(\mathbf{S}^{\bullet}(V[1])\right. \\
& \xrightarrow{\text { op }} \operatorname{End}\left(\mathbf{S}^{\bullet}(V[1])\right)
\end{aligned}
$$

is an isomorphism of graded \mathbb{K} vector spaces with 0 differential.
Proof. Denote the given composite by G_{r}.
Since all vector spaces involved in this proposition have 0 differential, it suffices to check that G_{r} is an isomorphism of graded \mathbb{K}-vector spaces. Further, it is easy to check that $\mathbf{i}_{V}, \mathbf{j}_{V^{*}}$ and $\circ^{\text {op }}$ are degree preserving. It therefore, suffices to check that G_{r} is an isomorphism of \mathbb{K}-vector spaces. All the \mathbb{K}-vector spaces involved in this proposition are finite-dimensional. Further, $\mathbf{S}^{\bullet}\left(V^{*}[-1]\right) \otimes \mathbf{S}^{\bullet}(V[1])$ and $\operatorname{End}\left(\mathbf{S}^{\bullet}(V[1])\right)$ have the same dimension as \mathbb{K}-vector spaces. It therefore, suffices to check that G_{r} injective.

Choose a basis $\left\{x_{1}, \ldots, x_{m}\right\}$ of V. Let $\left\{y_{1}, \ldots, y_{m}\right\}$ be a basis of V^{*} dual to $\left\{x_{1}, \ldots, x_{m}\right\}$. By convention, we list the elements of any subset of $\{1, \ldots, m\}$ in ascending order. We can then define an ordering \prec on the set of subsets of $\{1, \ldots, m\}$ by setting

$$
S \prec T \text { if }|S|<|T|
$$

and $\left\{i_{1}, \ldots, i_{k}\right\} \prec\left\{j_{1}, \ldots, j_{k}\right\}$ if $\left(i_{1}, \ldots, i_{k}\right) \prec\left(j_{1}, \ldots, j_{k}\right)$ in the lexicographic order.

For $S=\left\{i_{1}, \ldots, i_{k}\right\}$, let x_{S} denote $x_{i_{1}} \wedge \cdots \wedge x_{i_{k}}$. Similarly, y_{S} will denote $y_{i_{1}} \wedge \cdots \wedge y_{i_{k}}$. It is easy to verify that

$$
\begin{gather*}
\mathbf{j}_{V^{*}}\left(y_{S}\right)\left(x_{S}\right)= \pm 1 \tag{29}\\
\mathbf{j}_{V^{*}}\left(y_{S}\right)\left(x_{T}\right)=0 \text { if } T \prec S .
\end{gather*}
$$

An element of $\mathbf{S}^{\bullet}\left(V^{*}[-1]\right) \otimes \mathbf{S}^{\bullet}(V[1])$ is given by an expression of the form

$$
\sum_{S \subset\{1, \ldots, m\}} y_{S} \otimes a_{S}, a_{S} \in \mathbf{S}^{\bullet}(V[1]) .
$$

Choose $S_{0} \subset\{1, \ldots, m\}$ to be the least subset (under the ordering \prec) of $\{1, \ldots, m\}$ such that $a_{S_{0}} \neq 0$. Then

$$
G_{r}\left(\sum_{S \subset\{1, \ldots, m\}} y_{S} \otimes a_{S}\right)\left(x_{S_{0}}\right)= \pm a_{S_{0}}
$$

by (29). It follows that G_{r} is injective.
Remark 6. Let M_{V} be the supermanifold of whose ring of functions is $\mathbf{S}^{\bullet}(V[1])$. Under our convention that all operators on $\mathbf{S}^{\bullet}(V[1])$ act on the right, G_{r} identifies $\wedge^{i} T[-i] \otimes \mathbf{S}^{\bullet}(V[1])$ with the space of principal symbols of differential operators of order i on M_{V}. Proposition 10 says that every endomorphism of $\mathbf{S}^{\bullet}(V[1])$ is given by a differential operator on M_{V}.

Notation. For the rest of this paper, G_{r} shall denote the isomorphism in Proposition 10 and F_{r} shall denote its inverse. In addition, if

$$
\tau: \mathbf{S}^{\bullet}\left(V^{*}[-1]\right) \otimes \mathbf{S}^{\bullet}(V[1]) \rightarrow \mathbf{S}^{\bullet}(V[1]) \otimes \mathbf{S}^{\bullet}\left(V^{*}[-1]\right)
$$

denotes the swap map the composite

shall be denoted by G_{l}. The inverse of G_{l} will be denoted by F_{l}.
Let $\pi_{k}: \mathbf{S}^{\bullet}(V[1]) \rightarrow \wedge^{k} V[k]$ denote the natural projection. Note that we have a nondegenerate pairing \langle,$\rangle on \mathbf{S}^{\bullet}(V[1])$. This is given by the composite

$$
\mathbf{S}^{\bullet}(V[1]) \otimes \mathbf{S}^{\bullet}(V[1]) \xrightarrow{\wedge} \mathbf{S}^{\bullet}(V[1]) \xrightarrow{\pi_{m}} \wedge^{m} V[m]
$$

where m is the dimension of V.
Definition 1. The adjoint $\Phi^{+} \in \operatorname{End}\left(\mathbf{S}^{\bullet}(V[1])\right)$ of a homogenous element Φ of $\operatorname{End}\left(\mathbf{S}^{\bullet}(V[1])\right)$ is the unique element of $\operatorname{End}\left(\mathbf{S}^{\bullet}(V[1])\right)$ satisfying

$$
\langle\Phi(a), b\rangle=(-1)^{|\Phi||b|}\left\langle a, \Phi^{+}(b)\right\rangle \forall \text { homogenous } a, b \in \mathbf{S}^{\bullet}(V[1]) .
$$

The adjoint of an arbitrary element of $\operatorname{End}\left(\mathbf{S}^{\bullet}(V[1])\right.$ is the sum of the adjoints of its homogenous components.

Let

$$
\operatorname{ev}_{V}: \mathbf{S}^{\bullet}(V[1]) \otimes \operatorname{End}\left(\mathbf{S}^{\bullet}(V[1])\right)
$$

be the map

$$
W \otimes \Phi \mapsto \Phi(W)
$$

Denote the map which takes an element of $\operatorname{End}\left(\mathbf{S}^{\bullet}(V[1])\right)$ to its adjoint by \mathbf{A}_{V}. Let $\left\langle, \mathrm{ev}^{+}\right\rangle_{V}$ denote the composite

$$
\begin{gathered}
\mathbf{S}^{\bullet}(V[1]) \otimes \mathbf{S}^{\bullet}(V[1]) \otimes \operatorname{End}\left(\mathbf{S}^{\bullet}(V[1])\right. \\
\downarrow \mathbf{S}^{\bullet}(V[1]) \otimes \mathbf{S}^{\bullet}(V[1]) \otimes \mathbf{A}_{V} \\
\mathbf{S}^{\bullet}(V[1]) \otimes \mathbf{S}^{\bullet}(V[1]) \otimes \operatorname{End}\left(\mathbf{S}^{\bullet}(V[1])\right. \\
\downarrow \mathbf{S}^{\bullet}(V[1]) \otimes \mathrm{ev}_{V} \\
\mathbf{S}^{\bullet}(V[1]) \otimes \mathbf{S}^{\bullet}(V[1]) \\
\downarrow\langle,\rangle \\
\wedge^{m} V[m] .
\end{gathered}
$$

Then the following diagram commutes.

$$
\begin{gathered}
\mathbf{S}^{\bullet}(V[1]) \otimes \operatorname{End}\left(\mathbf{S}^{\bullet}(V[1])\right) \otimes \mathbf{S}^{\bullet}(V[1]) \xrightarrow{\mathrm{ev}_{V} \otimes \mathbf{S}^{\bullet}(V[1])} \mathbf{S}^{\bullet}(V[1]) \otimes \mathbf{S}^{\bullet}(V[1]) \\
\downarrow \mathbf{S}^{\bullet}(V[1]) \otimes \tau \\
\mathbf{S}^{\bullet}(V[1]) \otimes \mathbf{S}^{\bullet}(V[1]) \otimes \operatorname{End}\left(\mathbf{S}^{\bullet}(V[1])\right) \quad \xrightarrow{\left\langle, \mathrm{ev}^{+}\right\rangle_{V}}
\end{gathered}
$$

The map $\tau: \operatorname{End}\left(\mathbf{S}^{\bullet}(V[1])\right) \otimes \mathbf{S}^{\bullet}(V[1]) \rightarrow \mathbf{S}^{\bullet}(V[1]) \otimes \operatorname{End}\left(\mathbf{S}^{\bullet}(V[1])\right)$ in the above diagram swaps factors.

The following proposition describes the basic properties of the adjoint.

Proposition 11. (1) Let L be an element of $\operatorname{End}\left(\mathbf{S}^{\bullet}(V[1])\right)$. Then

$$
L^{++}=L
$$

(2) If L_{1} and L_{2} are homogenous elements of $\operatorname{End}\left(\mathbf{S}^{\bullet}(V[1])\right)$, then

$$
\left(L_{1} \circ L_{2}\right)^{+}=(-1)^{\left|L_{1}\right|\left|L_{2}\right|}\left(L_{2}\right)^{+} \circ\left(L_{1}\right)^{+}
$$

(3) If $Z \in \mathbf{S}^{\bullet}(V[1])$ is a homogenous element, then

$$
\mathbf{i}_{V}(Z)^{+}=\mathbf{i}_{V}(Z)
$$

(4) If $Y \in \mathbf{S}^{\bullet}\left(V^{*}[-1]\right)$ is a homogenous element, then

$$
\mathbf{j}_{V^{*}}(Y)^{+}=(-1)^{|Y|} \mathbf{j}_{V^{*}}(Y)
$$

(5) If $Z \in \mathbf{S}^{\bullet}(V[1])$ and $Y \in \mathbf{S}^{\bullet}\left(V^{*}[-1]\right)$ are homogenous elements, then

$$
G_{l}(Y \otimes Z)^{+}=(-1)^{|Y|} G_{r}(Y \otimes Z)
$$

Proof. Observe that if $L \in \operatorname{End}\left(\mathbf{S}^{\bullet}(V[1])\right)$ is homogenous, then $\left|L^{+}\right|=|L|$. Also note that if $a, b \in \mathbf{S}^{\bullet}(V[1])$ are homogenous, then $\langle a, b\rangle=(-1)^{|a||b|}\langle b, a\rangle$. Also recall that the pairing \langle,$\rangle is nondegenerate.$

If $a, b \in \mathbf{S}^{\bullet}(V[1])$ are homogenous elements and if $L \in \operatorname{End}\left(\mathbf{S}^{\bullet}(V[1])\right)$ is homogenous, note that

$$
\begin{aligned}
\left\langle L^{++}(a), b\right\rangle & =(-1)^{|b||a|+|b||L|}\left\langle b, L^{++}(a)\right\rangle=(-1)^{|b||a|+|b||L|+|a||L|}\left\langle L^{+}(b), a\right\rangle \\
& =(-1)^{|b||a|+|b||L|+|a||L|+|a||b|+|a||L|}\left\langle a, L^{+}(b)\right\rangle=\langle L(a), b\rangle .
\end{aligned}
$$

Part (1) of this proposition now follows immediately from this calculation.
For the rest of this proof a and b shall be homogenous elements of $\mathbf{S}^{\bullet}(V[1])$.
If L_{1} and L_{2} are homogenous elements of $\operatorname{End}\left(\mathbf{S}^{\bullet}(V[1])\right)$, then

$$
\begin{aligned}
& (-1)^{\left|L_{1}\right|\left|L_{2}\right|}\left\langle a,\left(L_{2}\right)^{+} \circ\left(L_{1}\right)^{+}(b)\right\rangle \\
& =(-1)^{\left|L_{1}\right|\left|L_{2}\right|+\left|L_{2}\right|\left(|b|+\left|L_{1}\right|\right)}\left\langle L_{2}(a), L_{1}^{+}(b)\right\rangle \\
& =(-1)^{\left|L_{1}\right|\left|L_{2}\right|+\left|L_{2}\right|\left(|b|+\left|L_{1}\right|\right)+\left|L_{1}\right||b|}\left\langle L_{1} \circ L_{2}(a), b\right\rangle \\
& =(-1)^{|b|\left(\left|L_{1}\right|+\left|L_{2}\right|\right)}\left\langle L_{1} \circ L_{2}(a), b\right\rangle .
\end{aligned}
$$

Part (2) of this proposition now follows from the observation that

$$
\left|L_{1} \circ L_{2}\right|=\left|L_{1}\right|+\left|L_{2}\right| .
$$

Part (3) of this proposition is immediate from the relevant definitions and the fact that

$$
a \wedge Z \wedge b=(-1)^{|b||Z|} a \wedge b \wedge Z
$$

To verify part (4), choose a basis $\left\{x_{1}, \ldots, x_{m}\right\}$ of V. Let $\left\{y_{1}, \ldots, y_{m}\right\}$ be a basis of V^{*} dual to $\left\{x_{1}, \ldots, x_{m}\right\}$. For an ordered subset $S=\left\{i_{1}, \ldots, i_{k}\right\}$ of $\{1, \ldots, m\}$ let y_{S} denote $y_{i_{1}} \wedge \cdots \wedge y_{i_{k}}$ and let x_{S} denote $x_{i_{1}} \wedge \cdots \wedge x_{i_{k}}$. If T is disjoint from S, note that

$$
\mathbf{j}_{V^{*}}\left(y_{S}\right)\left(x_{T} \wedge x_{S}\right)=x_{T} \wedge \mathbf{j}_{V^{*}}\left(y_{S}\right)\left(x_{S}\right)=(-1)^{\frac{k(k-1)}{2}} x_{T}
$$

Let T and T^{\prime} be subsets of $\{1, \ldots, m\}$ disjoint from S. Then,

$$
\begin{aligned}
& \mathbf{j}_{V^{*}}\left(y_{S}\right)\left(x_{T} \wedge x_{S}\right) \wedge\left(x_{T^{\prime}} \wedge x_{S}\right) \\
& =(-1)^{\frac{k(k-1)}{2}} x_{T} \wedge x_{T^{\prime}} \wedge x_{S} \\
& =(-1)^{\frac{k(k-1)}{2}}(-1)^{\left|T^{\prime}\right||S|} x_{T} \wedge x_{S} \wedge x_{T^{\prime}} \\
& =(-1)^{\left|T^{\prime}\right||S|} x_{T} \wedge x_{S} \wedge \mathbf{j}_{V^{*}}\left(y_{S}\right)\left(x_{T^{\prime}} \wedge x_{S}\right) \\
& =(-1)^{\left(\left|T^{\prime}\right|+|S|\right)|S|+|S|} x_{T} \wedge x_{S} \wedge \mathbf{j}_{V^{*}}\left(y_{S}\right)\left(x_{T^{\prime}} \wedge x_{S}\right) .
\end{aligned}
$$

Putting $a=x_{T} \wedge x_{S}, b=x_{T^{\prime}} \wedge x_{S}$ we see that $|b|=\left|T^{\prime}\right|+|S|$. Further, $|Y|=-|S|$. Part (4) now follows from the above computation once we recall that $\langle a, b\rangle=\pi_{m}(a \wedge b)$.

Part (5) follows from part (2), part (3) and part (4).

$$
G_{l}(Y \otimes Z)=(-1)^{|Z||Y|} \mathbf{j}_{V^{*}}(Y) \circ \mathbf{i}_{V}(Z)
$$

Thus,

$$
\begin{aligned}
G_{l}(Y \otimes Z)^{+} & =(-1)^{|Z||Y|}\left(\mathbf{j}_{V^{*}}(Y) \circ \mathbf{i}_{V}(Z)\right)^{+} \\
& =(-1)^{|Z| Y \mid}(-1)^{|Z||Y|}\left(\mathbf{i}_{V}(Z)\right)^{+} \circ\left(\mathbf{j}_{V^{*}}(Y)\right)^{+} \\
& =(-1)^{|Y|}\left(\mathbf{i}_{V}(Z)\right) \circ\left(\mathbf{j}_{V^{*}}(Y)\right)=(-1)^{|Y|} G_{r}(Y \otimes Z) .
\end{aligned}
$$

Recall that $\pi_{j}: \mathbf{S}^{\bullet}(V[1]) \rightarrow \wedge^{j} V[j]$ denotes the natural projection. We will denote the projection

$$
\mathbf{S}^{\bullet}\left(V^{*}[-1]\right) \otimes \pi_{j}: \mathbf{S}^{\bullet}\left(V^{*}[-1]\right) \otimes \mathbf{S}^{\bullet}(V[1]) \rightarrow \mathbf{S}^{\bullet}\left(V^{*}[-1]\right) \otimes \wedge^{j} V[j]
$$

by π_{j} itself. Let I denote the endomorphism of $\mathbf{S}^{\bullet}\left(V^{*}[-1]\right)$ that multiplies $\wedge^{i} V^{*}[-i]$ by $(-1)^{i}$. The following proposition is really a corollary of Proposition 11.

Proposition 12. If $L \in \operatorname{End}\left(\mathbf{S}^{\bullet}(V[1])\right)$, then

$$
\pi_{0}\left(F_{l}(L)\right)=I\left(\pi_{0}\left(F_{r}\left(L^{+}\right)\right)\right)
$$

Proof. This is almost immediate from part (5) of Proposition 11. Let $Y \in$ $\mathbf{S}^{\bullet}\left(V^{*}[-1]\right)$ and $Z \in \mathbf{S}^{\bullet}(V[1])$ be homogenous. By part (5) of Proposition 11

$$
G_{l}(Y \otimes Z)^{+}=(-1)^{|Y|} G_{r}(Y \otimes Z) .
$$

By definition, $F_{r}\left(G_{r}(Y \otimes Z)\right)=Y \otimes Z$. On the other hand,

$$
F_{l}\left(G_{r}(Y \otimes Z)^{+}\right)=F_{l}\left((-1)^{|Y|} G_{l}(Y \otimes Z)=(-1)^{|Y|} Y \otimes Z .\right.
$$

Since G_{r} and \mathbf{A}_{V} are degree preserving isomorphisms of \mathbb{K}-vector spaces, any homogenous element in $\operatorname{End}\left(\mathbf{S}^{\bullet}(V[1])\right)$ is of the form $G_{r}(Y \otimes Z)^{+}$. It follows from the above computation that

$$
F_{l}(M)=\left(I \otimes \mathbf{S}^{\bullet}(V[1])\right) F_{r}\left(M^{+}\right)
$$

for any homogenous $M \in \operatorname{End}\left(\mathbf{S}^{\bullet}(V[1])\right)$. Therefore,

$$
\pi_{j}\left(F_{l}(L)\right)=I\left(\pi_{j}\left(F_{r}\left(L^{+}\right)\right)\right)
$$

for any j. When $j=0$, we get the desired proposition.
Convention To simplify notation, we follow the following convention: if $a \in \mathbf{S}^{\bullet}\left(V^{*}[-1]\right) \otimes \mathbf{S}^{\bullet}(V[1])$, then $G_{r}(a)$ will be denoted by a itself. Keeping this convention in mind:

Proposition 13. If $a, b \in \mathbf{S}^{\bullet}\left(V^{*}[-1]\right) \otimes \mathbf{S}^{\bullet}(V[1])$, then

$$
\pi_{0}\left(F_{r}(a \circ b)\right)=\pi_{0}\left(F_{r}\left(\pi_{0}(a) \circ b\right)\right) .
$$

Proof. It suffices to check that if $Z \in \wedge^{i} V[i]$ with $i>0$, then

$$
\pi_{0}\left(Y \otimes Z \circ Y^{\prime} \otimes Z^{\prime}\right)=0
$$

for any $Z^{\prime} \in \mathbf{S}^{\bullet}(V[1]), Y, Y^{\prime} \in \mathbf{S}^{\bullet}\left(V^{*}[-1]\right)$. Note that by our convention,

$$
Y \otimes Z \circ Y^{\prime} \otimes Z^{\prime}=\mathbf{i}_{V}(Z) \circ \mathbf{j}_{V^{*}}(Y) \circ \mathbf{i}_{V}\left(Z^{\prime}\right) \circ \mathbf{j}_{V^{*}}\left(Y^{\prime}\right) .
$$

For subsets S and T of $\{1, \ldots, m\}$, let x_{S} and y_{T} be as in the proof of Proposition 11, part (4). By Proposition 10,

$$
\mathbf{j}_{V^{*}}(Y) \circ \mathbf{i}_{V}\left(Z^{\prime}\right) \circ \mathbf{j}_{V^{*}}\left(Y^{\prime}\right)=\sum_{S, T \subset\{1, \ldots, m\}} a_{S, T} y_{T} \otimes x_{S}
$$

for some $a_{S, T} \in \mathbb{K}$. Then,

$$
\mathbf{i}_{V}(Z) \circ \mathbf{j}_{V^{*}}(Y) \circ \mathbf{i}_{V}\left(Z^{\prime}\right) \circ \mathbf{j}_{V^{*}}\left(Y^{\prime}\right)=\sum_{S, T \subset\{1, \ldots, m\}} a_{S, T} y_{T} \otimes x_{S} \wedge Z
$$

Since $Z \in \wedge^{i} V[i], x_{S} \wedge Z \in \oplus_{k \geq i} \wedge^{k} V[k] \subset \oplus_{k>0} \wedge^{k} V[k]$. It follows that

$$
\pi_{0}\left(\sum_{S, T \subset\{1, \ldots, m\}} a_{S, T} y_{T} \otimes x_{S} \wedge Z\right)=0 .
$$

This proves the desired proposition.
Remark 7. Proposition 10 said that every element of $\operatorname{End}\left(\mathbf{S}^{\bullet}(V[1])\right)$ can be thought of as a differential operator on M_{V}. The isomorphism F_{r} makes this identification. The map $\pi_{0}: \mathbf{S}^{\bullet}\left(V^{*}[-1]\right) \otimes \mathbf{S}^{\bullet}(V[1]) \rightarrow \mathbf{S}^{\bullet}\left(V^{*}[-1]\right)$ should be thought of as the map which "takes the constant term" of a differential operator. Proposition 13 says that

$$
\text { const. term }\left(\mathcal{D}_{1} \circ \mathcal{D}_{2}\right)=\text { const. term }\left(\left(\text { const. term }\left(\mathcal{D}_{1}\right)\right) \circ \mathcal{D}_{2}\right)
$$

for any two differential operators \mathcal{D}_{1} and \mathcal{D}_{2} on M_{V}.
Recall that by Proposition 10, F_{r} identifies $\operatorname{End}\left(\mathbf{S}^{\bullet}(V[1])\right)$ with

$$
\mathbf{S}^{\bullet}\left(V^{*}[-1]\right) \otimes \mathbf{S}^{\bullet}(V[1]) .
$$

We also remarked (in Remark 6) that the direct summand

$$
\wedge^{i} V^{*}[-i] \otimes \mathbf{S}^{\bullet}(V[1])
$$

of $\mathbf{S}^{\bullet}\left(V^{*}[-1]\right) \otimes \mathbf{S}^{\bullet}(V[1])$ can be thought of as the space of principal symbols of differential operators of order i on $\mathbf{S}^{\bullet}(V[1])$. Reflecting this understanding, we denote $\wedge^{i} V^{*}[-i] \otimes \mathbf{S}^{\bullet}(V[1])$ by D_{i}.

Note that the composition $\circ: \operatorname{End}\left(\mathbf{S}^{\bullet}(V[1])\right)^{\otimes 2} \rightarrow \operatorname{End}\left(\mathbf{S}^{\bullet}(V[1])\right)$ equips $\operatorname{End}\left(\mathbf{S}^{\bullet}(V[1])\right)$ with the structure of a graded associative \mathbb{K}-algebra. This algebra structure induces a Lie superalgebra structure on $\operatorname{End}\left(\mathbf{S}^{\bullet}(V[1])\right)$. If $a, b \in \operatorname{End}\left(\mathbf{S}^{\bullet}(V[1])\right)$ are homogenous, then

$$
[a, b]_{V}=a \circ b-(-1)^{|a||b|} b \circ a
$$

Also note that the map $\circ^{\text {op }}: \operatorname{End}\left(\mathbf{S}^{\bullet}(V[1])\right)^{\otimes 2} \rightarrow \operatorname{End}\left(\mathbf{S}^{\bullet}(V[1])\right)$ equips $\operatorname{End}\left(\mathbf{S}^{\bullet}(V[1])\right)$ with the structure of a graded associative \mathbb{K}-algebra. We
denote this \mathbb{K}-algebra by $\operatorname{End}\left(\mathbf{S}^{\bullet}(V[1])\right)^{\text {op }}$. Its algebra structure induces the structure of a Lie superalgebra on $\operatorname{End}\left(\mathbf{S}^{\bullet}(V[1])\right)^{\text {op }}$. If $a, b \in \operatorname{End}\left(\mathbf{S}^{\bullet}(V[1])\right)$ are homogenous, then

$$
[a, b]_{V}^{\mathrm{op}}=a \circ^{\mathrm{op}} b-(-1)^{|a||b|} b \circ^{\mathrm{op}} a=[b, a]_{V}
$$

Proposition 14.

$$
\left[D_{1}, D_{1}\right]_{V} \subset D_{1}
$$

Proof. Let $H \in \mathbf{S}^{\bullet}(V[1])$, let $Z \in \mathbf{S}^{\bullet}(V[1])$ and let $Y \in \mathbf{S}^{\bullet}\left(V^{*}[-1]\right)$. Recall that $(H \bullet Y)$ denotes $\mathbf{j}_{V^{*}}(Y)(H)$. Note that $H Z:=H \wedge Z=\mathbf{i}_{V}(Z)(H)$. Keep in mind that $Y \otimes Z$ is identified with $G_{r}(Y \otimes Z)$. Then

$$
Y \otimes Z(H)=(H \bullet Y) Z
$$

Let $Z_{1}, Z_{2} \in \mathbf{S}^{\bullet}(V[1])$ be homogenous and let $y_{1}, y_{2} \in V^{*}[-1]$. Then, if $H \in \mathbf{S}^{\bullet}(V[1])$,

$$
\begin{aligned}
\left(y_{1} \otimes Z_{1}\right) \circ & \left(y_{2} \otimes Z_{2}\right)(H) \\
& =\left(\left(H \bullet y_{2}\right) Z_{2} \bullet y_{1}\right) Z_{1} \\
& =\left(H \bullet y_{2}\right)\left(Z_{2} \bullet y_{1}\right) Z_{1}+(-1)^{\left|Z_{2}\right|}\left(\left(H \bullet y_{2}\right) \bullet y_{1}\right) Z_{2} Z_{1} .
\end{aligned}
$$

Therefore,

$$
\begin{equation*}
\left(y_{1} \otimes Z_{1}\right) \circ\left(y_{2} \otimes Z_{2}\right)=y_{2} \otimes\left(Z_{2} \bullet y_{1}\right) Z_{1}+(-1)^{\left|Z_{2}\right|} y_{2} \wedge y_{1} \otimes Z_{2} Z_{1} . \tag{30}
\end{equation*}
$$

Similarly,

$$
\begin{equation*}
\left(y_{2} \otimes Z_{2}\right) \circ\left(y_{1} \otimes Z_{1}\right)=y_{1} \otimes\left(Z_{1} \bullet y_{2}\right) Z_{2}+(-1)^{\left|Z_{1}\right|} y_{1} \wedge y_{2} \otimes Z_{1} Z_{2} \tag{31}
\end{equation*}
$$

If $\mathcal{D}_{1}=y_{1} \otimes Z_{1}$ and $\mathcal{D}_{2}=y_{2} \otimes Z_{2}$ then $\left|\mathcal{D}_{1}\right|=\left|Z_{1}\right|-1$ and $\left|\mathcal{D}_{2}\right|=\left|Z_{2}\right|-1$. It then follows from (30) and (31) that

$$
\begin{align*}
& \mathcal{D}_{1} \circ \mathcal{D}_{2}-(-1)^{\left|\mathcal{D}_{1}\right|\left|\mathcal{D}_{2}\right|} \mathcal{D}_{2} \circ \mathcal{D}_{1} \tag{32}\\
&=y_{2} \otimes\left(Z_{2} \bullet y_{1}\right) Z_{1}-(-1)^{\left|\mathcal{D}_{1}\right|\left|\mathcal{D}_{2}\right|} y_{1} \otimes\left(Z_{1} \bullet y_{2}\right) Z_{2}
\end{align*}
$$

Note that the right-hand side is an element of D_{1}. The desired proposition now follows immediately.

We will assume that the Lie superalgebra $\operatorname{End}\left(\mathbf{S}^{\bullet}(V[1])\right)$ is equipped with the bracket $[,]_{V}$ unless we explicitly state otherwise.

Proposition 14 tells us that D_{1} is a Lie subalgebra of $\operatorname{End}\left(\mathbf{S}^{\bullet}(V[1])\right)$. It also follows immediately from Proposition 14 that

$$
\left[D_{1}, D_{1}\right]_{V}^{\mathrm{op}} \subset D_{1} .
$$

It follows that D_{1} equipped with the bracket $[,]_{V}^{\mathrm{op}}$ is a Lie subalgebra of $\operatorname{End}\left(\mathbf{S}^{\bullet}(V[1])\right)^{\text {op }} . D_{m}$ can be identified with the top symmetric power of D_{1} over $\mathbf{S}^{\bullet}(V[1])$. In other words,

$$
D_{m} \simeq \mathbf{S}_{\mathbf{S}^{\bullet}(V[1])}^{m} D_{1} .
$$

One can then study the right adjoint action of the Lie algebra D_{1} (equipped with the bracket [,]op ${ }_{V}^{\text {op }}$) on D_{m}. For an element L of D_{1}, let $\operatorname{ad}(L)$ denote the right adjoint action of L on D_{m} with respect to the bracket $[,]_{V}^{\mathrm{op}}$. Then

$$
\begin{aligned}
\operatorname{ad} & (L)\left(\mathcal{D}_{m} \mathcal{D}_{m-1} \ldots \mathcal{D}_{1}\right) \\
= & \mathcal{D}_{m} \mathcal{D}_{m-1} \ldots\left[\mathcal{D}_{1}, L\right]_{V}^{\mathrm{op}}+(-1)^{|L|\left|\mathcal{D}_{1}\right|} \mathcal{D}_{m} \mathcal{D}_{m-1} \ldots\left[\mathcal{D}_{2}, L\right]_{V}^{\mathrm{op}} \mathcal{D}_{1} \\
& \quad+\cdots(-1)^{|L|\left(\left|\mathcal{D}_{1}\right|+\cdots+\left|\mathcal{D}_{m-1}\right|\right)}\left[\mathcal{D}_{m}, L\right]_{V}^{\mathrm{op}} \ldots \mathcal{D}_{1} \\
= & \mathcal{D}_{m} \mathcal{D}_{m-1} \ldots\left[L, \mathcal{D}_{1}\right]+(-1)^{|L|\left|\mathcal{D}_{1}\right|} \mathcal{D}_{m} \mathcal{D}_{m-1} \ldots\left[L, \mathcal{D}_{2}\right] \mathcal{D}_{1} \\
& \quad+\cdots(-1)^{|L|\left(\left|\mathcal{D}_{1}\right|+\cdots+\left|\mathcal{D}_{m-1}\right|\right)}\left[L, \mathcal{D}_{m}\right] \ldots \mathcal{D}_{1}
\end{aligned}
$$

for homogenous elements $\mathcal{D}_{i} \in D_{1}$. In defining $\operatorname{ad}(L), D_{m}$ is treated as $\mathbf{S}_{\mathbf{S}^{\bullet}(V[1])}^{m} D_{1}$.

One also has the right adjoint action $\overline{\operatorname{ad}}(L)$ of L on $D_{1}^{\otimes m}$ (with respect to the bracket [,] $]_{V}^{\mathrm{op}}$ on D_{1}).

$$
\begin{aligned}
& \overline{\operatorname{ad}}(L)\left(\mathcal{D}_{m} \otimes \mathcal{D}_{m-1} \otimes \cdots \otimes \mathcal{D}_{1}\right) \\
& =\mathcal{D}_{m} \otimes \mathcal{D}_{m-1} \otimes \cdots \otimes\left[\mathcal{D}_{1}, L\right]_{V}^{\mathrm{op}} \\
& \quad+(-1)^{|L|\left|\mathcal{D}_{1}\right|} \mathcal{D}_{m} \otimes \mathcal{D}_{m-1} \otimes \cdots \otimes\left[\mathcal{D}_{2}, L\right]_{V}^{\mathrm{op}} \otimes \mathcal{D}_{1} \\
& \quad+\cdots(-1)^{|L|\left(\left|\mathcal{D}_{1}\right|+\cdots+\left|\mathcal{D}_{m-1}\right|\right)}\left[\mathcal{D}_{m}, L\right]_{V}^{\mathrm{op}} \otimes \cdots \otimes \mathcal{D}_{1} \\
& = \\
& \quad \mathcal{D}_{m} \otimes \mathcal{D}_{m-1} \otimes \cdots \otimes\left[L, \mathcal{D}_{1}\right]+(-1)^{|L|\left|\mathcal{D}_{1}\right|} \mathcal{D}_{m} \otimes \mathcal{D}_{m-1} \otimes \cdots \otimes\left[L, \mathcal{D}_{2}\right] \otimes \mathcal{D}_{1} \\
& \quad+\cdots(-1)^{|L|\left(\left|\mathcal{D}_{1}\right|+\cdots+\left|\mathcal{D}_{m-1}\right|\right)}\left[L, \mathcal{D}_{m}\right] \otimes \cdots \otimes \mathcal{D}_{1}
\end{aligned}
$$

for homogenous elements $\mathcal{D}_{i} \in D_{1}$.
Let $p: D_{1}^{\otimes m} \rightarrow D_{m}$ denote the map

$$
\mathcal{D}_{m} \otimes \mathcal{D}_{m-1} \otimes \cdots \otimes \mathcal{D}_{1} \mapsto \mathcal{D}_{m} \mathcal{D}_{m-1} \ldots \mathcal{D}_{1}
$$

The following proposition is clear from the definitions.
Proposition 15. The following diagram commutes.

$$
\begin{array}{cc}
D_{1}^{\otimes m} \xrightarrow{p} & D_{m} \\
\downarrow_{\overline{\operatorname{ad}}(L)} & \\
D_{1}^{\otimes m} \xrightarrow{\text { ad }(L)} \\
& D_{m} .
\end{array}
$$

Choose a basis $\left\{x_{1}, \ldots, x_{m}\right\}$ of V and a basis $\left\{y_{1}, \ldots, y_{m}\right\}$ of V^{*} dual to $\left\{x_{1}, \ldots, x_{m}\right\}$. Let $\mathbf{1}^{m}: \mathbb{K} \rightarrow \wedge^{m} V^{*}[-m] \otimes \wedge^{m} V[m]$ be the map

$$
1 \mapsto y_{m} \wedge \cdots \wedge y_{1} \otimes x_{1} \wedge \cdots \wedge x_{m} .
$$

Let $\tau: \mathbf{S}^{\bullet}(V[1]) \otimes \wedge^{m} V^{*}[-m] \rightarrow \wedge^{m} V^{*}[-m] \otimes \mathbf{S}^{\bullet}(V[1])$ denote the swap map. Denote the composite map

$$
\mathbf{S}^{\bullet}(V[1]) \xrightarrow{\left(\tau \otimes \wedge^{m} V[m]\right) \circ\left(\mathbf{S}^{\bullet}(V[1]) \otimes \mathbf{1}^{m}\right)} \wedge^{m} V^{*}[-m] \otimes \mathbf{S}^{\bullet}(V[1]) \otimes \wedge^{m} V[m]
$$

by $\mathbf{1}^{m}$ itself.

Lemma 1. Let $L \in D_{1}$ be a homogenous element. The following diagram commutes.

$$
\begin{aligned}
& \mathbf{S}^{\bullet}(V[1]) \xrightarrow{\mathbf{1}^{m}} \wedge^{m} V^{*}[-m] \otimes \mathbf{S}^{\bullet}(V[1]) \otimes \wedge^{m} V[m] \\
& \quad \downarrow-L^{+} \\
& \quad \downarrow(-1)^{|L| m} \operatorname{ad}(L) \otimes \wedge^{m} V[m] \\
& \mathbf{S}^{\bullet}(V[1]) \xrightarrow{\mathbf{1}^{m}} \wedge^{m} V^{*}[-m] \otimes \mathbf{S}^{\bullet}(V[1]) \otimes \wedge^{m} V[m] .
\end{aligned}
$$

Proof. This lemma is proven by a direct computation. We once more recall that if $H, Z \in \mathbf{S}^{\bullet}(V[1])$ and if $Y \in \mathbf{S}^{\bullet}\left(V^{*}[-1]\right)$ then $H Z$ denotes

$$
H \wedge Z=\mathbf{i}_{V}(Z)(H)
$$

and $(H \bullet Y)$ denotes $\mathbf{j}_{V^{*}}(Y)(H)$.
Choose a basis $\left\{y_{1}, \ldots, y_{m}\right\}$ of V^{*} and a basis $\left\{x_{1}, \ldots, x_{m}\right\}$ of V dual to $\left\{y_{1}, \ldots, y_{m}\right\}$. We may assume without loss of generality that $L=y_{1} \otimes Z$ where $Z \in \mathbf{S}^{\bullet}(V[1])$ is homogenous. Then, if $H \in \mathbf{S}^{\bullet}(V[1])$ is homogenous, by Proposition 11, parts (2), (3), and (4),

$$
L^{+}(H)=(-1)^{-|Z|-1}\left((H Z) \bullet y_{1}\right)=(-1)^{|Z|+1}\left((H Z) \bullet y_{1}\right) .
$$

Thus,

$$
\begin{equation*}
=(-1)^{(|H|+|Z|-1) m}(-1)^{|Z|+1} y_{m} \wedge \cdots \wedge y_{1} \otimes\left((H Z) \bullet y_{1}\right) \otimes x_{1} \wedge \cdots \wedge x_{m} \tag{33}
\end{equation*}
$$

On the other hand, if we treat H as an element of D_{0}, then

$$
\begin{aligned}
\left(y_{1} \otimes Z\right) \circ H(P) & =\left(P H \bullet y_{1}\right) Z=P\left(H \bullet y_{1}\right) Z+(-1)^{|H|}\left(P \bullet y_{1}\right) H Z \\
& H \circ\left(y_{1} \otimes Z\right)(P)=\left(P \bullet y_{1}\right) Z H .
\end{aligned}
$$

Note that the degree of the operator $y_{1} \otimes Z$ is $|Z|-1$. It follows that

$$
\left[y_{1} \otimes Z, H\right](P)=P\left(H \bullet y_{1}\right) Z
$$

Thus,

$$
\left[y_{1} \otimes Z, H\right]=\left(H \bullet y_{1}\right) Z .
$$

By (32) in the proof of Proposition 14,

$$
\left[y_{1} \otimes Z, y_{i}\right]=(-1)^{|Z|} y_{1} \otimes\left(Z \bullet y_{i}\right)
$$

Therefore,

$$
y_{m} \wedge \cdots \wedge\left[y_{1} \otimes Z, y_{i}\right] \wedge \cdots \wedge y_{1}=0 \forall i \neq 1 .
$$

Thus,

$$
\begin{aligned}
& \operatorname{ad}(L) \otimes \wedge^{m} V[m]\left(y_{m} \wedge \cdots \wedge y_{1} \otimes H \otimes x_{1} \wedge \cdots \wedge x_{m}\right) \\
& =y_{m} \wedge \cdots \wedge y_{1} \otimes\left(\left(H \bullet y_{1}\right) Z\right. \\
& \left.\quad+(-1)^{|H|(|Z|-1)}(-1)^{|Z|}\left(Z \bullet y_{1}\right) H\right) \otimes x_{1} \wedge \cdots \wedge x_{m} \\
& =y_{m} \wedge \cdots \wedge y_{1} \otimes\left(\left(H \bullet y_{1}\right) Z\right. \\
& \left.\quad+(-1)^{|H|(|Z|-1)}(-1)^{|Z|}(-1)^{|H|(|Z|-1)} H\left(Z \bullet y_{1}\right)\right) \otimes x_{1} \wedge \cdots \wedge x_{m} \\
& =y_{m} \wedge \cdots \wedge y_{1} \otimes\left(\left(H \bullet y_{1}\right) Z+(-1)^{|Z|} H\left(Z \bullet y_{1}\right)\right) \otimes x_{1} \wedge \cdots \wedge x_{m} .
\end{aligned}
$$

Note that

$$
\left(H Z \bullet y_{1}\right)=H\left(Z \bullet y_{1}\right)+(-1)^{|Z|}\left(H \bullet y_{1}\right) Z .
$$

Further recall that

$$
\mathbf{1}^{m}(H)=(-1)^{|H| m} y_{m} \wedge \cdots \wedge y_{1} \otimes H \otimes x_{1} \wedge \cdots \wedge x_{m}
$$

Therefore,

$$
\begin{aligned}
& (-1)^{|L| m} \operatorname{ad}(L) \otimes \wedge^{m} V[m]\left(\mathbf{1}^{m}(H)\right) \\
& =(-1)^{(|H|+|Z|-1) m} \operatorname{ad}(L) \otimes \wedge^{m} V[m]\left(y_{m} \wedge \cdots \wedge y_{1} \otimes H \otimes x_{1} \wedge \cdots \wedge x_{m}\right) \\
& =(-1)^{(|H|+|Z|-1) m} y_{m} \wedge \cdots \wedge y_{1} \otimes\left(\left(H \bullet y_{1}\right) Z+(-1)^{|Z|} H\left(Z \bullet y_{1}\right)\right) \\
& \quad \otimes x_{1} \wedge \cdots \wedge x_{m} \\
& =-(-1)^{(|H|+|Z|-1) m}(-1)^{|Z|+1} y_{m} \wedge \cdots \wedge y_{1} \otimes\left(H Z \bullet y_{1}\right) \otimes x_{1} \wedge \cdots \wedge x_{m} \\
& =-\mathbf{1}^{m}\left(L^{+}(H)\right) .
\end{aligned}
$$

This proves the desired lemma.
Remark 8. Lemma 1 seems to be a phenomenon occurring in purely odd supergeometry only. Let M_{V} be the supermanifold whose ring of functions is $\mathbf{S}^{\bullet}(V[1])$. The pairing \langle,$\rangle on \mathbf{S}^{\bullet}(V[1])$ is the pairing

$$
\langle f, g\rangle=\int_{M_{V}} f g \forall f, g \in \mathbf{S}^{\bullet}(V[1]) .
$$

By $\int_{M_{V}}$, we of course mean a Berezinian integral. We can think of the usual geometric analog of $\mathbf{S}^{\bullet}(V[1])$ to be the ring of compactly supported functions on a smooth oriented manifold M. The analog of the pairing \langle, on $\mathbf{S}^{\bullet}(V[1])$ is the pairing

$$
(f, g) \mapsto \int_{M} f g d \mu
$$

where $d \mu$ is the measure arising out of a volume form on M.On M_{V} there is a constant top-order differential operator ∂ that is unique upto scalar. Lemma 1 then says that if D is a differential operator on M_{V} that is purely
of first-order, and if f is a function on M_{V}, the Lie bracket of D with $f \partial$ is $\pm\left(D^{+} f\right) \partial$ where D^{+}is the adjoint of D. In the usual geometric setting, the analog of ∂ would be a global, nowhere vanishing section of the top wedge power of the tangent bundle of M. Even if such a section exists on M, the analog of Lemma 1 does not hold even in the 1-dimensional case. For example, if $M=\mathbb{R}$, then the adjoint of the operator $f \frac{d}{d x}$ is the operator $-\left(\frac{d f}{d x}+f \frac{d}{d x}\right)$. This follows from the standard integration by parts. But

$$
\left[f \frac{d}{d x}, g \frac{d}{d x}\right]=f \frac{d g}{d x}-g \frac{d f}{d x} \neq \pm\left(-g \frac{d f}{d x}-f \frac{d g}{d x}\right) .
$$

We get back to proving more propositions in linear algebra that we require for future use.

Choose a basis $\left\{x_{1}, \ldots, x_{m}\right\}$ of V and a basis $\left\{y_{1}, \ldots, y_{m}\right\}$ of V^{*} dual to $\left\{x_{1}, \ldots, x_{m}\right\}$. Define $\mathbf{k}_{V}: \mathbf{S}^{\bullet}(V[1]) \rightarrow \operatorname{End}\left(\mathbf{S}^{\bullet}\left(V^{*}[-1]\right)\right)$ by the formulae

$$
\begin{gathered}
\mathbf{k}_{V}\left(x_{i}\right)\left(y_{j}\right)=\delta_{i j} \\
\mathbf{k}_{V}\left(x_{i}\right)(1)=0 \\
\mathbf{k}_{V}\left(x_{i}\right)\left(Y_{1} \wedge Y_{2}\right)=\mathbf{k}_{V}\left(x_{i}\right)\left(Y_{1}\right)+(-1)^{\left|Y_{1}\right|} Y_{1} \wedge \mathbf{k}_{V}\left(x_{i}\right)\left(Y_{2}\right) \\
\mathbf{k}_{V}\left(X_{1} \wedge X_{2}\right)(Y)=\mathbf{k}_{V}\left(X_{1}\right)\left(\mathbf{k}_{V}\left(X_{2}\right)(Y)\right) .
\end{gathered}
$$

To simplify notation, we shall denote $\mathbf{k}_{V}(Z)(Y)$ by $(Z \mid Y)$.
Remark 9. The map $\mathbf{j}_{V^{*}}$ identifies an element Y of $\mathbf{S}^{\bullet}\left(V^{*}[-1]\right)$ with the operation "differentiation on the right by Y ". The map \mathbf{k}_{V} identifies an element Z of $\mathbf{S}^{\bullet}(V[1])$ with "differentiation on the left by Z ".

We have the following proposition.
Proposition 16. Let $Y \in \mathbf{S}^{\bullet}\left(V^{*}[-1]\right)$ and let $Z \in \mathbf{S}^{\bullet}(V[1])$. Then,

$$
\pi_{0}\left(F_{r}\left(\mathbf{j}_{V^{*}}(Y) \circ \mathbf{i}_{V}(Z)\right)\right)=(Z \mid Y)
$$

Proof. This is again proven by a direct computation. We may assume without loss of generality that Y and Z are homogenous.

Choose a basis $\left\{x_{1}, \ldots, x_{m}\right\}$ of V and a basis $\left\{y_{1}, \ldots, y_{m}\right\}$ of V^{*} dual to $\left\{x_{1}, \ldots, x_{m}\right\}$. Let $H \in \mathbf{S}^{\bullet}(V[1])$. Let $Z=x_{S}$ and let $Y=y_{T}$ for some $S, T \subset\{1, \ldots, m\}$. If S and T are disjoint and if S is nonempty, $\mathbf{j}_{V^{*}}(Y)$ and $\mathbf{i}_{V}(Z)$ commute upto sign. It follows that $\pi_{0}\left(F_{r}\left(\mathbf{j}_{V}(Y) \circ \mathbf{i}_{V}(Z)\right)\right)=0$. Also, $(Z \mid Y)=0$ if S and T are disjoint and S is nonempty. If S is empty, $x_{S}=1$ by convention. Therefore, $\pi_{0}\left(F_{r}\left(\mathbf{j}_{V^{*}}(Y) \circ \mathbf{i}_{V}(Z)\right)\right)=Y$ and $(Z \mid Y)=Y$. We therefore, have to prove this proposition for the case when S and T are not disjoint.

Let S and T be arbitrary subsets of $\{1, \ldots, m\}$. Suppose that $j \notin S \cup T$.

$$
\begin{aligned}
\mathbf{j}_{V^{*}}\left(y_{j} \wedge Y\right) \circ \mathbf{i}_{V}\left(Z \wedge x_{j}\right)(H) & =\left(H Z \wedge x_{j} \bullet y_{j} \wedge Y\right) \\
& =(H Z \bullet Y)-\left(\left(H Z \bullet y_{j}\right) \wedge x_{j} \bullet Y\right) .
\end{aligned}
$$

Since j is not in T. It follows that

$$
Z^{\prime} \wedge x_{j} \bullet Y= \pm\left(Z^{\prime} \bullet Y\right) \wedge x_{j}
$$

Therefore

$$
\mathbf{j}_{V^{*}}\left(y_{j} \wedge Y\right) \circ \mathbf{i}_{V}\left(Z \wedge x_{j}\right)(H)=(H Z \bullet Y) \pm\left(\left(H Z \bullet y_{j}\right) \bullet Y\right) \wedge x_{j}
$$

It follows that

$$
\pi_{0}\left(F_{r}\left(\mathbf{j}_{V^{*}}\left(y_{j} \wedge Y\right) \circ \mathbf{i}_{V}\left(Z \wedge x_{j}\right)\right)\right)=\pi_{0}\left(F_{r}\left(\mathbf{j}_{V^{*}}(Y) \circ \mathbf{i}_{V}(Z)\right)\right)
$$

Note that

$$
\left(Z \wedge x_{j} \mid y_{j} \wedge Y\right)=(Z \mid Y)
$$

since $j \notin S \cup T$. The desired proposition follows for homogenous $Z=x_{S}$ and $Y=y_{T}$ by induction on $|S \cap T|$. For general Y and Z the proposition follows from the fact that the maps

$$
\begin{gathered}
\mathbf{S}^{\bullet}\left(V^{*}[-1]\right) \times \mathbf{S}^{\bullet}(V[1]) \rightarrow \mathbf{S}^{\bullet}\left(V^{*}[-1]\right) \\
(Y, Z) \mapsto \pi_{0}\left(F_{r}\left(\mathbf{j}_{V^{*}}(Y) \circ \mathbf{i}_{V}(Z)\right)\right)
\end{gathered}
$$

and

$$
\begin{gathered}
\mathbf{S}^{\bullet}\left(V^{*}[-1]\right) \times \mathbf{S}^{\bullet}(V[1]) \rightarrow \mathbf{S}^{\bullet}\left(V^{*}[-1]\right) \\
(Y, Z) \mapsto(Z \mid Y)
\end{gathered}
$$

are both \mathbb{K}-bilinear.
Let $(-\|-)_{V}: \mathbf{S}^{\bullet}(V[1]) \otimes \mathbf{S}^{\bullet}\left(V^{*}[-1]\right) \rightarrow \mathbb{K}$ denote map

$$
Z \otimes Y \mapsto p_{0}(Z \mid Y)
$$

where $p_{0}: \mathbf{S}^{\bullet}\left(V^{*}[-1]\right) \rightarrow \mathbb{K}$ denotes the projection to the degree 0 direct summand.

Let $\gamma_{V}: \mathbf{S}^{\bullet}(V[1]) \rightarrow \mathbf{S}^{\bullet}\left(V^{*}[-1]\right) \otimes \wedge^{m} V[m]$ be the isomorphism such that

$$
\pi_{m}(-\wedge-)_{V}=\left[(-\|-)_{V} \otimes \wedge^{m} V[m]\right] \circ\left(\mathbf{S}^{\bullet}(V[1]) \otimes \gamma_{V}\right)
$$

Let ζ_{V} denote γ_{V}^{-1}.
Proposition 17. If $Z, W \in \mathbf{S}^{\bullet}(V[1])$, then

$$
\zeta_{V}\left(\left\{(Z \mid-) \otimes \wedge^{m} V[m]\right\}(\gamma(W))\right)=Z \wedge W
$$

Proof. This proposition is verified by a direct computation. Choose a basis $\left\{x_{1}, \ldots, x_{m}\right\}$ of V and a basis $\left\{y_{1}, \ldots, y_{m}\right\}$ of V^{*} dual to $\left\{x_{1}, \ldots, x_{m}\right\}$. Without loss of generality, $Z=x_{1} \wedge \cdots \wedge x_{k}$ and $W=x_{l+1} \wedge \cdots \wedge x_{m}$.

Then

$$
\begin{gathered}
\gamma_{V}(W)=y_{l} \wedge \cdots \wedge y_{1} \otimes x_{1} \wedge \cdots \wedge x_{m} \\
\left((Z \mid-) \otimes \wedge^{m} V[m]\right)\left(\gamma_{V}(W)\right)=\left(x_{1} \wedge \cdots \wedge x_{k} \mid y_{l} \wedge \cdots \wedge y_{1}\right) \otimes x_{1} \wedge \cdots \wedge x_{m}
\end{gathered}
$$

If $k>l$ then $\left(x_{1} \wedge \cdots \wedge x_{k} \mid y_{1} \wedge \cdots \wedge y_{l}\right)=0$ and $x_{1} \wedge \cdots \wedge x_{k} \wedge x_{l+1} \wedge \cdots \wedge x_{m}=0$, proving this proposition. We may thus assume that $k \leq l$. Then

$$
\begin{aligned}
\left((Z \mid-) \otimes \wedge{ }^{m} V[m]\right)\left(\gamma_{V}(W)\right) & =\left(x_{1} \wedge \cdots \wedge x_{k} \mid y_{l} \wedge \cdots \wedge y_{1}\right) \otimes x_{1} \wedge \cdots \wedge x_{m} \\
& =(-1)^{k(l-k)} y_{l} \wedge \cdots \wedge y_{k+1} \otimes x_{1} \wedge \cdots \wedge x_{m} \\
& =\gamma_{V}\left(x_{1} \wedge \cdots \wedge x_{k} \wedge x_{l+1} \wedge \cdots \wedge x_{m}\right)
\end{aligned}
$$

This proves the desired proposition.
Let J_{V} denote the endomorphism of $\mathbf{S}^{\bullet}(V[1])$ multiplying $\wedge^{i} V[i]$ by $(-1)^{i}$. We also have the following proposition. Let

$$
\tau: \wedge^{m} V[m] \otimes \mathbf{S}^{\bullet}\left(V^{*}[-1]\right) \otimes \wedge^{m} V[m] \rightarrow \mathbf{S}^{\bullet}\left(V^{*}[-1]\right) \otimes \wedge^{m} V[m] \otimes \wedge^{m} V[m]
$$

denote the map that interchanges $\wedge^{m} V[m]$ and $\mathbf{S}^{\bullet}\left(V^{*}[-1]\right) \otimes \wedge^{m} V[m]$. Let

$$
\left.\begin{array}{rl}
& \simeq: \wedge^{m} V[m] \otimes \wedge^{m} V^{*}[-m] \\
x_{1} & \wedge \cdots \wedge \mathbb{K} \\
& \wedge x_{m} \otimes y_{m} \wedge \cdots \wedge y_{1}
\end{array}\right) 1 .
$$

Proposition 18. The following diagram commutes.

$$
\begin{array}{rlrl}
\wedge^{m} V[m] \otimes \mathbf{S}^{\bullet}\left(V^{*}[-1]\right) \otimes & \otimes \wedge^{m} V[m] \otimes \wedge^{m} V^{*}[-m] & \xrightarrow{(-\bullet-) \otimes \simeq} & \mathbf{S}^{\bullet}(V[1]) \\
& \downarrow^{\tau \otimes \wedge^{m} V^{*}[-m]} & & J_{V} \downarrow \\
\mathbf{S}^{\bullet}\left(V^{*}[-1]\right) \otimes \wedge^{m} V[m] \otimes \wedge^{m} V[m] \otimes \wedge^{m} V^{*}[m] & \xrightarrow{\zeta} \otimes \simeq \simeq & \mathbf{S}^{\bullet}(V[1]) .
\end{array}
$$

Proof. This is verified by a direct computation as well. Let $\left\{x_{i}\right\},\left\{y_{i}\right\}$ be as in the proof of the previous proposition.

$$
\left(x_{1} \wedge \cdots \wedge x_{m} \bullet y_{m} \wedge \cdots \wedge y_{k+1}\right)=x_{1} \wedge \cdots \wedge x_{k}
$$

implies that

$$
\begin{array}{r}
((-\bullet-) \otimes \simeq)\left(x_{1} \wedge \cdots \wedge x_{m} \otimes y_{m} \wedge \cdots \wedge y_{k+1} \otimes x_{1} \wedge \cdots \wedge x_{m} \otimes y_{m} \wedge \cdots \wedge y_{1}\right) \\
\\
=x_{1} \wedge \cdots \wedge x_{k}
\end{array}
$$

Also,

$$
\begin{aligned}
& \tau\left(x_{1} \wedge \cdots \wedge x_{m} \otimes y_{m} \wedge \cdots \wedge y_{k+1} \otimes x_{1} \wedge \cdots \wedge x_{m}\right) \\
& \quad=(-1)^{m k}\left(y_{m} \wedge \cdots \wedge y_{k+1} \otimes x_{1} \wedge \cdots \wedge x_{m} \otimes x_{1} \wedge \cdots \wedge x_{m}\right)
\end{aligned}
$$

and

$$
\zeta_{V}\left(y_{m} \wedge \cdots \wedge y_{k+1} \otimes x_{1} \wedge \cdots \wedge x_{m}\right)=(-1)^{k(m-k)} x_{1} \wedge \cdots \wedge x_{k}
$$

imply that $\left(\zeta_{V} \otimes \simeq\right) \circ\left(\tau \otimes \wedge^{m} V^{*}[-m]\right)$ takes

$$
\left(x_{1} \wedge \cdots \wedge x_{m} \otimes y_{m} \wedge \cdots \wedge y_{k+1} \otimes x_{1} \wedge \cdots \wedge x_{m} \otimes y_{m} \wedge \cdots \wedge y_{1}\right)
$$

to

$$
(-1)^{-k^{2}} x_{1} \wedge \cdots \wedge x_{k}=J_{V}\left(x_{1} \wedge \cdots \wedge x_{k}\right)
$$

This proves the desired proposition.

Let \mathbf{C}_{V} denote the comultiplication on $\mathbf{S}^{\bullet}(V[1])$. Think of \mathbf{C}_{V} as an element of $\operatorname{End}\left(\mathbf{S}^{\bullet}(V[1])\right) \otimes \mathbf{S}^{\bullet}(V[1])$.

Proposition 19. If $Y \in \mathbf{S}^{\bullet}\left(V^{*}[-1]\right)$ then

$$
\left(\operatorname{End}\left(\mathbf{S}^{\bullet}(V[1])\right) \otimes(-\| Y) \circ \mathbf{C}_{V}\right)=\mathbf{j}_{V^{*}}(Y) .
$$

Proof. This is yet another proposition that is verified by a direct computation. Let $\left\{x_{i}\right\},\left\{y_{i}\right\}$ be as in the proof of the previous proposition. Without loss of generality, $Y=y_{1} \wedge \cdots \wedge y_{k}$. Then

$$
\mathbf{C}_{V}\left(x_{l} \wedge \cdots \wedge x_{1}\right)=x_{l} \wedge \cdots \wedge x_{k+1} \otimes x_{k} \wedge \cdots \wedge x_{1}+\sum_{S \neq\{l, \ldots, k+1\}} \pm x_{S} \otimes x_{\bar{S}}
$$

implies that

$$
\begin{aligned}
\left(\operatorname{End}\left(\mathbf{S}^{\bullet}(V[1])\right) \otimes(-\| Y) \circ \mathbf{C}_{V}\right)\left(x_{l} \wedge \cdots \wedge x_{1}\right) & =x_{l} \otimes \cdots \otimes x_{k+1} \\
& =\mathbf{j}_{V^{*}}(Y)\left(x_{l} \wedge \cdots \wedge x_{1}\right) .
\end{aligned}
$$

The desired proposition follows immediately.
3.2. Applying the linear algebra to $S^{\bullet}(\Omega[1])$. Let \mathcal{M} be a locally free coherent \mathcal{O}_{X}-module. We begin with the remark that every proposition in the previous subsection holds in $\mathrm{Ch}^{b}\left(\mathcal{O}_{X}-\bmod \right)$ (and hence in $\left.\mathrm{D}^{b}(X)\right)$ with V replaced by \mathcal{M}, V^{*} replaced by $\mathcal{M}^{*}=\mathcal{H o m}_{\mathcal{O}_{X}}\left(\mathcal{M}, \mathcal{O}_{X}\right)$. We are interested in the case when $\mathcal{M}=\Omega$. All graded \mathcal{O}_{X}-modules in this subsection are to be thought of as complexes of \mathcal{O}_{X}-modules with 0 -differential.

All \mathbb{K}-vector spaces in this section are finite-dimensional. In this subsection and in future sections, n shall denote the dimension of X.
3.2.1. An important point for the reader to note. Each proposition or lemma in this subsection is proven by proving it for an arbitrary open subscheme U of X such that Ω is trivial over U. Then, $\left.\Omega\right|_{U}=\mathcal{O}_{U} \otimes_{\mathbb{K}} V$ and $\left.T\right|_{U}=\mathcal{O}_{U} \otimes_{\mathbb{K}} V^{*}$ for some finite-dimensional \mathbb{K}-vector space V. After observing that every map involved in the proposition/lemma is $\mathcal{O}_{U^{-}}$ linear, proving the proposition/lemma reduces to proving the corresponding proposition/lemma in Section 3.1. The proposition/lemma in Section 3.1 corresponding to each proposition here can be thought of as the "local computation" required to prove the corresponding proposition/lemma in this subsection.

With the above announcement we can just state the propositions and lemma that we wish to state.

Note that there is a morphism

$$
\mathbf{i}_{\Omega}: \mathbf{S}^{\bullet}(\Omega[1]) \rightarrow \mathcal{E} \operatorname{nd}\left(\mathbf{S}^{\bullet}(\Omega[1])\right)
$$

such that whenever U is an open subscheme on X such that $\Omega \simeq \mathcal{O}_{U} \otimes_{\mathbb{K}} V$ for some \mathbb{K}-vector space V, then

$$
\left.\mathbf{i}_{\Omega}\right|_{U}=\mathbf{i}_{V} \otimes_{\mathbb{K}} \mathcal{O}_{U} .
$$

We denote \mathbf{i}_{Ω} by \mathbf{i} to simplify notation.
Similarly, we have a morphism

$$
\mathbf{j}_{T}: \mathbf{S}^{\bullet}(T[-1]) \rightarrow \mathcal{E} \operatorname{nd}\left(\mathbf{S}^{\bullet}(\Omega[1])\right)
$$

such that whenever U is an open subscheme on X such that $\Omega \simeq \mathcal{O}_{U} \otimes_{\mathbb{K}} V$ for some \mathbb{K}-vector space V, then

$$
\left.\mathbf{j}_{T}\right|_{U}=\mathbf{j}_{V^{*}} \otimes_{\mathbb{K}} \mathcal{O}_{U}
$$

We denote \mathbf{j}_{T} by \mathbf{j} to simplify notation.
The following proposition corresponds to Proposition 10.
Proposition 20. The composite
$\mathbf{S}^{\bullet}(T[-1]) \otimes \mathbf{S}^{\bullet}(\Omega[1]) \xrightarrow{\mathbf{j} \otimes \mathbf{i}} \mathcal{E} \operatorname{nd}\left(\mathbf{S}^{\bullet}(\Omega[1])\right) \otimes \mathcal{E} \operatorname{nd}\left(\mathbf{S}^{\bullet}(\Omega[1]) \xrightarrow{\text { oop }} \mathcal{E} \operatorname{nd}\left(\mathbf{S}^{\bullet}(\Omega[1])\right)\right.$ is an isomorphism in $\mathrm{Ch}^{b}\left(\mathcal{O}_{X}-\bmod \right)$.
Notation. G_{r} shall denote the isomorphism in Proposition 20 and F_{r} shall denote its inverse. In addition, if

$$
\tau: \mathbf{S}^{\bullet}(T[-1]) \otimes \mathbf{S}^{\bullet}(\Omega[1]) \rightarrow \mathbf{S}^{\bullet}(\Omega[1]) \otimes \mathbf{S}^{\bullet}(T[-1])
$$

denotes the swap map the composite

$$
\mathbf{S}^{\bullet}(T[-1]) \otimes \mathbf{S}^{\bullet}(\Omega[1]) \xrightarrow{\tau} \mathbf{S}^{\bullet}(\Omega[1]) \otimes \mathbf{S}^{\bullet}(T[-1]) \xrightarrow{\mathrm{i}^{\circ \mathrm{op}_{\mathbf{j}}}} \mathcal{E} \operatorname{nd}\left(\mathbf{S}^{\bullet}(\Omega[1])\right)
$$

shall be denoted by G_{l}. The inverse of G_{l} will be denoted by F_{l}.
Let $\pi_{k}: \mathbf{S}^{\bullet}(\Omega[1]) \rightarrow \Omega^{k}[k]$ denote the natural projection. Note that we have a nondegenerate pairing \langle,$\rangle on \mathbf{S}^{\bullet}(\Omega[1])$. This is given by the composite

$$
\mathbf{S}^{\bullet}(\Omega[1]) \otimes \mathbf{S}^{\bullet}(\Omega[1]) \xrightarrow{(-\wedge-)} \mathbf{S}^{\bullet}(\Omega[1]) \xrightarrow{\pi_{n}} \Omega^{n}[n] .
$$

Recall the definition of the adjoint of an element of $\operatorname{End}\left(\mathbf{S}^{\bullet}(V[1])\right)$ from Section 3.1. Let $\mathbf{A}_{V}: \operatorname{End}\left(\mathbf{S}^{\bullet}(V[1])\right) \rightarrow \operatorname{End}\left(\mathbf{S}^{\bullet}(V[1])\right)$ denote the map taking an element of $\operatorname{End}\left(\mathbf{S}^{\bullet}(V[1])\right)$ to its adjoint. We have a morphism $\mathbf{A}_{\Omega}: \mathcal{E} \operatorname{nd}\left(\mathbf{S}^{\bullet}(\Omega[1])\right) \rightarrow \mathcal{E} \operatorname{nd}\left(\mathbf{S}^{\bullet}(\Omega[1])\right)$ in $\mathrm{Ch}^{b}\left(\mathcal{O}_{X}-\bmod \right)$ such that if U is an open subscheme of X such that $\Omega \simeq \mathcal{O}_{U} \otimes_{\mathbb{K}} V$ for some \mathbb{K}-vector space V, then

$$
\mathbf{A}_{\Omega}=\mathbf{A}_{V} \otimes_{\mathbb{K}} \mathcal{O}_{U}
$$

Similarly, the map

$$
\begin{gathered}
\mathrm{ev}_{V}: \mathbf{S}^{\bullet}(V[1]) \otimes \operatorname{End}\left(\mathbf{S}^{\bullet}(V[1])\right) \\
Z \otimes \Phi \mapsto \Phi(Z)
\end{gathered}
$$

yields a map

$$
\text { ev }: \mathbf{S}^{\bullet}(\Omega[1]) \otimes \mathcal{E} \operatorname{nd}\left(\mathbf{S}^{\bullet}(\Omega[1])\right) \rightarrow \mathbf{S}^{\bullet}(\Omega[1])
$$

such that

$$
\left.\mathrm{ev}\right|_{U}=\mathrm{ev}_{V} \otimes_{\mathbb{K}} \mathcal{O}_{U}
$$

on any open subscheme U of X such that $\left.\Omega\right|_{U}=V \otimes_{\mathbb{K}} \mathcal{O}_{U}$ for some \mathbb{K}-vector space V.

We denote \mathbf{A}_{Ω} by \mathbf{A} to simplify notation. Let $\left\langle, \mathrm{ev}^{+}\right\rangle$denote the composite

$$
\begin{gathered}
\mathbf{S}^{\bullet}(\Omega[1]) \otimes \mathbf{S}^{\bullet}(\Omega[1]) \otimes \mathcal{E} \operatorname{nd}\left(\mathbf{S}^{\bullet}(\Omega[1])\right. \\
\downarrow \mathbf{S}^{\bullet}(\Omega[1]) \otimes \mathbf{S}^{\bullet}(\Omega[1]) \otimes \mathbf{A} \\
\mathbf{S}^{\bullet}(\Omega[1]) \otimes \mathbf{S}^{\bullet}(\Omega[1]) \otimes \mathcal{E} \operatorname{nd}\left(\mathbf{S}^{\bullet}(\Omega[1])\right. \\
\downarrow \mathbf{S}^{\bullet}(\Omega[1]) \otimes \mathrm{ev} \\
\mathbf{S}^{\bullet}(\Omega[1]) \otimes \mathbf{S}^{\bullet}(\Omega[1]) \\
\downarrow\langle,\rangle \\
\Omega^{n}[n] .
\end{gathered}
$$

By the corresponding fact for a finite-dimensional \mathbb{K}-vector space V, the following diagram commutes in $\mathrm{Ch}^{b}\left(\mathcal{O}_{X}-\bmod \right)$ (and hence in $\mathrm{D}^{b}(X)$).

$$
\begin{gather*}
\mathbf{S}^{\bullet}(\Omega[1]) \otimes \mathcal{E} \operatorname{nd}\left(\mathbf{S}^{\bullet}(\Omega[1])\right) \otimes \mathbf{S}^{\bullet}(\Omega[1]) \xrightarrow{\operatorname{ev} \otimes \mathbf{S}^{\bullet}(\Omega[1])} \mathbf{S}^{\bullet}(\Omega[1]) \otimes \mathbf{S}^{\bullet}(\Omega[1]) \\
\downarrow \mathbf{S}^{\bullet}(\Omega[1]) \otimes \tau \tag{34}\\
\mathbf{S}^{\bullet}(\Omega[1]) \otimes \mathbf{S}^{\bullet}(\Omega[1]) \otimes \mathcal{E} \operatorname{nd}\left(\mathbf{S}^{\bullet}(\Omega[1])\right) \\
\xrightarrow{\left\langle, \mathrm{ev}^{+}\right\rangle}
\end{gather*}
$$

The map $\tau: \mathcal{E} \operatorname{nd}\left(\mathbf{S}^{\bullet}(\Omega[1])\right) \otimes \mathbf{S}^{\bullet}(\Omega[1]) \rightarrow \mathbf{S}^{\bullet}(\Omega[1]) \otimes \mathcal{E} \operatorname{nd}\left(\mathbf{S}^{\bullet}(\Omega[1])\right)$ in the above diagram swaps factors.

The following proposition corresponds to Proposition 11 in Section 3.1.
Proposition 21. (1) To begin with,

$$
\mathbf{A} \circ \mathbf{A}=\mathbf{1}_{\mathcal{E n d}(\mathbf{S} \bullet(\Omega[1]))} .
$$

(2) If $\tau: \mathcal{E} \operatorname{nd}\left(\mathbf{S}^{\bullet}(\Omega[1])\right) \otimes \mathcal{E} \operatorname{nd}\left(\mathbf{S}^{\bullet}(\Omega[1])\right) \rightarrow \mathcal{E} \operatorname{nd}\left(\mathbf{S}^{\bullet}(\Omega[1])\right) \otimes \mathcal{E} \operatorname{nd}\left(\mathbf{S}^{\bullet}(\Omega[1])\right)$ is the swap map, then the following diagram in $\operatorname{Ch}^{b}\left(\mathcal{O}_{X}-\bmod \right)$ commutes.
$\mathcal{E} \operatorname{nd}\left(\mathbf{S}^{\bullet}(\Omega[1])\right) \otimes \mathcal{E} \operatorname{nd}\left(\mathbf{S}^{\bullet}(\Omega[1])\right) \xrightarrow{(\mathbf{A} \otimes \mathbf{A}) \circ \tau} \mathcal{E} \operatorname{nd}\left(\mathbf{S}^{\bullet}(\Omega[1])\right) \otimes \mathcal{E} \operatorname{nd}\left(\mathbf{S}^{\bullet}(\Omega[1])\right)$

(3) Also,

$$
\mathbf{A} \circ \mathbf{i}=\mathbf{i} .
$$

(4) If $I: \mathbf{S}^{\bullet}(T[-1]) \rightarrow \mathbf{S}^{\bullet}(T[-1])$ denotes the endomorphism multiplying $\wedge^{i} T[-i]$ by $(-1)^{i}$ then

$$
\mathbf{A} \circ \mathbf{j}=\mathbf{j} \circ I .
$$

(5) Finally,

$$
\mathbf{A} \circ G_{l}=G_{r} \circ\left(I \otimes \mathbf{S}^{\bullet}(\Omega[1])\right) .
$$

Recall that $\pi_{j}: \mathbf{S}^{\bullet}(\Omega[1]) \rightarrow \Omega^{j}[j]$ denotes the natural projection. We will denote the projection

$$
\mathbf{S}^{\bullet}(T[-1]) \otimes \pi_{j}: \mathbf{S}^{\bullet}(T[-1]) \otimes \mathbf{S}^{\bullet}(\Omega[1]) \rightarrow \mathbf{S}^{\bullet}(T[-1]) \otimes \Omega^{j}[j]
$$

by π_{j} itself. Let I be as in part (4), Proposition 21. The following proposition corresponds to Proposition 12 of Section 3.1.

Proposition 22.

$$
\pi_{0} \circ F_{l}=I \circ \pi_{0} \circ F_{r} \circ \mathbf{A}
$$

Denote the composite

$$
\begin{aligned}
& \left(\mathbf{S}^{\bullet}(T[-1]) \otimes \mathbf{S}^{\bullet}(\Omega[1])\right)^{\otimes 2} \\
& \quad G_{r} \circ G_{r} \\
& \quad \text { End }\left(\mathbf{S}^{\bullet}(\Omega[1])\right) \quad \xrightarrow{F_{r}} \mathbf{S}^{\bullet}(T[-1]) \otimes \mathbf{S}^{\bullet}(\Omega[1])
\end{aligned}
$$

by m to simplify notation. The proposition below corresponds to Proposition 13 of Section 3.1.

Proposition 23. As morphisms in $\mathrm{Ch}^{b}\left(\mathcal{O}_{X}-\bmod \right)$,

$$
\pi_{0} \circ \mathrm{~m}=\pi_{0} \circ \mathrm{~m} \circ\left(\pi_{0} \otimes \mathbf{S}^{\bullet}(T[-1]) \otimes \mathbf{S}^{\bullet}(\Omega[1])\right) .
$$

Denote the direct summand $\wedge^{i} T[-i] \otimes \mathbf{S}^{\bullet}(\Omega[1])$ of $\mathcal{E} \operatorname{nd}\left(\mathbf{S}^{\bullet}(\Omega[1])\right)$ by D_{i}. Note that the map $[,]_{V}: \operatorname{End}\left(\mathbf{S}^{\bullet}(V[1])\right)^{\otimes 2} \rightarrow \operatorname{End}\left(\mathbf{S}^{\bullet}(V[1])\right)$ extends to a morphism [,] : $\mathcal{E} \operatorname{nd}\left(\mathbf{S}^{\bullet}(\Omega[1])\right)^{\otimes 2} \rightarrow \mathcal{E} \operatorname{nd}\left(\mathbf{S}^{\bullet}(\Omega[1])\right)$. If U is an open subscheme on X such that $\Omega \simeq \mathcal{O}_{U} \otimes_{\mathbb{K}} V$ for some \mathbb{K}-vector space V, then

$$
\left.[,]\right|_{U}=[,]_{V} \otimes_{\mathbb{K}} \mathcal{O}_{U}
$$

The following proposition corresponds to Proposition 14 of Section 3.1.
Proposition 24. The composite

$$
D_{1} \otimes D_{1} \longrightarrow \mathcal{E} \operatorname{nd}\left(\mathbf{S}^{\bullet}(\Omega[1])\right)^{\otimes 2} \xrightarrow{[,]} \mathcal{E} \operatorname{nd}\left(\mathbf{S}^{\bullet}(\Omega[1])\right)
$$

factors through the inclusion of D_{1} in $\mathcal{E} \operatorname{nd}\left(\mathbf{S}^{\bullet}(\Omega[1])\right)$.
Let V be a \mathbb{K}-vector space of dimension n. Denote the direct summands $V^{*}[-1] \otimes \mathbf{S}^{\bullet}(V[1])$ and $\wedge^{n} V^{*}[-n] \otimes \mathbf{S}^{\bullet}(V[1])$ of $\mathbf{S}^{\bullet}\left(V^{*}[-1]\right) \otimes \mathbf{S}^{\bullet}(V[1])$ by \bar{D}_{1} and \bar{D}_{n} respectively, unlike in Section 3.1. Recall that in Section 3.1 we defined maps

$$
\begin{aligned}
\operatorname{ad}(L): \wedge^{n} V^{*}[-n] \otimes \mathbf{S}^{\bullet}(V[1]) & \rightarrow \wedge^{n} V^{*}[-n] \otimes \mathbf{S}^{\bullet}(V[1]) \\
\overline{\operatorname{ad}}(L): \bar{D}_{1}^{\otimes n} & \rightarrow \bar{D}_{1}^{\otimes n}
\end{aligned}
$$

for any $L \in \bar{D}_{1}$. These yield maps

$$
\begin{gathered}
\operatorname{ad}_{V}: \wedge^{n} V^{*}[-n] \otimes \mathbf{S}^{\bullet}(V[1]) \otimes \bar{D}_{1} \rightarrow \wedge^{n} V^{*}[-n] \otimes \mathbf{S}^{\bullet}(V[1]) \\
Y \otimes L \mapsto \operatorname{ad}(L)(Y) \\
\overline{\operatorname{ad}}_{V}: \bar{D}_{1}^{\otimes n} \otimes \bar{D}_{1} \rightarrow \bar{D}_{1}^{\otimes n} \\
W \otimes L \mapsto \overline{\operatorname{ad}}(L)(W)
\end{gathered}
$$

These yield morphisms

$$
\begin{aligned}
\operatorname{ad}: \wedge^{n} T[-n] \otimes \mathbf{S}^{\bullet}(\Omega[1]) \otimes D_{1} & \rightarrow \wedge^{n} T[-n] \otimes \mathbf{S}^{\bullet}(\Omega[1]) \\
\overline{\mathrm{ad}}: D_{1}^{\otimes n} \otimes D_{1} & \rightarrow D_{1}^{\otimes n}
\end{aligned}
$$

in $\operatorname{Ch}^{b}\left(\mathcal{O}_{X}-\bmod \right)$. If U is an open subscheme on X such that $\Omega \simeq \mathcal{O}_{U} \otimes_{\mathbb{K}} V$ for some \mathbb{K}-vector space V, then

$$
\begin{aligned}
\left.\operatorname{ad}\right|_{U} & =\operatorname{ad}_{V} \otimes_{\mathbb{K}} \mathcal{O}_{U} \\
\left.\overline{\operatorname{ad}}\right|_{U} & =\overline{\operatorname{ad}}_{V} \otimes_{\mathbb{K}} \mathcal{O}_{U}
\end{aligned}
$$

The map $p_{V}: \bar{D}_{1}^{\otimes n} \rightarrow \bar{D}_{n}$ also yields a map

$$
p: D_{1}^{\otimes n} \rightarrow \wedge^{n} T[-n] \otimes \mathbf{S}^{\bullet}(\Omega[1])
$$

such that if $\Omega \simeq V \otimes_{\mathbb{K}} \mathcal{O}_{U}$ for some open subscheme U of X and some \mathbb{K}-vector space V, then,

$$
p=p_{V} \otimes_{\mathbb{K}} \mathcal{O}_{U}
$$

Note that the dimension n of X is the rank of Ω as well. Let

$$
\mathbf{1}^{n}: \mathcal{O}_{X} \rightarrow \wedge^{n} T[-n] \otimes \Omega^{n}[n]
$$

denote the map dual to the evaluation map. There are maps $\tau: \wedge^{n} T[-n] \otimes \Omega^{n}[n] \otimes \mathbf{S}^{\bullet}(\Omega[1]) \otimes D_{1} \rightarrow \wedge^{n} T[-n] \otimes \mathbf{S}^{\bullet}(\Omega[1]) \otimes D_{1} \otimes \Omega^{n}[n]$
and

$$
\tau^{\prime}: \wedge^{n} T[-n] \otimes \Omega^{n}[n] \otimes \mathbf{S}^{\bullet}(\Omega[1]) \rightarrow \wedge^{n} T[-n] \otimes \mathbf{S}^{\bullet}(\Omega[1]) \otimes \Omega^{n}[n]
$$

τ is obtained by swapping $\Omega^{n}[n]$ and $\mathbf{S}^{\bullet}(\Omega[1]) \otimes D_{1} . \quad \tau^{\prime}$ is obtained by swapping $\Omega^{n}[n]$ and $\mathbf{S}^{\bullet}(\Omega[1])$. Denote the composites

$$
\tau \circ\left(\mathbf{1}^{n} \otimes \mathbf{S}^{\bullet}(\Omega[1]) \otimes D_{1}\right)
$$

and

$$
\tau^{\prime} \circ\left(\mathbf{1}^{n} \otimes \mathbf{S}^{\bullet}(\Omega[1])\right)
$$

by 1^{n}. The following proposition corresponds to Proposition 15 of Section 3.1.

Proposition 25. The following diagram commutes in $\mathrm{Ch}^{b}\left(\mathcal{O}_{X}-\bmod \right)$.

The following lemma corresponds to Lemma 1 of Section 3.1. In the following lemma, A denotes the composite

$$
D_{1} \longrightarrow \mathcal{E} \operatorname{nd}\left(\mathbf{S}^{\bullet}(\Omega[1])\right) \xrightarrow{\mathbf{A}} \mathcal{E} \operatorname{nd}\left(\mathbf{S}^{\bullet}(\Omega[1])\right) .
$$

Lemma 2. The following diagram commutes in $\mathrm{Ch}^{b}\left(\mathcal{O}_{X}-\bmod \right)$.

$$
\begin{aligned}
& \mathbf{S}^{\bullet}(\Omega[1]) \otimes D_{1} \xrightarrow{\mathbf{1}^{n}} \wedge^{n} T[-n] \otimes \mathbf{S}^{\bullet}(\Omega[1]) \otimes D_{1} \otimes \Omega^{n}[n] \\
& \begin{array}{ccc}
\downarrow-\operatorname{evo}\left(\mathbf{S}^{\bullet}(\Omega[1]) \otimes \mathbf{A}\right) & \operatorname{ad} \otimes \Omega^{n}[n] \\
\hline
\end{array} \\
& \mathbf{S}^{\bullet}(\Omega[1]) \\
& \xrightarrow{\mathbf{1}^{n}}
\end{aligned} \wedge^{n} T[-n] \otimes \mathbf{S}^{\bullet}(\Omega[1]) \otimes \Omega^{n}[n] . \quad .
$$

The map

$$
\begin{gathered}
(-\mid-)_{V}: \mathbf{S}^{\bullet}(V[1]) \otimes \mathbf{S}^{\bullet}\left(V^{*}[-1]\right) \rightarrow \mathbf{S}^{\bullet}\left(V^{*}[-1]\right) \\
Z \otimes Y \mapsto(Z \mid Y)
\end{gathered}
$$

yields a map

$$
(-\mid-): \mathbf{S}^{\bullet}(\Omega[1]) \otimes \mathbf{S}^{\bullet}(T[-1]) \rightarrow \mathbf{S}^{\bullet}(T[-1])
$$

As usual, if U is an open subscheme on X such that $\Omega \simeq \mathcal{O}_{U} \otimes_{\mathbb{K}} V$ for some \mathbb{K}-vector space V, then

$$
(-\mid-)=(-\mid-)_{V} \otimes_{\mathbb{K}} \mathcal{O}_{U}
$$

Recall that the composition product on $\mathcal{E} \operatorname{nd}\left(\mathbf{S}^{\bullet}(\Omega[1])\right)$ was denoted by \circ. Let $\circ^{\text {op }}$ denote the product on $\mathcal{E} \operatorname{nd}\left(\mathbf{S}^{\bullet}(\Omega[1])\right)^{\text {op }}$. The following proposition corresponds to Proposition 16 of Section 3.1.

Proposition 26.

$$
\pi_{0} \circ F_{r} \circ\left(\mathbf{i} \circ^{\mathrm{op}} \mathbf{j}\right)=(-\mid-): \mathbf{S}^{\bullet}(\Omega[1]) \otimes \mathbf{S}^{\bullet}(T[-1]) \rightarrow \mathbf{S}^{\bullet}(T[-1])
$$

Let $(-\|-): \mathbf{S}^{\bullet}(\Omega[1]) \otimes \mathbf{S}^{\bullet}(T[-1]) \rightarrow \mathcal{O}_{X}$ denote the map such that for any open $U \subset X$ such that $\Omega \simeq V \otimes_{\mathbb{K}} \mathcal{O}_{U}$ for some \mathbb{K}-vector space V,

$$
(-\|-)=(-\|-)_{V} \otimes_{\mathbb{K}} \mathcal{O}_{U}
$$

Let $\gamma: \mathbf{S}^{\bullet}(\Omega[1]) \rightarrow \mathbf{S}^{\bullet}(T[-1]) \otimes S_{X}$ be the isomorphism such that

$$
\pi_{n} \circ(-\wedge-)=\left((-\|-) \otimes S_{X}\right) \circ\left(\mathbf{S}^{\bullet}(\Omega[1]) \otimes \gamma\right)
$$

Let ζ denote the inverse of γ.
The following proposition corresponds to Proposition 17 of Section 3.1.

Proposition 27.

$\zeta\left(\left[(-\mid-) \otimes S_{X}\right] \circ\left[\mathbf{S}^{\bullet}(\Omega[1]) \otimes \gamma\right]\right)=(-\wedge-): \mathbf{S}^{\bullet}(\Omega[1]) \otimes \mathbf{S}^{\bullet}(\Omega[1]) \rightarrow \mathbf{S}^{\bullet}(\Omega[1])$.
Let $\tau: S_{X} \otimes \mathbf{S}^{\bullet}(T[-1]) \otimes S_{X} \rightarrow \mathbf{S}^{\bullet}(T[-1]) \otimes S_{X} \otimes S_{X}$ be the map swapping S_{X} with $\mathbf{S}^{\bullet}(T[-1]) \otimes S_{X}$. Let \simeq be the identification of $S_{X} \otimes S_{X}^{-1}$ with \mathcal{O}_{X}. The following proposition corresponds to Proposition 18 of Section 3.1. Recall that J is the endomorphism of $\mathbf{S}^{\bullet}(\Omega[1])$ that multiplies $\Omega^{j}[j]$ by $(-1)^{j}$.

Proposition 28. The following diagram commutes in $\mathrm{Ch}^{b}\left(\mathcal{O}_{X}-\bmod \right)$.

$$
\begin{array}{ccc}
S_{X} \otimes \mathbf{S}^{\bullet}(T[-1]) \otimes S_{X} \otimes S_{X}^{-1} & \xrightarrow{\tau \otimes S_{X}^{-1}} & \mathbf{S}^{\bullet}(T[-1]) \otimes S_{X} \otimes S_{X} \otimes S_{X}^{-1} \\
\downarrow(-\bullet) \otimes \simeq & & \zeta \otimes \simeq \downarrow \\
\mathbf{S}^{\bullet}(\Omega[1]) & \xrightarrow{J} & \mathbf{S}^{\bullet}(\Omega[1]) .
\end{array}
$$

Let \mathbf{C}_{Ω} denote the coproduct on $\mathbf{S}^{\bullet}(\Omega[1])$. Think of \mathbf{C}_{Ω} as a morphism in $\mathrm{D}^{b}(X)$ from \mathcal{O}_{X} to $\mathcal{E} \operatorname{nd}\left(\mathbf{S}^{\bullet}(\Omega[1])\right) \otimes \mathbf{S}^{\bullet}(\Omega[1])$. The following proposition corresponds to Proposition 19 of Section 3.1:

Proposition 29.

$$
\mathcal{E} \operatorname{nd}\left(\mathbf{S}^{\bullet}(\Omega[1])\right) \otimes(-\|-) \circ \mathbf{C}_{\Omega}=\mathbf{j}: \mathbf{S}^{\bullet}(T[-1]) \rightarrow \mathcal{E} \operatorname{nd}\left(\mathbf{S}^{\bullet}(\Omega[1])\right)
$$

4. The adjoint of Φ_{R}

This section is a continuation of Section 2. All maps in this section are in $\mathrm{D}^{b}(X)$ unless explicitly stated otherwise. Both in this section and the next, we use results from Section 3.2. All morphisms in $\mathrm{Ch}^{b}\left(\mathcal{O}_{X}-\bmod \right)$ described in Section 3.2 induce morphisms in $\mathrm{D}^{b}(X)$. The diagrams that were shown to commute in $\mathrm{Ch}^{b}\left(\mathcal{O}_{X}-\bmod \right)$ in Section 3.2 also commute in $\mathrm{D}^{b}(X)$.
4.1. Stating the main lemma of this section. Let Φ_{L} and Φ_{R} be as in Section 2. By Theorem 2^{\prime}, the following diagrams commute in $\mathrm{D}^{b}(X)$.

Φ_{R} can be thought of as lying in $\operatorname{Hom}_{\mathrm{D}^{b}(X)}\left(\mathcal{O}_{X}, \mathcal{E} \operatorname{nd}\left(\mathbf{S}^{\bullet}(\Omega[1])\right) \otimes \Omega[1]\right)$. Recall the endomorphism \mathbf{A} of $\mathcal{E} \operatorname{nd}\left(\mathbf{S}^{\bullet}(\Omega[1])\right)$ (defined in Section 3.2) which takes a section of $\mathcal{E} \operatorname{nd}\left(\mathbf{S}^{\bullet}(\Omega[1])\right)$ to its adjoint.

Definition 2. The adjoint Φ_{R}^{+}of Φ_{R} is the element $(\mathbf{A} \otimes \Omega[1]) \circ \Phi_{R}$ of $\operatorname{Hom}_{D^{b}(X)}\left(\mathcal{O}_{X}, \mathcal{E} \operatorname{nd}\left(\mathbf{S}^{\bullet}(\Omega[1])\right) \otimes \Omega[1]\right)$.

This section is devoted to finding an explicit formula for Φ_{R}^{+}.
Note that the Atiyah class of the tangent bundle T of X yields a morphism At $_{T}: \Omega[1] \rightarrow \Omega[1] \otimes \Omega[1]$. Let $p: \Omega[1]^{\otimes i} \rightarrow \Omega^{i}[i]$ denote the standard projection. Let

$$
\operatorname{At}_{T}^{i}: \Omega[1] \rightarrow \mathbf{S}^{\bullet}(\Omega[1]) \otimes \Omega[1]
$$

denote the composite

$$
(p \otimes \Omega[1]) \circ\left(\Omega[1]^{\otimes(i-1)} \otimes \mathrm{At}_{T}\right) \circ \cdots \circ \mathrm{At}_{T}
$$

Then if $\frac{z}{\mathrm{e}^{z}-1}=1+\sum_{i} c_{i} Z^{i}$ the map

$$
\frac{\mathrm{At}_{T}}{\exp \left(\mathrm{At}_{T}\right)-1}:=\mathbf{1}+\sum_{i} c_{i} \mathrm{At}_{T}^{i}: \Omega[1] \rightarrow \mathbf{S}^{\bullet}(\Omega[1]) \otimes \Omega[1]
$$

makes sense. Denote the element

$$
\operatorname{det}\left(\frac{\mathrm{At}_{T}}{\exp \left(\mathrm{At}_{T}\right)-1}\right) \in \operatorname{Hom}_{\mathrm{D}^{b}(X)}\left(\mathcal{O}_{X}, \mathrm{~S}^{\bullet}(\Omega[1])\right)
$$

by f .
Note that $\mathbf{i}(\mathbf{f})$ and $\mathbf{i}\left(\mathbf{f}^{-1}\right)$ are elements of $\operatorname{Hom}_{D^{b}(X)}\left(\mathcal{O}_{X}, \mathcal{E} \operatorname{nd}\left(\mathbf{S}^{\bullet}(\Omega[1])\right)\right)$. Let $\mathbf{i}(\mathbf{f}) \circ \Phi_{R} \circ \mathbf{i}\left(\mathbf{f}^{-1}\right)$ denote the composite

$$
\begin{gathered}
\mathcal{O}_{X} \\
\mathcal{E} \operatorname{nd}\left(\mathbf{S}^{\bullet}(\Omega[1])\right) \otimes \Omega[1] \simeq \mathcal{O}_{X} \otimes \mathcal{E} \operatorname{nd}\left(\mathbf{S}^{\bullet}(\Omega[1])\right) \otimes \mathcal{O}_{X} \otimes \Omega[1] \\
\mathbf{i}(\mathbf{f}) \otimes \mathcal{E} \operatorname{nd}\left(\mathbf{S}^{\bullet}(\Omega[1])\right) \otimes \mathbf{i}\left(\mathbf{f}^{-1}\right) \otimes \Omega[1] \\
\mathcal{E} \operatorname{nd}\left(\mathbf{S}^{\bullet}(\Omega[1])\right) \otimes \mathcal{E} \operatorname{nd}\left(\mathbf{S}^{\bullet}(\Omega[1])\right) \otimes \mathcal{E} \operatorname{nd}\left(\mathbf{S}^{\bullet}(\Omega[1])\right) \otimes \Omega[1] \\
\circ \otimes \Omega[1] \downarrow \\
\mathcal{E} \operatorname{nd}\left(\mathbf{S}^{\bullet}(\Omega[1])\right) \otimes \Omega[1] .
\end{gathered}
$$

The following lemma is the main lemma of this section.

Lemma 3.

$$
\Phi_{R}^{+}=\mathbf{i}(\mathbf{f}) \circ \Phi_{R} \circ \mathbf{i}\left(\mathbf{f}^{-1}\right) .
$$

The proof of this lemma requires further preparation. The following subsection is devoted to a key lemma (Lemma 4) used to prove Lemma 3. The proof of Lemma 3 itself is at the end of this section (in Section 4.4).
4.2. Comparing two "sections" of $D_{n} \otimes \Omega^{n}[n]$. Let

$$
p_{k}: \mathbf{S}^{\bullet}(T[-1]) \rightarrow \wedge^{k} T[-k]
$$

be the standard projection. View Φ_{L} as an element of

$$
\operatorname{Hom}_{D^{b}(X)}\left(\mathcal{O}_{X}, \mathcal{E} \operatorname{nd}\left(\mathbf{S}^{\bullet}(\Omega[1])\right) \otimes \Omega[1]\right)
$$

We have the following proposition.

Proposition 30.

$$
\left(p_{k} \otimes \mathbf{S}^{\bullet}(\Omega[1]) \otimes \Omega[1]\right) \circ\left(F_{r} \otimes \Omega[1]\right)\left(\Phi_{L}\right)=0 \forall k \neq 1
$$

Remark 10. The above proposition just states that Φ_{L} can be thought of as an element of $\operatorname{Hom}_{D^{b}(X)}\left(\mathcal{O}_{X}, D_{1} \otimes \Omega[1]\right)$. Recall that D_{1} is like the space of "purely first-order differential operators on $\mathbf{S}^{\bullet}(\Omega[1])$ ". In principle, this proposition should follow from Proposition 7 and Theorem 2^{\prime}. I however, give a concrete proof below that uses the definition of Φ_{L} from Section 2, as I cant see how the above proposition follows immediately from Proposition 7.

Proof of Proposition 30. Let

$$
\widetilde{\mathbf{C}}: \mathbf{S}^{\bullet}(T[-1]) \rightarrow \mathbf{S}^{\bullet}(T[-1]) \otimes \mathbf{S}^{\bullet}(T[-1])
$$

denote coproduct on $\mathbf{S}^{\bullet}\left(T[-1]\right.$. Denote the composite $\left(\mathbf{S}^{\bullet}(T[-1]) \otimes p_{1}\right) \circ \widetilde{\mathbf{C}}$ by $\hat{\mathbf{C}}$. Denote the wedge product on $\mathbf{S}^{\bullet}(\Omega[1])$ by μ in this proof only. Note that the dual of the map

$$
\bar{\omega}: \mathbf{S}^{\bullet}(\Omega[1]) \otimes \Omega[1] \rightarrow \mathbf{S}^{\bullet}(\Omega[1]) \otimes \Omega[1]
$$

defined in Section 2 is the composite

$$
\left(\mathbf{S}^{\bullet}(T[-1]) \otimes \mathrm{At}_{T}\right) \circ(\hat{\mathbf{C}} \otimes T[-1])
$$

It follows that

$$
\bar{\omega}=(\mu \otimes \Omega[1]) \circ\left(\mathbf{S}^{\bullet}(\Omega[1]) \otimes \mathrm{At}_{T}\right)
$$

In the latter composite, At_{T} is thought of as a morphism in $\mathrm{D}^{b}(X)$ from $\Omega[1]$ to $\Omega[1] \otimes \Omega[1]$. Therefore,

$$
\begin{equation*}
\bar{\omega}^{i}=(\mu \otimes \Omega[1]) \circ\left(\mathbf{S}^{\bullet}(\Omega[1]) \otimes \mathrm{At}_{T}^{i}\right) \tag{35}
\end{equation*}
$$

where At_{T}^{i} is as in the previous subsection.

It follows from (35) that $\left(p_{k} \otimes \mathbf{S}^{\bullet}(\Omega[1]) \otimes \Omega[1]\right) \circ\left(F_{r} \otimes \Omega[1]\right)\left(\bar{\omega}^{i} \circ \overline{\mathbf{C}}\right)$ is given by the composite

$$
\begin{gathered}
\mathcal{O}_{X} \\
\overline{\mathbf{C}} \downarrow \\
\mathcal{E} \operatorname{nd}\left(\mathbf{S}^{\bullet}(\Omega[1])\right) \otimes \Omega[1] \\
\left(\left(p_{k} \otimes \mathbf{S}^{\bullet}(\Omega[1])\right) \circ F_{r}\right) \otimes \mathrm{At}_{T}^{i} \downarrow \\
\wedge^{k} T[-k] \otimes \mathbf{S}^{\bullet}(\Omega[1]) \otimes \Omega^{i}[i] \otimes \Omega[1] \\
\wedge^{k} T[-k] \otimes \mu \otimes \Omega[1] \\
\wedge^{k} T[-k] \otimes \mathbf{S}^{\bullet}(\Omega[1]) \otimes \Omega[1] .
\end{gathered}
$$

Note that from the above description, proving that

$$
\left(\left(\left(p_{k} \otimes \mathbf{S}^{\bullet}(\Omega[1])\right) \circ F_{r}\right) \otimes \Omega[1]\right) \circ \overline{\mathbf{C}}=0
$$

will imply that

$$
\left(p_{k} \otimes \mathbf{S}^{\bullet}(\Omega[1]) \otimes \Omega[1]\right) \circ\left(F_{r} \otimes \Omega[1]\right)\left(\bar{\omega}^{i} \circ \overline{\mathbf{C}}\right)=0
$$

The desired proposition will then follow the fact that

$$
\Phi_{L}=\sum_{i} c_{i} \bar{\omega}^{i} \circ \overline{\mathbf{C}}
$$

where $\sum_{i} c_{i} z^{i}=\frac{z}{\mathrm{e}^{z}-1}$.
Proving this proposition has therefore been reduced to proving that

$$
\begin{equation*}
\left(\left(\left(p_{k} \otimes \mathbf{S}^{\bullet}(\Omega[1])\right) \circ F_{r}\right) \otimes \Omega[1]\right) \circ \overline{\mathbf{C}}=0 \forall k \neq 1 . \tag{36}
\end{equation*}
$$

Let U be an affine open subscheme of X such that $\Omega \simeq V \otimes_{K} \mathcal{O}_{U}$ for some K-vector space V. Proving (36) reduces to proving that

$$
\begin{equation*}
\left(\left(\left(p_{k} \otimes \mathbf{S}^{\bullet}(V[1])\right) \circ F_{r}\right) \otimes V[1]\right) \circ \mathbf{C}_{V}=0 \forall k \neq 1 \tag{37}
\end{equation*}
$$

where $\mathbf{C}_{V} \in \operatorname{End}\left(\mathbf{S}^{\bullet}(V[1])\right) \otimes V[1] \simeq \operatorname{Hom}_{\mathbb{K}}\left(\mathbf{S}^{\bullet}(V[1]), \mathbf{S}^{\bullet}(V[1]) \otimes V[1]\right)$ is the map

$$
v_{1} \wedge \cdots \wedge v_{j} \mapsto \sum_{i}(-1)^{j-i} v_{1} \wedge \widehat{\cdots i \cdots} \wedge v_{j} \otimes v_{i}
$$

F_{r} is as in Section 3.1 and $p_{k}: \mathbf{S}^{\bullet}\left(V^{*}[-1]\right) \rightarrow \wedge^{k} V^{*}[-k]$ denotes the standard projection. (37) however, follows from the fact that

$$
\mathbf{C}_{V}=\sum_{j=1}^{j=n} \mathbf{j}_{V}\left(y_{j}\right) \otimes x_{j} \Longrightarrow\left(F_{r} \otimes V[1]\right) \circ \mathbf{C}_{V}=\sum_{j=1}^{j=n} y_{j} \otimes x_{j}
$$

for any bases $\left\{x_{1}, \ldots, x_{n}\right\}$ of V and $\left\{y_{1}, \ldots, y_{n}\right\}$ of V^{*} dual to each other.

The proof of Proposition 30 also helps us understand the map Φ_{L} better: let

$$
\text { id }: \mathcal{O}_{X} \rightarrow T[-1] \otimes \Omega[1]
$$

denote the dual of the evaluation map from $\Omega[1] \otimes T[-1]$ to \mathcal{O}_{X}.
Proposition 31. As an element of $\operatorname{Hom}_{D^{b}(X)}\left(\mathcal{O}_{X}, D_{1} \otimes \Omega[1]\right), \Phi_{L}$ is given by the composite

$$
\mathcal{O}_{X} \xrightarrow{\text { id }} T[-1] \otimes \Omega[1] \xrightarrow{T[-1] \otimes \frac{\mathrm{At}_{T}}{\exp \left(\mathrm{At}_{T}\right)-1}} T[-1] \otimes \mathbf{S}^{\bullet}(\Omega[1]) \otimes \Omega[1] .
$$

Proof. By the proof of Proposition $30, \overline{\mathbf{C}}: \mathbf{S}^{\bullet}(\Omega[1]) \rightarrow \mathbf{S}^{\bullet}(\Omega[1]) \otimes \Omega[1]$ is given by the composite

$$
\begin{aligned}
& \quad \mathbf{S}^{\bullet}(\Omega[1]) \otimes \mathcal{O}_{X} \\
& \mathbf{S}^{\bullet}(\Omega[1]) \otimes \mathrm{id} \mid \\
& \mathbf{S}^{\bullet}(\Omega[1]) \otimes T[-1] \otimes \Omega[1] \xrightarrow{(-\bullet-) \otimes \Omega[1]} \mathbf{S}^{\bullet}(\Omega[1]) \otimes \Omega[1] .
\end{aligned}
$$

Note that by definition, $\Phi_{L}=\frac{\bar{\omega}}{\mathrm{e}^{\bar{\omega}}-1} \circ \overline{\mathbf{C}}$. Also, Equation (35) in the proof of Proposition 30 says that $\bar{\omega}^{i}$ is given by the composite

$$
\begin{aligned}
& \quad \mathbf{S}^{\bullet}(\Omega[1]) \otimes \Omega[1] \\
& \mathbf{S}^{\bullet}(\Omega[1]) \otimes \mathrm{At}_{T}^{i} \downarrow \\
& \mathbf{S}^{\bullet}(\Omega[1]) \otimes \mathbf{S}^{\bullet}(\Omega[1]) \otimes \Omega[1] \xrightarrow{(-\wedge-) \otimes \Omega[1]} \mathbf{S}^{\bullet}(\Omega[1]) \otimes \Omega[1] .
\end{aligned}
$$

Therefore $\frac{\bar{\omega}}{e^{\bar{\omega}}-1}$ is given by the composite

$$
\begin{aligned}
& \mathbf{S}^{\bullet}(\Omega[1]) \otimes \Omega[1] \\
& \mathbf{S}^{\bullet}(\Omega[1]) \otimes \frac{\mathrm{At}_{T}}{\exp \left(\mathrm{~A} t_{T}\right)-1} \downarrow \\
& \mathbf{S}^{\bullet}(\Omega[1]) \otimes \mathbf{S}^{\bullet}(\Omega[1]) \otimes \Omega[1] \xrightarrow{(-\wedge-) \otimes \Omega[1]} \mathbf{S}^{\bullet}(\Omega[1]) \otimes \Omega[1] .
\end{aligned}
$$

It follows that as a morphism in $\mathrm{D}^{b}(X)$ from $\mathbf{S}^{\bullet}(\Omega[1])$ to $\mathbf{S}^{\bullet}(\Omega[1]) \otimes \Omega[1]$, Φ_{L} is given by the composite

$$
\left.\begin{array}{rl}
\mathbf{S}^{\bullet}(\Omega[1]) & \otimes \mathcal{O}_{X} \\
& \mathbf{S}^{\bullet}(\Omega[1]) \otimes \mathrm{id} \\
\mathbf{S}^{\bullet}(\Omega[1]) \otimes & T[-1] \otimes \Omega[1] \\
& \mathbf{S}^{\bullet}(\Omega[1]) \otimes T[-1] \otimes \frac{\mathrm{At}_{T}}{\exp \left(A t_{T}\right)-1}
\end{array}\right)
$$

This proves the desired proposition.

By Proposition 30, Φ_{L} can be thought of as an element of
$\operatorname{Hom}_{D^{b}(X)}\left(\mathcal{O}_{X}, D_{1} \otimes \Omega[1]\right) \simeq \operatorname{Hom}_{D^{b}(X)}\left(\mathcal{O}_{X}, T[-1] \otimes \mathbf{S}^{\bullet}(\Omega[1]) \otimes \Omega[1]\right)$.
Let Φ_{L}^{n} denote the composite

$$
\begin{gathered}
\mathcal{O}_{X} \\
\Phi_{L}^{\otimes n} \downarrow \\
\left(T[-1] \otimes \mathbf{S}^{\bullet}(\Omega[1]) \otimes \Omega[1]\right)^{\otimes n} \\
\tau \downarrow \\
T^{\otimes n}[-n] \otimes \mathbf{S}^{\bullet}(\Omega[1])^{\otimes n} \otimes \Omega^{\otimes n}[n] \xrightarrow{p^{\prime} \otimes \mathrm{m} \otimes p} \wedge^{n} T[-n] \otimes \mathbf{S}^{\bullet}(\Omega[1]) \otimes \Omega^{n}[n] .
\end{gathered}
$$

The map τ in the above diagram is a rearrangement of factors. The map m : $\mathbf{S}^{\bullet}(\Omega[1])^{\otimes n} \rightarrow \mathbf{S}^{\bullet}(\Omega[1])$ is n-fold multiplication. p^{\prime} is the standard projection from $T^{\otimes n}[-n]$ to $\wedge^{n} T[-n]$ and p is the projection from $\Omega^{\otimes n}[n]$ to $\Omega^{n}[n]$. Note that Φ_{L}^{n} is an element of $\operatorname{Hom}_{D^{b}(X)}\left(\mathcal{O}_{X}, D_{n} \otimes \Omega^{n}[n]\right)$. Let $1^{n}: \mathbf{S}^{\bullet}(\Omega[1]) \rightarrow D_{n} \otimes \Omega^{n}[n]$ be as in Section 3.2. Then:
Lemma 4. The following diagram commutes in $\mathrm{D}^{b}(X)$.

Proof. Step 1: The inverse of $\mathbf{1}^{n}$. Let $\mathbf{e}: \mathcal{O}_{X} \rightarrow \Omega^{n}[n] \otimes \wedge^{n} T[-n]$ denote the natural isomorphism dual to the evaluation map from $\wedge^{n} T[-n] \otimes \Omega^{n}[n]$ to \mathcal{O}_{X}. Denote the evaluation map from $\Omega^{n}[n] \otimes \wedge^{n} T[-n]$ to \mathcal{O}_{X} by b. We claim that the inverse to 1^{n} is given by the following composite.

$$
\begin{gather*}
\mathcal{O}_{X} \otimes D_{n} \otimes \Omega^{n}[n] \\
\mathbf{e} \otimes D_{n} \otimes \Omega^{n}[n] \\
\Omega^{n}[n] \otimes \wedge^{n} T[-n] \otimes D_{n} \otimes \Omega^{n}[n] \\
\tau \downarrow \\
\Omega^{n}[n] \otimes D_{n} \otimes \Omega^{n}[n] \otimes \wedge^{n} T[-n] \tag{38}\\
\simeq \downarrow \\
\Omega^{n}[n] \otimes \wedge^{n} T[-n] \otimes \mathbf{S}^{\bullet}(\Omega[1]) \otimes \Omega^{n}[n] \otimes \wedge^{n} T[-n] \\
\mathbf{b} \otimes \mathbf{S}^{\bullet}(\Omega[1]) \otimes \mathbf{b} \downarrow \\
\mathbf{S}^{\bullet}(\Omega[1]) .
\end{gather*}
$$

The map τ in (38) swaps $\wedge^{n} T[-n]$ and $D_{n} \otimes \Omega^{n}[n]$.

To see this, note that if U is an open subscheme of X such that

$$
\left.\Omega\right|_{U} \simeq V \otimes_{\mathbb{K}} \mathcal{O}_{U}
$$

for some n-dimensional \mathbb{K}-vector space V, the maps involved in (38) can be described explicitly. Choose a basis $\left\{x_{1}, \ldots, x_{n}\right\}$ of V and let $\left\{y_{1}, \ldots, y_{n}\right\}$ be the dual basis of V^{*}. Let

$$
\begin{aligned}
\mathbf{e}_{V}: \mathbb{K} & \rightarrow \wedge^{n} V[n] \otimes \wedge^{n} V^{*}[-n] \\
1 & \mapsto x_{1} \wedge \cdots \wedge x_{n} \otimes y_{n} \wedge \cdots \wedge y_{1}
\end{aligned}
$$

Let

$$
\left.\begin{array}{rl}
\mathbf{b}_{V} & : \wedge^{n} V[n] \otimes \wedge^{n} V^{*}[-n] \\
x_{1} \wedge \cdots & \mathbb{K} \\
& \wedge x_{n} \otimes y_{n} \wedge \cdots \wedge y_{1}
\end{array}\right) 1
$$

Let $\mathbf{1}_{V}^{n}$ be as in Section 3.1. The map denoted by $\mathbf{1}_{V}^{n}$ was denoted by $\mathbf{1}^{m}$ in Section 3.1. Then, if $H \in \mathbf{S}^{\bullet}(V[1])$ is a homogenous element,

$$
\begin{gathered}
\mathbf{1}^{n}(H)=(-1)^{n|H|} y_{n} \wedge \cdots \wedge y_{1} \otimes H \otimes x_{1} \wedge \cdots \wedge x_{n} \\
\left(\mathbf{e}_{V} \otimes \wedge^{n} V^{*}[-n] \otimes \mathbf{S}^{\bullet}(V[1]) \otimes \wedge^{n} V[n]\right) \circ \mathbf{1}^{n}(H) \\
=(-1)^{n|H|} x_{1} \wedge \cdots \wedge x_{n} \otimes y_{n} \wedge \cdots \wedge y_{1} \otimes y_{n} \wedge \cdots \wedge y_{1} \otimes H \otimes x_{1} \wedge \cdots \wedge x_{n} \\
\tau\left((-1)^{n|H|} x_{1} \wedge \cdots \wedge x_{n} \otimes y_{n} \wedge \cdots \wedge y_{1} \otimes y_{n} \wedge \cdots \wedge y_{1} \otimes H \otimes x_{1} \wedge \cdots \wedge x_{n}\right) \\
=(-1)^{n|H|}(-1)^{n|H|} x_{1} \wedge \cdots \wedge x_{n} \otimes y_{n} \wedge \cdots \wedge y_{1} \\
\otimes H \otimes x_{1} \wedge \cdots \wedge x_{n} \otimes y_{n} \wedge \cdots \wedge y_{1} \\
\left(\mathbf{b}_{V} \otimes \mathbf{S}^{\bullet}(V[1]) \otimes \mathbf{b}_{V}\right)\left((-1)^{n|H|}(-1)^{n|H|} x_{1} \wedge \cdots \wedge x_{n} \otimes y_{n} \wedge \cdots \wedge y_{1}\right. \\
\left.\otimes H \otimes x_{1} \wedge \cdots \wedge x_{n} \otimes y_{n} \wedge \cdots \wedge y_{1}\right)=H
\end{gathered}
$$

The fact that the composite given in (38) is the inverse to 1^{n} follows from the facts that $\left.\mathbf{b}\right|_{U}=\mathbf{b}_{V} \otimes_{\mathbb{K}} \mathcal{O}_{U},\left.\mathbf{e}\right|_{U}=\mathbf{e}_{V} \otimes_{\mathbb{K}} \mathcal{O}_{U}$ and $\left.\mathbf{1}^{n}\right|_{U}=\mathbf{1}_{V}^{n} \otimes_{\mathbb{K}} \mathcal{O}_{U}$.

Step 2. Let us look at the composition of the composite map in (38) with $\Phi_{L}^{n} . \Phi_{L}^{n}$ can also be identified with the composite

$$
\left(\mathbf{b} \otimes \mathbf{S}^{\bullet}(\Omega[1]) \otimes \Omega^{n}[n]\right) \circ\left(\Omega^{n}[n] \otimes \Phi_{L}^{n}\right): \Omega^{n}[n] \rightarrow \mathbf{S}^{\bullet}(\Omega[1]) \otimes \Omega^{n}[n]
$$

Thinking of Φ_{L}^{n} as the above composite, it follows from (38) that the inverse of $\mathbf{1}^{n}$ composed with $\Phi_{L}^{n}: \mathcal{O}_{X} \rightarrow D_{n} \otimes \Omega^{n}[n]$ is given by the composite

$$
\begin{gather*}
\mathcal{O}_{X} \\
\text { e } \downarrow \\
\Omega^{n}[n] \otimes \wedge^{n} T[-n] \\
\Phi_{L}^{n} \otimes \wedge^{n} T[-n] \downarrow \tag{39}\\
\mathbf{S}^{\bullet}(\Omega[1]) \otimes \Omega^{n}[n] \otimes \wedge^{n} T[-n] \\
\mathbf{S}^{\bullet}(\Omega[1]) \otimes \mathbf{b} \downarrow \\
\mathbf{S} \downarrow(\Omega[1]) .
\end{gather*}
$$

Let $\mathbf{b}_{1}: \Omega[1] \otimes T[-1] \rightarrow \mathcal{O}_{X}$ denote the evaluation map. Let

$$
\mathrm{m}: \mathbf{S}^{\bullet}(\Omega[1])^{\otimes n} \rightarrow \mathbf{S}^{\bullet}(\Omega[1])
$$

denote the n-fold product. Let $p: \Omega[1]{ }^{\otimes n} \rightarrow \Omega^{n}[n]$ denote the natural projection. Note that $\Phi_{L}^{n}: \Omega^{n}[n] \rightarrow \mathbf{S}^{\bullet}(\Omega[1]) \otimes \Omega^{n}[n]$ is also given by the following composite.

The topmost vertical arrow in the above diagram is induced by the natural inclusion from Ω^{n} to $\Omega^{\otimes n}$. The map τ in the above diagram is a rearrangement of factors.

It follows from Proposition 31 and that the composite

$$
\left(\mathbf{b}_{1} \otimes \mathbf{S}^{\bullet}(\Omega[1]) \otimes \Omega[1]\right) \circ\left(\Omega[1] \otimes \Phi_{L}\right): \Omega[1] \rightarrow \mathbf{S}^{\bullet}(\Omega[1]) \otimes \Omega[1]
$$

is precisely $\frac{\mathrm{At}_{T}}{\exp \left(\mathrm{At}_{T}\right)-1}$.

Therefore the composite in (40) is equal to the composite

It follows from Equation (39) that the inverse of $\mathbf{1}^{n}$ composed with Φ_{L}^{n} is given by the composite

The above composite is $\operatorname{det}\left(\frac{\mathrm{At}_{T}}{\exp \left(\mathrm{At}_{T}\right)-1}\right)$ by the definition of det.
4.3. Another long remark - Lemma 4 and our dictionary. Lemma 4 is the root reason for the Todd genus, an expression having a form similar to the Jacobian of the differential $d\left(\exp ^{-1}\right)$, showing up in the Riemann-Roch theorem. Markarian [6] remarks that a lemma in [6] similar to Lemma 3 in this paper is like pulling back the canonical volume form on a Lie group via the exponential map. He makes a remark in [5] that a formula analogous to that describing the pullback of the canonical (left-invariant) volume form on a Lie group via the exponential map is responsible for the Todd genus showing up in the Riemann-Roch theorem. Lemma 4 is precisely where something like this happens. We will attempt to make the parallel between Lemma 4 and "pulling back the canonical left-invariant volume form by the map $\overline{\exp "}$ more transparent. In Lemma 4 of this paper, it is $\overline{\exp }$ rather than the exponential map itself that is involved.

We warn the reader that ad and $\overline{\mathrm{ad}}$ have the same meaning in this subsection as in Section 2.5. Their meaning in this section is therefore, different from their meaning in Section 3, the rest of Section 4 and Section 5.
4.3.1. The classical situation. Keep the dictionary developed up to Section 2.5 in mind. Let G be a Lie group and \mathfrak{g} its Lie algebra. Choose a basis $\left\{X_{i}\right\}$ of \mathfrak{g} and a basis $\left\{Y_{i}\right\}$ of \mathfrak{g}^{*} dual to $\left\{X_{i}\right\}$. Let n be the dimension of \mathfrak{g}. Let $\mathbf{1}_{\mathfrak{g}}$ denote the element $\sum_{i=1}^{n} X_{i} \otimes Y_{i}$ of $\mathfrak{g} \otimes \mathfrak{g}^{*}$. Let $C(G)$ and $C(\mathfrak{g})$ be as in Section 2.5. Letting an element of \mathfrak{g} act as a differential operator on $C(G)$ (as in Section 2.5) yields a connection on $C(G)$ for each element of $\mathfrak{g} \otimes \mathfrak{g}^{*} .1_{\mathfrak{g}}$ yields the canonical connection d_{G}.

The element $\mathbf{1}^{n}:=Y_{n} \wedge \cdots \wedge Y_{1} \otimes X_{1} \wedge \cdots \wedge X_{n}$ of $\wedge^{n} \mathfrak{g}^{*} \otimes \mathfrak{g}^{n}$ yields a section of the trivial line bundle $\mathcal{V} \times \wedge^{n} \mathfrak{g}^{*} \otimes \mathfrak{g}^{n}$ over the neighborhood \mathcal{V} of 0 in \mathfrak{g}. This section yields a map

$$
\begin{aligned}
\mathbf{1}_{\mathfrak{g}}^{n}: C(\mathfrak{g}) & \rightarrow C(\mathfrak{g}) \otimes \wedge^{n} \mathfrak{g}^{*} \otimes \mathfrak{g}^{n} \\
f \mapsto f \otimes Y_{n} & \wedge \wedge Y_{1} \otimes X_{1} \wedge \cdots \wedge X_{n} .
\end{aligned}
$$

The map $\mathbf{1}^{n}$ in Lemma 4 is analogous to $\mathbf{1}_{\mathfrak{g}}^{n}$.
On the other hand, if we think of an element of \mathfrak{g}^{*} as a function on \mathcal{V}, we have an $(i+1)$-fold multiplication $\mu_{i}: C(\mathfrak{g}) \otimes \mathfrak{g}^{* \otimes i} \rightarrow C(\mathfrak{g})$. Let $\mathrm{ad}^{\circ i}$ denote the composite

$$
\left(\mathfrak{g}^{* \otimes i-1} \otimes \mathrm{ad}\right) \circ \cdots \circ \mathrm{ad}: \mathfrak{g}^{*} \rightarrow \mathfrak{g}^{* \otimes i} \otimes \mathfrak{g}^{*} .
$$

Note that $\left(\mu_{i} \otimes \mathfrak{g}^{*}\right) \circ\left(C(\mathfrak{g}) \otimes \mathrm{ad}^{\circ i}\right)=\overline{\mathrm{ad}}^{i}$ where $\overline{\mathrm{ad}}$ is as in Section 2.5. Given any (convergent) power series $f(z)=\sum_{i} c_{i} z^{i}$ let $f(\overline{\mathrm{ad}})$ denote the map

$$
\sum_{i} c_{i} \overline{\mathrm{ad}}^{i}: C(\mathfrak{g}) \otimes \mathfrak{g}^{*} \rightarrow C(\mathfrak{g}) \otimes \mathfrak{g}^{*}
$$

Let Ψ be as in Section 2.5. Then

$$
\Psi=\frac{-\overline{\mathrm{ad}}}{\mathrm{e}^{\overline{\mathrm{ad}}}-1} \circ d_{\mathfrak{g}}
$$

as a map from $C(\mathfrak{g})$ to $C(\mathfrak{g}) \otimes \mathfrak{g}^{*}$. Therefore, as an element of $C(\mathfrak{g}) \otimes \mathfrak{g} \otimes \mathfrak{g}^{*}$,

$$
\Psi=\left(\mathfrak{g} \otimes \frac{-\overline{\mathrm{ad}}}{\mathrm{e}^{\overline{\mathrm{ad}}}-1}\right) \circ \mathbf{1}_{\mathfrak{g}} .
$$

We can therefore think of the element $\bigwedge_{C(\mathfrak{g})}^{n}(-\Psi)$ of $C(\mathfrak{g}) \otimes \wedge^{n} \mathfrak{g}^{*} \otimes \mathfrak{g}^{n}$. Denote this by $(-\Psi)^{n}$. Note that $(-\Psi)^{n}$ is a section of the trivial line bundle $\mathcal{V} \times \wedge^{n} \mathfrak{g}^{*} \otimes \mathfrak{g}^{n}$ over \mathcal{V}. Moreover $\mathbf{1}_{\mathfrak{g}}^{n}$ is an isomorphism of \mathbb{R}-vector spaces. We can therefore ask for the function

$$
f_{\mathfrak{g}}:=\left(\mathbf{1}_{\mathfrak{g}}^{n}\right)^{-1}\left((-\Psi)^{n}\right) \in C(\mathfrak{g}) .
$$

One can check from the formula for $-\Psi$ that

$$
\begin{equation*}
f_{\mathfrak{g}}=\operatorname{det}\left(\frac{\overline{\mathrm{ad}}}{\mathrm{e}^{\overline{\mathrm{ad}}}-1}\right) . \tag{41}
\end{equation*}
$$

At this stage, we remark that the map Φ_{L}^{n} in Lemma 4 is analogous to $(-\Psi)^{n}$. $\operatorname{det}\left(\frac{\overline{a d}}{\mathrm{e}^{\overline{\bar{d}}}-1}\right)$ is analogous to \mathbf{f} in Lemma 4. Lemma 4 itself is analogous to Equation (41).
4.3.2. Pulling back the canonical left invariant volume form on G via exp. Finally, we observe that an element of $C(\mathfrak{g}) \otimes \wedge^{n} \mathfrak{g}^{*} \otimes \mathfrak{g}^{n}$ and a volume form on \mathcal{V} together yield another volume form on \mathcal{V} by letting $\wedge^{n} \mathfrak{g}^{*}$ contract with \mathfrak{g}^{n}. In this manner, the canonical volume form $Y_{n} \wedge \cdots \wedge Y_{1}$ on \mathcal{V} and $\mathbf{1}_{\mathfrak{g}}^{n}$ yield the canonical volume form $Y_{n} \wedge \cdots \wedge Y_{1}$ on \mathcal{V}.

Consider the left invariant volume form ω_{G} on U_{G} arising out of the element $Y_{n} \wedge \cdots \wedge Y_{1}$ of $\wedge^{n} \mathfrak{g}^{*}$. In the same manner the volume form ω yielded by $\overline{\exp }^{*}\left(\omega_{G}\right)$ and Ψ^{n} equals $Y_{n} \wedge \cdots \wedge Y_{1}$. But on the other hand, ω is also equal to $\operatorname{det}\left(d\left(\overline{\exp }^{*}\right)\right)(-1)^{n} f_{\mathfrak{g}}$. It follows that (41) is equivalent to the formula

$$
\operatorname{det}\left(d\left(\overline{\exp }^{*}\right)\right)=\operatorname{det}\left(\frac{-\overline{\mathrm{ad}}}{\mathrm{e}^{\overline{\mathrm{ad}}}-1}\right)
$$

This in turn is equivalent to the formula for the pullback of a left invariant volume form on G via $\overline{\exp }$.
4.4. Proof of Lemma 3. We are now equipped to prove Lemma 3. Let

$$
\operatorname{ad}\left(\Phi_{R}\right): D_{n} \rightarrow D_{n} \otimes \Omega[1]
$$

denote the composite

$$
D_{n} \otimes \mathcal{O}_{X} \xrightarrow{D_{n} \otimes \Phi_{R}} D_{n} \otimes D_{1} \otimes \Omega[1] \xrightarrow{\operatorname{ad} \otimes \Omega[1]} D_{n} \otimes \Omega[1]
$$

where ad : $D_{n} \otimes D_{1} \rightarrow D_{n}$ is as in Section 3.2. We begin with the following proposition.

Proposition 32.

$$
\Phi_{R}^{+}(\mathbf{f})=0
$$

Proof. The upper square in the commutative diagram below commutes by Lemma 4. The lower square in the diagram below commutes by Lemma 2.

The proof of Proposition 30 with Φ_{R} instead of Φ_{L} would show that

$$
\Phi_{R} \in \operatorname{Hom}_{D^{b}(X)}\left(\mathcal{O}_{X}, D_{1} \otimes \Omega[1]\right) .
$$

Let $\overline{\mathrm{ad}}$ be as in Section 3.2. Let $\overline{\mathrm{ad}}\left(\Phi_{R}\right)$ denote the composite

$$
\begin{gathered}
\left(D_{1} \otimes \Omega[1]\right)^{\otimes n} \otimes \mathcal{O}_{X} \\
\downarrow^{\downarrow}\left(D_{1} \otimes \Omega[1]\right)^{\otimes n} \otimes \Phi_{R} \\
\left(D_{1} \otimes \Omega[1]\right)^{\otimes n} \otimes D_{1} \otimes \Omega[1] \\
\downarrow \\
D_{1}^{\otimes n} \otimes D_{1} \otimes \Omega[1]^{\otimes n} \otimes \Omega[1] \\
\quad{ }^{\left\lvert\, \frac{\mathrm{d}}{\mathrm{a}} \otimes \Omega[1]^{\otimes n} \otimes \Omega[1]\right.} \\
D_{1}^{\otimes n} \otimes \Omega[1]^{\otimes n} \otimes \Omega[1] \quad \longrightarrow\left(D_{1} \otimes \Omega[1]\right)^{\otimes n} \otimes \Omega[1] .
\end{gathered}
$$

The unlabeled arrows in the above diagram are rearrangements of factors.
Note that by the Proposition 25, the following diagram commutes.

By Theorem 2^{\prime} and by Proposition $9, \Phi_{R}$ and Φ_{L} are commuting operators on $\mathbf{S}^{\bullet}(\Omega[1])$. It follows that $\overline{\operatorname{ad}}\left(\Phi_{R}\right)\left(\Phi_{L}^{\otimes n}\right)$ is 0 . Thus, $\operatorname{ad}\left(\Phi_{R}\right) \otimes \Omega^{n}[n]\left(\Phi_{L}^{n}\right)$ is 0 . The desired proposition now follows from (42) and the fact that $\mathbf{1}^{n} \otimes \Omega[1]$ is invertible in $\mathrm{D}^{b}(X)$.

Proof of Lemma 3. Note that the pairing $\langle\rangle:, \mathbf{S}^{\bullet}(\Omega[1])^{\otimes 2} \rightarrow \Omega^{n}[n]$ induces a nondegenerate pairing

$$
\begin{gathered}
\langle,\rangle: \operatorname{RHom}_{X}\left(\mathcal{O}_{X}, \mathbf{S}^{\bullet}(\Omega[1])\right)^{\otimes 2} \rightarrow \operatorname{RHom}_{X}\left(\mathcal{O}_{X}, \Omega^{n}[n]\right) \simeq \mathbb{K} . \\
\left\langle\Phi_{R}(-),-\right\rangle: \mathbf{S}^{\bullet}(\Omega[1]) \otimes \mathbf{S}^{\bullet}(\Omega[1]) \rightarrow \Omega^{n}[n] \otimes \Omega[1] \text { denotes the composite } \\
\mathbf{S}^{\bullet}(\Omega[1]) \otimes \mathbf{S}^{\bullet}(\Omega[1]) \\
\Phi_{R} \otimes \mathbf{S}^{\bullet}(\Omega[1]) \downarrow \\
\mathbf{S}^{\bullet}(\Omega[1]) \otimes \Omega[1] \otimes \mathbf{S}^{\bullet}(\Omega[1]) \\
\mathbf{S}^{\bullet}(\Omega[1]) \otimes \tau \downarrow \\
\mathbf{S}^{\bullet}(\Omega[1]) \otimes \mathbf{S}^{\bullet}(\Omega[1]) \otimes \Omega[1] \\
\langle,\rangle \otimes \Omega[1] \\
\Omega^{n}[n] \otimes \Omega[1]
\end{gathered}
$$

map in $\mathrm{D}^{b}(X)$. The map τ in the above composition of maps in $\mathrm{D}^{b}(X)$ swaps $\Omega[1]$ and $\mathbf{S}^{\bullet}(\Omega[1])$.

Similarly, $\left\langle-, \Phi_{R}^{+}(-)\right\rangle: \mathbf{S}^{\bullet}(\Omega[1]) \otimes \mathbf{S}^{\bullet}(\Omega[1]) \rightarrow \Omega^{n}[n] \otimes \Omega[1]$ denotes the composite

$$
\begin{aligned}
& \quad \mathbf{S}^{\bullet}(\Omega[1]) \otimes \mathbf{S}^{\bullet}(\Omega[1]) \\
& \mathbf{S}^{\bullet}(\Omega[1]) \otimes \Phi_{R}^{+} \\
& \mathbf{S}^{\bullet}(\Omega[1]) \otimes \mathbf{S}^{\bullet}(\Omega[1]) \otimes \Omega[1] \xrightarrow{\langle,\rangle) \Omega[1]} \Omega^{n}[n] \otimes \Omega[1] .
\end{aligned}
$$

Let $a, b \in \operatorname{RHom}_{X}\left(\mathcal{O}_{X}, \mathbf{S}^{\bullet}(\Omega[1])\right)$. Then,

$$
\begin{equation*}
\left\langle a b . \mathbf{f}^{-1}, \Phi_{R}^{+}(\mathbf{f})\right\rangle=0 \tag{44}
\end{equation*}
$$

by Proposition 32. But,

$$
\begin{equation*}
\left\langle a b . \mathbf{f}^{-1}, \Phi_{R}^{+}(\mathbf{f})\right\rangle=\left\langle\Phi_{R}\left(a b . \mathbf{f}^{-1}\right), \mathbf{f}\right\rangle \tag{45}
\end{equation*}
$$

by the commutative diagram (34).
By Proposition 7, Theorem 2^{\prime} and by the fact that

$$
\mathrm{I}_{\mathrm{HKR}}: \widehat{C}^{\bullet}(X) \rightarrow \mathbf{S}^{\bullet}(\Omega[1])
$$

is a homomorphism of algebra objects in $\mathrm{D}^{b}(X)$,

$$
\begin{equation*}
\Phi_{R}\left(a b . \mathbf{f}^{-1}\right)=\Phi_{R}(a) b \mathbf{f}^{-1}+a \Phi_{R}\left(b \mathbf{f}^{-1}\right) \tag{46}
\end{equation*}
$$

By (44), (45) and (46)

$$
\begin{equation*}
0=\left\langle\Phi_{R}\left(a b . \mathbf{f}^{-1}\right), \mathbf{f}\right\rangle=\left\langle\Phi_{R}(a) b \mathbf{f}^{-1}, \mathbf{f}\right\rangle+\left\langle a \Phi_{R}\left(b \mathbf{f}^{-1}\right), \mathbf{f}\right\rangle . \tag{47}
\end{equation*}
$$

But for any elements $u, v, w \in \operatorname{RHom}_{X}\left(\mathcal{O}_{X}, \mathbf{S}^{\bullet}(\Omega[1])\right)$,

$$
\langle u v, w\rangle=\langle u, v w\rangle
$$

by the definition of \langle,$\rangle . It then follows from (47) that$

$$
\begin{equation*}
0=\left\langle\Phi_{R}(a), b . \mathbf{f}^{-1} \mathbf{f}\right\rangle+\left\langle a, \Phi_{R}\left(b . \mathbf{f}^{-1}\right) \mathbf{f}\right\rangle=\left\langle\Phi_{R}(a), b\right\rangle+\left\langle a, \Phi_{R}\left(b . \mathbf{f}^{-1}\right) \mathbf{f}\right\rangle . \tag{48}
\end{equation*}
$$

It follows from the commutative diagram (34) that

$$
\Phi_{R}^{+}(b)=-\Phi_{R}\left(b \mathbf{f}^{-1}\right) \mathbf{f}
$$

for any $b \in \operatorname{RHom}_{X}\left(\mathcal{O}_{X}, \mathbf{S}^{\bullet}(\Omega[1])\right)$. This proves Lemma 3 .
Remark 11. The computation proving Lemma 3 that has been written here can very easily be rewritten in a "canonical" manner without choosing elements of $\operatorname{RHom}_{X}\left(\mathcal{O}_{X}, \mathbf{S}^{\bullet}(\Omega[1])\right)$. Though that would be the ideal thing to do from the point of view of rigor, we feel that the computation we have depicted conveys the key idea behind the computation more concretely. Computations of a similar nature that show up in Section 5, have however, been written down in a "canonical" manner.

5. Proof of Theorem 1

5.1. Unwinding some definitions. In this subsection, we shall confine ourselves to unwinding the definition of the duality map D_{Δ}. This will help us focus more on what exactly we need to compute to prove Theorem 1. Let

$$
\kappa: \mathcal{O}_{\Delta} \rightarrow \Delta_{*} \Delta^{*} \mathcal{O}_{\Delta}
$$

denote the unit of the adjunction $\Delta^{*} \dashv \Delta_{*}$ applied to $\mathcal{O}_{\Delta} \in \mathrm{D}^{b}(X \times X)$. Also let

$$
\beta: \mathcal{O}_{X} \rightarrow \Delta^{*} \Delta_{!} \mathcal{O}_{X}
$$

denote the unit of the adjunction $\Delta_{!} \dashv \Delta^{*}$ applied to $\mathcal{O}_{X} \in \mathrm{D}^{b}(X)$.
Let $\widetilde{\mathrm{D}^{b}(X)}$ denote the category whose objects are those of $\mathrm{D}^{b}(X)$ such that

$$
\operatorname{Hom}_{\widetilde{\mathrm{D}^{b}(X)}}(\mathcal{F}, \mathcal{G})=\operatorname{RHom}_{\mathrm{D}^{b}(X)}(\mathcal{F}, \mathcal{G})
$$

for any pair of objects \mathcal{F} and \mathcal{G} of $\mathrm{D}^{b}(X)$. Note that any diagram that
 culation in $\widetilde{\mathrm{D}^{b}(X)}$ instead of $\mathrm{D}^{b}(X)$ only when absolutely necessary. This enables us to take care of the shifts in grading that occur when an element of $\operatorname{RHom}_{X}(\mathcal{F}, \mathcal{G})$ shows up instead of an element of $\operatorname{Hom}_{D^{b}(X)}(\mathcal{F}, \mathcal{G})$. In [8], $\widetilde{\mathrm{D}^{b}(X)}$ is called the "extended derived category" of X.

Note that $\Delta_{!} \mathcal{O}_{X} \simeq \Delta_{*} S_{X}^{-1}$. It follows that $\Delta^{*} \Delta_{!} \mathcal{O}_{X} \simeq \Delta^{*} \mathcal{O}_{\Delta} \otimes S_{X}^{-1}$. Let $\simeq: S_{X} \otimes S_{X}^{-1} \rightarrow \mathcal{O}_{X}$ be as in Section 3.2. We now state the following proposition.

Proposition 33. Let $\phi \in \operatorname{RHom}_{X}\left(\Delta^{*} \mathcal{O}_{\Delta}, S_{X}\right)$. Then, as a morphism in $\widetilde{\mathrm{D}^{b}(X)}, D_{\Delta}^{-1}(\phi)$ is given by the composite

$$
\begin{gathered}
\mathcal{O}_{X} \\
\beta \downarrow \\
\Delta^{*} \mathcal{O}_{\Delta} \otimes S_{X}^{-1} \\
\Delta^{*}(\kappa) \otimes S_{X}^{-1} \downarrow \\
\Delta^{*} \mathcal{O}_{\Delta} \otimes \Delta^{*} \mathcal{O}_{\Delta} \otimes S_{X}^{-1} \\
\Delta^{*} \mathcal{O}_{\Delta} \otimes \phi \otimes S_{X}^{-1} \downarrow \\
\Delta^{*} \mathcal{O}_{\Delta} \otimes S_{X} \otimes S_{X}^{-1} \\
\Delta^{*} \mathcal{O}_{\Delta} \otimes \simeq \downarrow \\
\Delta^{*} \mathcal{O}_{\Delta} .
\end{gathered}
$$

Proof. By the definition of $D_{\Delta}, D_{\Delta}^{-1}=\mathcal{I}^{-1} \circ \mathcal{T}^{-1} \circ \mathcal{J}^{-1}$ where \mathcal{I}, \mathcal{T} and \mathcal{J} are as in (2), (3) and (4) respectively.

Now,

$$
\begin{equation*}
\mathcal{J}^{-1}(\phi)=\Delta_{*} \phi \circ \kappa . \tag{49}
\end{equation*}
$$

Further,

$$
\begin{equation*}
\mathcal{T}^{-1}(\alpha)=\alpha \otimes p_{2}^{*} S_{X}^{-1} \tag{50}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathcal{I}^{-1}(\gamma)=\Delta^{*} \gamma \circ \beta . \tag{51}
\end{equation*}
$$

Now, $\Delta^{*}\left(\alpha \otimes p_{2}^{*} S_{X}^{-1}\right)=\Delta^{*} \alpha \otimes S_{X}^{-1}$ since $p_{2} \circ \Delta=$ id. The desired proposition now follows from (49), (50) and (51) and the fact that $\Delta^{*} \Delta_{*} \psi=\Delta^{*} \mathcal{O}_{\Delta} \otimes \psi$ for any morphism ψ in $\mathrm{D}^{b}(X)$.

The following propositions help us understand $\Delta^{*}(\kappa)$ and β explicitly.
Proposition 34. The following diagram commutes in $\mathrm{D}^{b}(X)$.

$$
\begin{array}{cc}
\Delta^{*} \mathcal{O}_{\Delta} & \xrightarrow{\Delta^{*}(\kappa)} \Delta^{*} \mathcal{O}_{\Delta} \otimes \Delta^{*} \mathcal{O}_{\Delta} \\
\Delta^{*} \mathcal{O}_{\Delta} \downarrow & \downarrow \Delta^{*} \mathcal{O}_{\Delta} \otimes \Delta^{*} \mathcal{O}_{\Delta} \\
\Delta^{*} \mathcal{O}_{\Delta} & \xrightarrow{\mathrm{C}} \Delta^{*} \mathcal{O}_{\Delta} \otimes \Delta^{*} \mathcal{O}_{\Delta}
\end{array}
$$

Proof. Step 1. Note that if $\mathcal{F} \in \mathrm{D}^{b}(X \times X)$, then

$$
\Delta_{*} \Delta^{*} \mathcal{F} \simeq \mathcal{O}_{\Delta} \otimes \mathcal{F}
$$

Denote the canonical quotient map $\mathcal{O}_{X \times X} \rightarrow \mathcal{O}_{\Delta}$ by \mathbf{h}.
Also observe that if $\mathcal{G} \in \mathrm{D}^{b}(X)$, then

$$
\Delta^{*} \Delta_{*} \mathcal{G} \simeq \Delta^{*} \mathcal{O}_{\Delta} \otimes \mathcal{G}
$$

Recall that $\Delta^{*} \mathcal{O}_{\Delta}$ is represented by the complex $\widehat{C}^{\bullet}(X)$. Note that the projection from the graded \mathcal{O}_{X}-module $\widehat{C}^{\bullet}(X)$ to $\widehat{C}^{0}(X)=\mathcal{O}_{X}$ is a map of complexes of \mathcal{O}_{X}-modules. This was denoted by η in Section 2. In this proof, we will denote this projection by \mathbf{p}.

We claim that tensoring with \mathbf{h} constitutes the unit of the adjunction $\Delta^{*} \dashv \Delta_{*}$ and that tensoring with \mathbf{p} constitutes the counit of the adjunction $\Delta^{*} \dashv \Delta_{*}$.

To see this, note that $\Delta^{*}(\mathbf{h})$ is just the map

$$
\epsilon: \mathcal{O}_{X} \rightarrow \widehat{C}^{\bullet}(X)
$$

defined in Section 2. This was the unit of the Hopf algebra object $\widehat{C}(X)$ of $\mathrm{Ch}^{-}\left(\mathcal{O}_{X}-\bmod \right)$. It follows that $\mathbf{p} \circ \Delta^{*}(\mathbf{h})=\mathcal{O}_{X}$. Also,

$$
\Delta_{*}(\mathbf{p}) \circ\left(\mathbf{h} \otimes \mathcal{O}_{\Delta}\right)=\mathcal{O}_{\Delta}
$$

since $\mathbf{h} \otimes \mathcal{O}_{\Delta}$ can be identified with the map $\Delta_{*}(\epsilon)$. It follows that

$$
\kappa=\mathbf{h} \otimes \mathcal{O}_{\Delta} .
$$

Step 2. We now show that $\Delta^{*}(\kappa)$ and \mathbf{C} yield the same morphism in $\mathrm{D}^{b}(X)$ from $\Delta^{*} \mathcal{O}_{\Delta}$ to $\Delta^{*} \mathcal{O}_{\Delta} \otimes \Delta^{*} \mathcal{O}_{\Delta}$.

Note that \mathcal{O}_{Δ} is represented by the complex $\widehat{B}^{\bullet}(X)$ in $\mathrm{D}^{b}(X \times X)$. It follows that both $\widehat{B}^{\bullet}(X) \otimes \mathcal{O}_{\Delta}$ and $\mathcal{O}_{\Delta} \otimes \widehat{B}^{\bullet}(X)$ represent the object $\mathcal{O}_{\Delta} \otimes \mathcal{O}_{\Delta}$ of $\mathrm{D}^{b}(X \times X)$. Let

$$
\nu: \widehat{B}^{\bullet}(X) \otimes \mathcal{O}_{\Delta} \rightarrow \widehat{B}^{\bullet}(X) \otimes \widehat{B}^{\bullet}(X) \otimes \mathcal{O}_{\Delta}
$$

denote the map such that on an open subscheme $U=\operatorname{Spec} R \times \operatorname{Spec} R$ of $X \times X$ before completion,

$$
\begin{aligned}
& \nu\left(r_{0} \otimes \cdots \otimes r_{k+1} \otimes_{R \otimes R} r^{\prime}\right) \\
& \quad=\sum_{p+q=k ; p, q \geq 0} r_{0} \otimes \cdots \otimes r_{p} \otimes 1 \otimes_{R \otimes R} 1 \otimes r_{p+1} \otimes \cdots \otimes r_{k+1} \otimes_{R \otimes R} r^{\prime} .
\end{aligned}
$$

ν is easily seen to be a map of complexes of $\mathcal{O}_{X \times X}$-modules. Similarly, let

$$
\bar{\nu}: \mathcal{O}_{\Delta} \otimes \widehat{B}^{\bullet}(X) \rightarrow \mathcal{O}_{\Delta} \otimes \widehat{B}^{\bullet}(X) \otimes \widehat{B}^{\bullet}(X)
$$

denote the map such that on an open subscheme $U=\operatorname{Spec} R \times \operatorname{Spec} R$ of $X \times X$ before completion,

$$
\begin{aligned}
& \bar{\nu}\left(r^{\prime} \otimes_{R \otimes R} r_{0} \otimes \cdots \otimes r_{k+1}\right) \\
& \quad=r^{\prime} \otimes_{R \otimes R} \sum_{p+q=k ; p, q \geq 0} r_{0} \otimes \cdots \otimes r_{p} \otimes 1 \otimes_{R \otimes R} 1 \otimes r_{p+1} \otimes \cdots \otimes r_{k+1}
\end{aligned}
$$

$\bar{\nu}$ is easily seen to be a map of complexes of $\mathcal{O}_{X \times X}$-modules.
Let $\tau: \mathcal{O}_{\Delta} \otimes \widehat{B}^{\bullet}(X) \rightarrow \widehat{B}^{\bullet}(X) \otimes \mathcal{O}_{\Delta}$ denote the map swapping factors. Let $\tau^{\prime}: \mathcal{O}_{\Delta} \otimes \widehat{B}^{\bullet}(X) \otimes \widehat{B}^{\bullet}(X) \rightarrow \widehat{B}^{\bullet}(X) \otimes \widehat{B}^{\bullet}(X) \otimes \mathcal{O}_{\Delta}$ denote the map swapping \mathcal{O}_{Δ} and $\widehat{B}^{\bullet}(X) \otimes \widehat{B}^{\bullet}(X)$. The following diagram then commutes.

Note that $\Delta^{*}(\bar{\nu})=\Delta^{*} \mathcal{O}_{\Delta} \otimes \mathbf{C}$. It follows from this and from the above commutative diagram that

$$
\begin{equation*}
\Delta^{*}(\nu)=\mathbf{C} \otimes \Delta^{*} \mathcal{O}_{\Delta} \tag{52}
\end{equation*}
$$

Step 3. We use (52) to compare the morphisms ν and $\kappa \otimes \mathcal{O}_{\Delta}$ in $\mathrm{D}^{b}(X \times X)$. Recall that

$$
\begin{aligned}
\operatorname{Hom}_{\mathrm{D}^{b}(X \times X)}\left(\mathcal{O}_{\Delta} \otimes \mathcal{O}_{\Delta},\right. & \left.\mathcal{O}_{\Delta} \otimes \mathcal{O}_{\Delta} \otimes \mathcal{O}_{\Delta}\right) \\
& \cong \operatorname{Hom}_{\mathrm{D}^{b}(X)}\left(\Delta^{*} \mathcal{O}_{\Delta} \otimes \Delta^{*} \mathcal{O}_{\Delta}, \Delta^{*} \mathcal{O}_{\Delta} \otimes \Delta^{*} \mathcal{O}_{\Delta}\right)
\end{aligned}
$$

via

$$
\alpha \mapsto\left(\mathbf{p} \otimes \Delta^{*} \mathcal{O}_{\Delta} \otimes \Delta^{*} \mathcal{O}_{\Delta}\right) \circ \Delta^{*}(\alpha)
$$

Since \mathbf{p} is induced by the counit of the Hopf algebra object $\widehat{C}^{\bullet}(X)$ of $\mathrm{Ch}^{-}\left(\mathcal{O}_{X}-\right.$ mod $)$, and \mathbf{C} is induced by the comultiplication of $\widehat{C}(X)$,

$$
\left(\mathbf{p} \otimes \Delta^{*} \mathcal{O}_{\Delta}\right) \circ \mathbf{C}=1_{\Delta^{*} \mathcal{O}_{\Delta}}
$$

Also, since $\Delta^{*}(\kappa)=\epsilon \otimes \Delta^{*} \mathcal{O}_{\Delta}$,

$$
\left(\mathbf{p} \otimes \Delta^{*} \mathcal{O}_{\Delta}\right) \circ \Delta^{*}(\kappa)=\mathbf{1}_{\Delta^{*} \mathcal{O}_{\Delta}}
$$

It follows that

$$
\begin{aligned}
\left(\mathbf{p} \otimes \Delta^{*} \mathcal{O}_{\Delta} \otimes \Delta^{*} \mathcal{O}_{\Delta}\right) \circ \Delta^{*}(\nu) & =\left(\mathbf{p} \otimes \Delta^{*} \mathcal{O}_{\Delta} \otimes \Delta^{*} \mathcal{O}_{\Delta}\right) \circ \Delta^{*}\left(\kappa \otimes \mathcal{O}_{\Delta}\right) \\
& =\mathbf{1}_{\Delta^{*} \mathcal{O}_{\Delta} \otimes \Delta^{*} \mathcal{O}_{\Delta}}
\end{aligned}
$$

This proves that ν and $\kappa \otimes \mathcal{O}_{\Delta}$ represent the same morphism in $\mathrm{D}^{b}(X \times X)$. Therefore, $\mathbf{C} \otimes \Delta^{*} \mathcal{O}_{\Delta}$ and $\Delta^{*}(\kappa) \otimes \Delta^{*} \mathcal{O}_{\Delta}$ represent the same morphism in $\mathrm{D}^{b}(X)$. The desired proposition now follows from the fact that if $\lambda: \mathcal{G} \rightarrow \mathcal{H}$ is a morphism in $\mathrm{D}^{b}(X), \lambda$ is equal to the composite

$$
\mathcal{G} \xrightarrow{\mathcal{G} \otimes \epsilon} \mathcal{G} \otimes \Delta^{*} \mathcal{O}_{\Delta} \xrightarrow{\lambda \otimes \Delta^{*} \mathcal{O}_{\Delta}} \mathcal{H} \otimes \Delta^{*} \mathcal{O}_{\Delta} \xrightarrow{\mathcal{H} \otimes \mathbf{p}} \mathcal{H}
$$

Recall that $p: \Omega[1]^{\otimes i} \rightarrow \Omega^{i}[i]$ denotes the standard projection. Let $\Phi_{R}^{\circ i}$ denote the composite

$$
\Phi_{R} \otimes \Omega[1]^{\otimes i-1} \circ \cdots \circ \Phi_{R}: \mathbf{S}^{\bullet}(\Omega[1]) \rightarrow \mathbf{S}^{\bullet}(\Omega[1]) \otimes \Omega[1]^{\otimes i}
$$

Let Φ_{R}^{i} denote $\left(\mathbf{S}^{\bullet}(\Omega[1]) \otimes p\right) \circ \Phi_{R}^{\circ i}$. Then $\exp \left(\Phi_{R}\right):=\sum_{i} \frac{1}{i!} \Phi_{R}^{i}$ is a morphism in $\mathrm{D}^{b}(X)$ from $\mathbf{S}^{\bullet}(\Omega[1])$ to $\mathbf{S}^{\bullet}(\Omega[1]) \otimes \mathbf{S}^{\bullet}(\Omega[1])$.

The following proposition follows immediately from Proposition 8 and Theorem 2'.

Proposition 35. The following diagram commutes in $\mathrm{D}^{b}(X)$.

Let $\iota: S_{X} \rightarrow \mathbf{S}^{\bullet}(\Omega[1])$ denote the inclusion of $S_{X} \simeq \Omega^{n}[n]$ into $\mathbf{S}^{\bullet}(\Omega[1])$ as a direct summand. Let $\bar{\beta}$ denote the composite

$$
\mathcal{O}_{X} \longrightarrow S_{X} \otimes S_{X}^{-1} \xrightarrow{\iota \otimes S_{X}^{-1}} \mathbf{S}^{\bullet}(\Omega[1]) \otimes S_{X}^{-1}
$$

Proposition 36. The following diagram commutes in $\mathrm{D}^{b}(X)$.

\[

\]

Proof. Step 1. Note that if $\mathcal{F} \in \mathrm{D}^{b}(X \times X)$, then

$$
\Delta_{!} \Delta^{*} \mathcal{F} \simeq \Delta_{*} S_{X}^{-1} \otimes \mathcal{F}
$$

Also, if $\mathcal{G} \in \mathrm{D}^{b}(X)$, then

$$
\Delta^{*} \Delta_{!} \mathcal{G} \simeq \Delta^{*} \mathcal{O}_{\Delta} \otimes S_{X}^{-1} \otimes \mathcal{G}
$$

Now, $\Delta_{*} S_{X}^{-1}$ is isomorphic in $\mathrm{D}^{b}(X \times X)$ to $\mathcal{O}_{\Delta} \otimes p_{2}^{*} S_{X}^{-1}$. We now refer to the statement of the Serre duality theorem in Markarian [6]. By the Serre duality theorem there is a canonical map in $\mathrm{D}^{b}(X \times X)$ from \mathcal{O}_{Δ} to $p_{2}^{*} S_{X}$. We denote this map by \mathbf{q}. Tensoring \mathbf{q} with $p_{2}^{*} S_{X}^{-1}$ on the right and making the obvious identifications gives us a morphism from $\mathcal{O}_{\Delta} \otimes p_{2}^{*} S_{X}^{-1}$ to $\mathcal{O}_{X \times X}$. We denote this morphism by \mathbf{p} in this proof.

Let $\beta: \mathcal{O}_{X} \rightarrow \Delta^{*} \mathcal{O}_{\Delta} \otimes S_{X}^{-1}$ be the morphism in $\mathrm{D}^{b}(X)$ such that the diagram in this proposition commutes. β is well-defined in $\mathrm{D}^{b}(X)$ since $\mathrm{I}_{\mathrm{HKR}}$ is a quasi-isomorphism.

We claim that tensoring by β and tensoring by \mathbf{p} constitute the unit and counit of the adjunction $\Delta_{!} \dashv \Delta^{*}$ respectively. In order to verify this claim, it suffices to verify that

$$
\begin{equation*}
\Delta^{*}(\mathbf{p}) \circ \beta=\mathcal{O}_{X} \tag{53}
\end{equation*}
$$

as morphisms in $\mathrm{D}^{b}(X)$ and that

$$
\begin{equation*}
\left(\mathbf{p} \otimes \Delta_{!} \mathcal{O}_{X}\right) \circ \Delta_{!} \beta=\Delta_{!} \mathcal{O}_{X} \tag{54}
\end{equation*}
$$

as morphisms in $\mathrm{D}^{b}(X \times X)$.
Step 2 . We verify (53) on "good" open subschemes of X. We begin by verifying (53) on an open subscheme $U=\operatorname{Spec} R$ of X with local coordinates y_{1}, \ldots, y_{n}. The elements $\left\{y_{i} \otimes 1-1 \otimes y_{i} i=1, \ldots, m\right\}$ form a regular sequence generating the ideal I of $R \otimes R$ defining the diagonal on an open affine neighborhood $V=\operatorname{Spec} S$ of the diagonal in $U \times U$. Let

$$
z_{i}=y_{i} \otimes 1-1 \otimes y_{i}
$$

This regular sequence gives rise to a Koszul complex $\mathcal{K}^{\bullet}\left(z_{1}, \ldots, z_{n}\right)$. This Koszul complex is a free S-module resolution of $\Delta_{*} R$.

The third part of the Serre duality theorem as stated in [6] says that the map \mathbf{q} (restricted to V) is equal to the map of complexes

$$
\begin{gathered}
\mathcal{K}^{\bullet}\left(z_{1}, \ldots, z_{n}\right) \rightarrow p_{2}^{*} \Omega_{R / \mathbb{K}}^{n}[n] \\
z_{1} \wedge \cdots \wedge z_{n} \mapsto d y_{1} \wedge \cdots \wedge d y_{n}
\end{gathered}
$$

as morphisms in $\mathrm{D}^{b}(V)$.
Further, let $\left[z_{i}\right]$ denote the class of z_{i} in $\mathrm{H}^{*}\left(R \otimes_{S} \mathcal{K}^{\bullet}\left(z_{1}, \ldots, z_{n}\right)\right)$. The R-linear map $d y_{i} \mapsto\left[z_{i}\right]$ induces an isomorphism of graded algebras between $\mathbf{S}^{\bullet}\left(\Omega_{R / \mathbb{K}}[1]\right)$ and $\operatorname{Tor}_{*}^{S}(R, R)$ by Proposition 3.4.7 of Loday [4]. Moreover, by the proof of the Hochschild-Kostant-Rosenberg theorem in Section 3.4 of Loday [4], this isomorphism coincides with the isomorphism induced on
cohomology by the anti-symmetrization $\operatorname{map} \varphi: \mathbf{S}^{\bullet}\left(\Omega_{R / \mathbb{K}}[1]\right) \rightarrow \widehat{C}^{\bullet}(R)$. Before completion,

$$
\varphi\left(r_{0} d r_{1} \wedge \cdots \wedge d r_{k}\right)=\sum_{\sigma \in S_{k}} \operatorname{sgn}(\sigma) r_{0} \otimes r_{\sigma(1)} \otimes \cdots \otimes r_{\sigma(k)}
$$

This is immediately seen to be a right inverse of $\mathrm{I}_{\text {HKR }}$. It follows from the facts recalled in this paragraph and the description of \mathbf{q} in the previous paragraph that $\Delta^{*}(\mathbf{q})=\pi_{n} \circ \mathrm{I}_{\text {HKR }}$ as morphisms in $\mathrm{D}^{b}(U)$.

Therefore, in $\mathrm{D}^{b}(U), \Delta^{*}(\mathbf{p})$ is given by the composite

$$
\left.\left.\left.\Delta^{*} \mathcal{O}_{\Delta} \otimes S_{X}^{-1}\right|_{U} \xrightarrow{\left.\pi_{n} \circ \mathrm{I}_{\mathrm{HKR}} \otimes S_{X}^{-1}\right|_{U}} S_{X}\right|_{U} \otimes S_{X}^{-1}\right|_{U} \longrightarrow \mathcal{O}_{U}=R .
$$

The unlabeled arrow in the above composite is just the identification of $\left.\left.S_{X}\right|_{U} \otimes S_{X}^{-1}\right|_{U}$ with $\mathcal{O}_{U}=R$. It follows that $\Delta^{*}(\mathbf{p}) \circ \beta=\mathcal{O}_{U}$ as morphisms in $\mathrm{D}^{b}(U)$.

Step 3. We verify (54) on "good" open subschemes of $X \times X$. Let U and V be as in Step 2 above. Note that

$$
\Delta_{*} \mathrm{I}_{\mathrm{HKR}} \circ\left(\Delta_{!} \beta \otimes S_{X \times X}\right)=\mathbf{1}_{\Delta_{*} S_{X}} .
$$

Further,

$$
\mathbf{p} \otimes \Delta_{!} \mathcal{O}_{X} \otimes S_{X \times X}=\mathbf{q} \otimes \mathcal{O}_{\Delta}
$$

By the discussion in Step 2, as morphisms in $\mathrm{D}^{b}(V)$,

$$
\mathbf{q} \otimes \mathcal{O}_{\Delta}=\Delta_{*} \Delta^{*} \mathbf{q}=\Delta_{*}\left(\pi_{n} \circ \mathrm{I}_{\mathrm{HKR}}\right)
$$

Therefore, as morphisms in $\mathrm{D}^{b}(V)$,

$$
\left(\mathbf{q} \otimes \mathcal{O}_{\Delta}\right) \circ\left(\Delta_{!} \beta \otimes S_{X \times X}\right)=\Delta_{*}\left(\pi_{n} \circ \mathrm{I}_{\mathrm{HKR}}\right) \circ\left(\Delta_{!} \beta \otimes S_{X \times X}\right)=\mathbf{1}_{\Delta_{*} S_{X}}
$$

Tensoring the morphisms involved in the above equation with $S_{X \times X}^{-1}$, we see that

$$
\left(\mathbf{p} \otimes \Delta_{!} \mathcal{O}_{X}\right) \circ \Delta_{!} \beta=\Delta_{!} \mathcal{O}_{X}
$$

as morphisms in $\mathrm{D}^{b}(V)$. This is what we set out to verify.
Step 4. Now observe that

$$
\operatorname{Hom}_{\mathrm{D}^{b}(X)}\left(\mathcal{O}_{X}, \Delta^{*} \mathcal{O}_{\Delta} \otimes S_{X}^{-1}\right) \simeq \oplus_{i} \operatorname{Hom}_{\mathrm{D}^{b}(X)}\left(\mathcal{O}_{X}, \Omega^{i} \otimes \wedge^{n} T[i-n]\right)
$$

For $i<n$,

$$
\operatorname{Hom}_{D^{b}(X)}\left(\mathcal{O}_{X}, \Omega^{i} \otimes \wedge^{n} T[i-n]\right)=\operatorname{Ext}^{i-n}\left(\mathcal{O}_{X}, \Omega^{i} \otimes \wedge^{n} T[i-n]\right)=0
$$

For $i=n$,

$$
\begin{aligned}
\operatorname{Hom}_{D^{b}(X)}\left(\mathcal{O}_{X}, \Omega^{i} \otimes \wedge^{n} T[i-n]\right) & =\operatorname{Hom}_{D^{b}(X)}\left(\mathcal{O}_{X}, \Omega^{n} \otimes \wedge^{n} T\right) \\
& \simeq \operatorname{Hom}_{D^{b}(X)}\left(\mathcal{O}_{X}, \mathcal{O}_{X}\right) \simeq \mathbb{K} .
\end{aligned}
$$

It follows that $\operatorname{Hom}_{D^{b}(X)}\left(\mathcal{O}_{X}, \Delta^{*} \mathcal{O}_{\Delta} \otimes S_{X}^{-1}\right)$ is a 1-dimensional \mathbb{K}-vector space. Tensoring with β and tensoring with \mathbf{p} therefore, do indeed form a valid choice of unit and counit of the adjunction $\Delta_{!} \dashv \Delta^{*}$ upto some scalar factors. In other words, (53) and (54) are satisfied in $\mathrm{D}^{b}(X)$ and in $\mathrm{D}^{b}(X \times X)$ respectively upto some scalar factors. That the scalar factors
are indeed 1 follows from the local verifications in Step 2 and Step 3 of this proof.

Step 5. Let \mathcal{J} be as in (4) in Section 1. The last detail to be checked is that this particular choice of unit and counit for the adjunction $\Delta_{!} \dashv \Delta^{*}$ satisfies

$$
\begin{equation*}
\operatorname{tr}_{X}(\mathcal{J}(\phi) \circ \beta)=\operatorname{tr}_{X \times X}(\phi) \tag{55}
\end{equation*}
$$

for any element ϕ of $\operatorname{Hom}_{\mathrm{D}^{b}(X \times X)}\left(\Delta_{*} S_{X}^{-1}, \Delta_{*} S_{X}\right)$. By the arguments in Step 4 of this proof, this "compatibility with traces" is satisfied upto a scalar factor independent of ϕ. We must verify that this scalar factor is 1 .

Let $\mathbf{m}: \mathcal{O}_{X \times X} \rightarrow \mathcal{O}_{\Delta}$ denote the obvious morphism in this proof. Let \mathcal{E} and \mathcal{F} be objects in $\mathrm{D}^{b}(X)$. Let \mathcal{E}^{*} denote the dual $\operatorname{RD}(\mathcal{E})$ of \mathcal{E}. We recall the second part of the Serre Duality theorem as stated in [6]. It states that if $f \in \operatorname{Hom}_{\mathrm{D}^{b}(X)}(\mathcal{E}, \mathcal{F})$, the composite

$$
\mathcal{O}_{X \times X} \xrightarrow{\left(\Delta_{*} f\right) \circ \mathbf{m}} p_{1}^{*} \mathcal{F} \otimes p_{2}^{*} \mathcal{E}^{*} \otimes \mathcal{O}_{\Delta} \xrightarrow{p_{1}^{*} \mathcal{F} \otimes p_{2}^{*} \mathcal{E}^{*} \otimes \mathbf{q}} p_{1}^{*} \mathcal{F} \otimes p_{2}^{*}\left(\mathcal{E}^{*} \otimes S_{X}\right)
$$

is exactly the image of the element f_{*} of

$$
\operatorname{Hom}_{\mathbb{K}}\left(\operatorname{Hom}_{D^{b}(X)}\left(\mathcal{O}_{X}, \mathcal{E}\right), \operatorname{Hom}_{D^{b}(X)}\left(\mathcal{O}_{X}, \mathcal{F}\right)\right)
$$

under the identification

$$
\begin{gathered}
\operatorname{Hom}_{\mathbb{K}}\left(\operatorname{Hom}_{\mathrm{D}^{b}(X)}\left(\mathcal{O}_{X}, \mathcal{E}\right), \operatorname{Hom}_{\mathrm{D}^{b}(X)}\left(\mathcal{O}_{X}, \mathcal{F}\right)\right) \\
\operatorname{Hom}_{\mathrm{D}^{b}(X)}\left(\mathcal{O}_{X}, \mathcal{F}\right) \otimes \operatorname{Hom}_{\mathrm{D}^{b}(X)}\left(\mathcal{O}_{X}, \mathcal{E}\right)^{*} \\
\operatorname{Hom}_{\mathrm{D}^{b}(X)}\left(\mathcal{O}_{X}, \mathcal{F}\right) \otimes \operatorname{Hom}_{\mathrm{D}^{b}(X)}\left(\mathcal{O}_{X}, \mathcal{E}^{*} \otimes S_{X}\right) \\
\operatorname{Hom}_{\mathrm{D}^{b}(X \times X)}\left(\mathcal{O}_{X \times X}, p_{1}^{*} \mathcal{F} \otimes p_{2}^{*}\left(\mathcal{E} \otimes S_{X}\right)\right) .
\end{gathered}
$$

Let $\operatorname{tr} \in \operatorname{Hom}_{\mathrm{D}^{b}(X)}\left(\mathcal{O}_{X}, S_{X}\right)$ be the element satisfying $\operatorname{tr}_{X}(\operatorname{tr})=1$. Applying the above statement with $\mathcal{E}=\mathcal{F}=\mathcal{O}_{X}$ and $f=\mathcal{O}_{X}$, we see that the composite

$$
\mathcal{O}_{X \times X} \xrightarrow{\mathrm{~m}} \mathcal{O}_{\Delta} \xrightarrow{\mathrm{q}} p_{2}^{*} S_{X}
$$

is precisely $p_{2}^{*}(\mathbf{t r})$. It follows that the composite \mathbf{t} given by

$$
\mathcal{O}_{X \times X} \xrightarrow{\mathrm{~m}} \mathcal{O}_{X \times X} \otimes \mathcal{O}_{\Delta} \xrightarrow{p_{1}^{*}(\mathbf{t r}) \otimes \mathbf{q}} p_{1}^{*} S_{X} \otimes p_{2}^{*} S_{X}=S_{X \times X}
$$

satisfies

$$
\operatorname{tr}_{X \times X}(\mathbf{t})=1
$$

Let $\operatorname{tr}_{\Delta}$ denote the following composite:

$$
\mathcal{O}_{X \times X} \otimes \mathcal{O}_{\Delta} \xrightarrow{p_{1}^{*}(\mathbf{t r}) \otimes \mathbf{q}} S_{X \times X} \otimes \mathcal{O}_{X \times X} \xrightarrow{S_{X \times X} \otimes \mathbf{m}} S_{X \times X} \otimes \mathcal{O}_{\Delta} .
$$

By Lemma 2.2 of Caldararu's paper [1],

$$
\operatorname{tr}_{X \times X}\left(\operatorname{tr}_{\Delta}\right)=\operatorname{tr}_{X \times X}(\mathbf{t})=1
$$

Therefore,

$$
\operatorname{tr}_{X \times X}\left(\operatorname{tr}_{\Delta} \otimes p_{2}^{*} S_{X}^{-1}\right)=1
$$

To verify (55), it suffices to check that

$$
\operatorname{tr}_{X}\left(\mathcal{J}\left(\operatorname{tr}_{\Delta} \otimes p_{2}^{*} S_{X}^{-1}\right) \circ \beta\right)=1
$$

where \mathcal{J} is as in Section 1.
For this, it is enough to check that

$$
\begin{equation*}
\operatorname{tr}_{X}\left(\mathcal{J}\left(\operatorname{tr}_{\Delta}\right) \circ\left(\beta \otimes S_{X}\right)\right)=1 \tag{56}
\end{equation*}
$$

Note that $\Delta^{*}\left(\operatorname{tr}_{\Delta}\right)$ is given by the composite

$$
\mathcal{O}_{X} \otimes \Delta^{*} \mathcal{O}_{\Delta} \xrightarrow{\operatorname{tr} \otimes \Delta^{*}(\mathbf{q})} S_{X} \otimes S_{X} \xrightarrow{S_{X} \otimes S_{X} \otimes \epsilon} S_{X} \otimes S_{X} \otimes \Delta^{*} \mathcal{O}_{\Delta}
$$

where ϵ is the map induced in $\mathrm{D}^{b}(X)$ by the unit $\mathcal{O}_{X} \rightarrow \widehat{C}^{\bullet}(X)$ of the Hopf algebra object $\widehat{C}(X)$ of $\mathrm{Ch}^{-}\left(\mathcal{O}_{X}-\bmod \right)$. It follows that $\mathcal{J}\left(\operatorname{tr}_{\Delta}\right)$ is given by the composite

$$
\mathcal{O}_{X} \otimes \Delta^{*} \mathcal{O}_{\Delta} \xrightarrow{\operatorname{tr} \otimes \Delta^{*}(\mathbf{q})} S_{X} \otimes S_{X}
$$

To verify (56) it suffices to check that $\Delta^{*}(\mathbf{q}) \circ\left(\beta \otimes S_{X}\right)=S_{X}$. This is an immediate consequence of (53).
5.2. The final (long) computation proving Theorem 1. We first recall some notation. We remind the reader that as in Section 3.2, the product on $\mathbf{S}^{\bullet}(\Omega[1])$ is denoted by $(-\wedge-): \mathbf{S}^{\bullet}(\Omega[1]) \otimes \mathbf{S}^{\bullet}(\Omega[1]) \rightarrow \mathbf{S}^{\bullet}(\Omega[1])$. Let ev be as in Section 3.2. Denote the composite
$\mathbf{S}^{\bullet}(\Omega[1]) \otimes \mathbf{S}^{\bullet}(T[-1]) \xrightarrow{\mathbf{S}^{\bullet}(\Omega[1]) \otimes \mathbf{j}} \mathbf{S}^{\bullet}(\Omega[1]) \otimes \mathcal{E} \operatorname{nd}\left(\mathbf{S}^{\bullet}(\Omega[1])\right) \xrightarrow{\text { ev }} \mathbf{S}^{\bullet}(\Omega[1])$ by (- -) as in Section 3.2. Note that the composite

$$
\mathbf{S}^{\bullet}(\Omega[1]) \otimes \mathbf{S}^{\bullet}(\Omega[1]) \xrightarrow{\mathbf{S}^{\bullet}(\Omega[1]) \otimes \mathbf{i}} \mathbf{S}^{\bullet}(\Omega[1]) \otimes \mathcal{E} \operatorname{nd}\left(\mathbf{S}^{\bullet}(\Omega[1])\right) \xrightarrow{\mathrm{ev}} \mathbf{S}^{\bullet}(\Omega[1])
$$

is $(-\wedge-)$. Let $(-\|-)$ be as in Section 3.2. We will also denote the isomorphisms $S_{X} \otimes S_{X}^{-1} \rightarrow \mathcal{O}_{X}$ and $S_{X}^{-1} \otimes S_{X} \rightarrow \mathcal{O}_{X}$ by \simeq.

Also recall from Section 1 that

$$
\langle-,-\rangle=\pi_{n} \circ(-\wedge-): \mathbf{S}^{\bullet}(\Omega[1]) \otimes \mathbf{S}^{\bullet}(\Omega[1]) \rightarrow \mathbf{S}^{\bullet}(\Omega[1]) .
$$

Let $x \in \operatorname{RHom}_{X}\left(\mathcal{O}_{X}, \mathbf{S}^{\bullet}(\Omega[1])\right)$.

Outline of the final computation proving Theorem 1. The final computation proving Theorem 1 begins by summarizing the results of the previous subsection to express $\mathrm{I}_{\mathrm{HKR}}\left(D_{\Delta}^{-1}\left(\widehat{\mathrm{I}_{\mathrm{HKR}}}(x)\right)\right)$ as a composite of morphisms in $\widetilde{\mathrm{D}^{b}(X)}$. This is done in Proposition 37. After Proposition 37, in (59), (60), (61) and (62), the composite yielding $\mathrm{I}_{\mathrm{HKR}}\left(D_{\Delta}^{-1}\left(\widehat{\mathrm{I}_{\mathrm{HKR}}}(x)\right)\right)$ is rewritten to express it in a form that is possible to simplify. Lemma 5 is then used to simplify this composite further, yielding the composite (63). The simplification using Lemma 5 is a crucial step. The composite (63) is further simplified to the composite (64). The fact that the composite (64) of morphisms in $\widehat{\mathrm{D}^{b}(X)}$ yields $\mathrm{I}_{\mathrm{HKR}}\left(D_{\Delta}^{-1} \widehat{\left.\left(\widehat{\mathrm{I}_{\mathrm{HKR}}}(x)\right)\right) \text { together with Proposition } 28}\right.$ and Proposition 27 of Section 3.2 yield Theorem 1. Lemma 5 is then proven in Section 5.3.

With the above notation and outline in mind, view Φ_{R} as an element of

$$
\operatorname{Hom}_{D^{b}(X)}\left(\mathcal{O}_{X}, \mathcal{E} \operatorname{nd}\left(\mathbf{S}^{\bullet}(\Omega[1])\right) \otimes \Omega[1]\right)
$$

The following proposition begins the final set of steps towards Theorem 1.
Proposition 37. As a morphism in $\widetilde{\mathrm{D}^{b}(X)}, \mathrm{I}_{\mathrm{HKR}}\left(D_{\Delta}^{-1}\left(\widehat{\mathrm{I}_{\mathrm{HKR}}}(x)\right)\right)$ is given by the composite

$$
\begin{gathered}
\mathcal{O}_{X} \\
\bar{\beta} \mid \\
\mathbf{S}^{\bullet}(\Omega[1]) \otimes S_{X}^{-1} \simeq \mathbf{S}^{\bullet}(\Omega[1]) \otimes \mathcal{O}_{X} \otimes S_{X}^{-1} \\
\mathbf{S}^{\bullet}(\Omega[1]) \otimes \exp \left(\Phi_{R}\right) \otimes S_{X}^{-1} \downarrow \\
\mathbf{S}^{\bullet}(\Omega[1]) \otimes \mathcal{E} \operatorname{nd}\left(\mathbf{S}^{\bullet}(\Omega[1])\right) \otimes \mathbf{S}^{\bullet}(\Omega[1]) \otimes S_{X}^{-1} \\
\simeq \downarrow \\
\mathbf{S}^{\bullet}(\Omega[1]) \otimes \mathcal{E} \operatorname{nd}\left(\mathbf{S}^{\bullet}(\Omega[1])\right) \otimes \mathbf{S}^{\bullet}(\Omega[1]) \otimes \mathcal{O}_{X} \otimes S_{X}^{-1} \\
\mathbf{S}^{\bullet}(\Omega[1]) \otimes \mathcal{E} \mathrm{nd}\left(\mathbf{S}^{\bullet}(\Omega[1])\right) \otimes \mathbf{S}^{\bullet}(\Omega[1]) \otimes x \otimes S_{X}^{-1} \downarrow \\
\mathbf{S}^{\bullet}(\Omega[1]) \otimes \mathcal{E} \operatorname{nd}\left(\mathbf{S}^{\bullet}(\Omega[1])\right) \otimes \mathbf{S}^{\bullet}(\Omega[1]) \otimes \mathbf{S}^{\bullet}(\Omega[1]) \otimes S_{X}^{-1} \\
\mathbf{S}^{\bullet}(\Omega[1]) \otimes \mathcal{E} \mathrm{nd}\left(\mathbf{S}^{\bullet}(\Omega[1])\right) \otimes\langle-,-) \otimes S_{X}^{-1} \downarrow \\
\mathbf{S}^{\bullet}(\Omega[1]) \otimes \mathcal{E} \operatorname{nd}\left(\mathbf{S}^{\bullet}(\Omega[1])\right) \otimes S_{X} \otimes S_{X}^{-1} \\
\operatorname{ev} \otimes \simeq \downarrow \\
\mathbf{S}^{\bullet}(\Omega[1]) .
\end{gathered}
$$

Proof. This proposition just amounts to putting together Propositions 33, 34,35 and 36 and the definition of $\widehat{\mathrm{I}_{\mathrm{HKR}}}$.

As in Section 3.2, let $\gamma: \mathbf{S}^{\bullet}(\Omega[1]) \simeq \mathbf{S}^{\bullet}(T[-1]) \otimes S_{X}$ be the isomorphism such that

$$
\begin{equation*}
\langle-,-\rangle=\pi_{n} \circ(-\wedge-)=\left((-\|-) \otimes S_{X}\right) \circ\left(\mathbf{S}^{\bullet}(\Omega[1]) \otimes \gamma\right) . \tag{57}
\end{equation*}
$$

Let ζ denote the inverse of γ.
Also note that by the definitions of F_{r} and F_{l}, the following diagrams commute.

In the first diagram in (58),

$$
\tau: \mathbf{S}^{\bullet}(T[-1]) \otimes \mathbf{S}^{\bullet}(\Omega[1]) \rightarrow \mathbf{S}^{\bullet}(\Omega[1]) \otimes \mathbf{S}^{\bullet}(T[-1])
$$

interchanges factors. By Proposition $37, \mathrm{I}_{\mathrm{HKR}}\left(D_{\Delta}^{-1}\left(\widehat{\mathrm{I}_{\mathrm{HKR}}}(x)\right)\right)$ is given by the composite

$$
\begin{gather*}
\mathcal{O}_{X} \\
\bar{\beta}^{\bullet} \downarrow \\
\mathbf{S}^{\bullet}(\Omega[1]) \otimes S_{X}^{-1} \simeq \mathbf{S}^{\bullet}(\Omega[1]) \otimes \mathcal{O}_{X} \otimes \mathcal{O}_{X} \otimes S_{X}^{-1} \\
\mathbf{S}^{\bullet}(\Omega[1]) \otimes \exp \left(\Phi_{R}\right) \otimes x \otimes S_{X}^{-1} \downarrow \\
\mathbf{S}^{\bullet}(\Omega[1]) \otimes \mathcal{E} \operatorname{nd}\left(\mathbf{S}^{\bullet}(\Omega[1])\right) \otimes \mathbf{S}^{\bullet}(\Omega[1]) \otimes \mathbf{S}^{\bullet}(\Omega[1]) \otimes S_{X}^{-1} \tag{59}\\
\operatorname{ev} \otimes\langle-,-\rangle \otimes S_{X}^{-1} \downarrow \\
\mathbf{S}^{\bullet}(\Omega[1]) \otimes S_{X} \otimes S_{X}^{-1} \\
\mathbf{S}^{\bullet}(\Omega[1]) \otimes \simeq \downarrow \\
\mathbf{S}^{\bullet}(\Omega[1])
\end{gather*}
$$

of morphisms in $\widetilde{\mathrm{D}^{b}(X)}$. Denote the composite

$$
\begin{aligned}
& \quad \mathcal{O}_{X} \\
& \underset{\exp \left(\Phi_{R}\right)}{ } \downarrow \\
& \mathcal{E} \operatorname{nd}\left(\mathbf{S}^{\bullet}(\Omega[1])\right) \otimes \mathbf{S}^{\bullet}(\Omega[1]) \xrightarrow{\tau\left(F_{l}\right) \otimes \mathbf{S}^{\bullet}(\Omega[1])} \mathbf{S}^{\bullet}(\Omega[1]) \otimes \mathbf{S}^{\bullet}(T[-1]) \otimes \mathbf{S}^{\bullet}(\Omega[1])
\end{aligned}
$$

by \mathbf{P}.
By (57) and (58) the composite (59) yielding $\mathrm{I}_{\mathrm{HKR}}\left(D_{\Delta}^{-1}\left(\widehat{\mathrm{I}_{\mathrm{HKR}}}(x)\right)\right)$ is the same as the composite

$$
\begin{gather*}
\mathbf{S}^{\bullet}(\Omega[1]) \otimes S_{X}^{-1} \simeq \mathbf{S}^{\bullet}(\Omega[1]) \otimes \mathcal{O}_{X} \otimes \mathcal{O}_{X} \otimes S_{X}^{-1} \\
\mathbf{S}^{\bullet}(\Omega[1]) \otimes \mathbf{P} \otimes \gamma(x) \otimes S_{X}^{-1} \downarrow \tag{60}\\
\mathbf{S}^{\bullet}(\Omega[1]) \otimes \mathbf{S}^{\bullet}(\Omega[1]) \otimes \mathbf{S}^{\bullet}(T[-1]) \otimes \mathbf{S}^{\bullet}(\Omega[1]) \otimes \mathbf{S}^{\bullet}(T[-1]) \otimes S_{X} \otimes S_{X}^{-1} \\
((-\wedge-) \bullet-) \otimes(-\|-) \otimes \simeq \downarrow \\
\mathbf{S}^{\bullet}(\Omega[1])
\end{gather*}
$$

of morphisms in $\widetilde{\mathrm{D}^{b}(X)}$. Note that the composite

$$
\Omega^{j}[j] \xrightarrow{\text { " } \bar{\beta} \otimes \Omega^{j}[j] "} \mathbf{S}^{\bullet}(\Omega[1]) \otimes \Omega^{j}[j] \otimes S_{X}^{-1} \xrightarrow{(-\wedge-) \otimes S_{X}^{-1}} \mathbf{S}^{\bullet}(\Omega[1]) \otimes S_{X}^{-1}
$$

is 0 . (" $\bar{\beta} \otimes \Omega^{j}[j]$ " is a rearrangment of factors composed with $\left.\bar{\beta} \otimes \Omega^{j}[j]\right)$. It follows that the composite (60) yielding $\mathrm{I}_{\mathrm{HKR}}\left(D_{\Delta}^{-1}\left(\widehat{\mathrm{I}_{\mathrm{HKR}}}(x)\right)\right)$ is equal to the composite

$$
\begin{gather*}
\mathcal{O}_{X} \\
\bar{\beta} \downarrow \\
\mathbf{S}^{\bullet}(\Omega[1]) \otimes S_{X}^{-1} \simeq \mathbf{S}^{\bullet}(\Omega[1]) \otimes \mathcal{O}_{X} \otimes \mathcal{O}_{X} \otimes S_{X}^{-1} \\
\mathbf{S}^{\bullet}(\Omega[1]) \otimes \mathbf{Q} \otimes \gamma(x) \otimes S_{X}^{-1} \downarrow \tag{61}\\
\mathbf{S}^{\bullet}(\Omega[1]) \otimes \mathbf{S}^{\bullet}(T[-1]) \otimes \mathbf{S}^{\bullet}(\Omega[1]) \otimes \mathbf{S}^{\bullet}(T[-1]) \otimes S_{X} \otimes S_{X}^{-1} \\
(-\bullet-) \otimes(-\|-) \otimes \simeq \downarrow \\
\mathbf{S}^{\bullet}(\Omega[1])
\end{gather*}
$$

of morphisms in $\widetilde{\mathrm{D}^{b}(X)}$. In (61), \mathbf{Q} in turn denotes the composite

$$
\begin{aligned}
& \mathcal{O}_{X} \\
& \exp \left(\Phi_{R}\right) \downarrow \\
& \mathcal{E} \operatorname{nd}\left(\mathbf{S}^{\bullet}(\Omega[1])\right) \otimes \mathbf{S}^{\bullet}(\Omega[1]) \xrightarrow{\pi_{0} \circ F_{l} \otimes \mathbf{S}^{\bullet}(\Omega[1])} \mathbf{S}^{\bullet}(T[-1]) \otimes \mathbf{S}^{\bullet}(\Omega[1]) .
\end{aligned}
$$

Let $\left(\exp \left(\Phi_{R}\right) \|-\right): \mathbf{S}^{\bullet}(T[-1]) \rightarrow \mathcal{E} \operatorname{nd}\left(\mathbf{S}^{\bullet}(\Omega[1])\right)$ denote the composite

$$
\begin{gathered}
\mathcal{O}_{X} \otimes \mathbf{S}^{\bullet}(T[-1]) \\
\exp \left(\Phi_{R}\right) \otimes \mathbf{S}^{\bullet}(T[-1]) \downarrow \\
\mathcal{E} \operatorname{nd}\left(\mathbf{S}^{\bullet}(\Omega[1])\right) \otimes \mathbf{S}^{\bullet}(\Omega[1]) \otimes \mathbf{S}^{\bullet}(T[-1]) \xrightarrow{\mathcal{E} \operatorname{nd}\left(\mathbf{S}^{\bullet}(\Omega[1])\right) \otimes(-\|-)} \mathcal{E} \operatorname{nd}\left(\mathbf{S}^{\bullet}(\Omega[1])\right) .
\end{gathered}
$$

The composite in the diagram (61) yielding $\mathrm{I}_{\mathrm{HKR}}\left(D_{\Delta}^{-1}\left(\widehat{\mathrm{I}_{\mathrm{HKR}}}(x)\right)\right)$ can be rewritten as

$$
\begin{gather*}
\mathcal{O}_{X} \\
\bar{\beta} \downarrow \\
\mathbf{S}^{\bullet}(\Omega[1]) \otimes S_{X}^{-1} \simeq \mathbf{S}^{\bullet}(\Omega[1]) \otimes \mathcal{O}_{X} \otimes S_{X}^{-1} \\
\mathbf{S}^{\bullet}(\Omega[1]) \otimes \mathbf{R} \otimes S_{X}^{-1} \downarrow \tag{62}\\
\mathbf{S}^{\bullet}(\Omega[1]) \otimes \mathbf{S}^{\bullet}(T[-1]) \otimes S_{X} \otimes S_{X}^{-1} \\
(-\bullet) \otimes \simeq \downarrow \\
\mathbf{S}^{\bullet}(\Omega[1])
\end{gather*}
$$

where

$$
\mathbf{R}=\left[\pi_{0}\left(F_{l}\left(\exp \left(\Phi_{R}\right) \|-\right)\right) \otimes S_{X}\right] \circ \gamma(x): \mathcal{O}_{X} \rightarrow \mathbf{S}^{\bullet}(T[-1]) \otimes S_{X}
$$

in $\widetilde{\mathrm{D}^{b}(X)}$.
We remind the reader that since $\left(\exp \left(\Phi_{R}\right) \|-\right)$ is a morphism in $\mathrm{D}^{b}(X)$ from $\mathbf{S}^{\bullet}(T[-1])$ to $\mathcal{E} \operatorname{nd}\left(\mathbf{S}^{\bullet}(\Omega[1])\right), \pi_{0}\left(F_{l}\left(\exp \left(\Phi_{R}\right) \|-\right)\right)$ is a morphism in $\mathrm{D}^{b}(X)$ from $\mathbf{S}^{\bullet}(T[-1])$ to $\mathbf{S}^{\bullet}(T[-1])$. It follows from this and the fact that $\gamma(x) \in \operatorname{Hom}_{\widetilde{\mathrm{D}^{b}(X)}}\left(\mathcal{O}_{X}, \mathbf{S}^{\bullet}(T[-1]) \otimes S_{X}\right)$ that \mathbf{R} is indeed an element of $\operatorname{Hom}_{\widetilde{\mathrm{D}^{b}(X)}}\left(\mathcal{O}_{X}, \mathrm{~S}^{\bullet}(T[-1]) \otimes S_{X}\right)$ as mentioned above. The following lemma simplifies the computation of \mathbf{R}. Let

$$
(-\mid-): \mathbf{S}^{\bullet}(\Omega[1]) \otimes \mathbf{S}^{\bullet}(T[-1]) \rightarrow \mathbf{S}^{\bullet}(T[-1])
$$

be as in Section 3.2. Let $\left(\operatorname{td}_{X}^{-1} \mid-\right)$ denote the composite

$$
(-\mid-) \circ\left(\operatorname{td}_{X}^{-1} \otimes \mathbf{S}^{\bullet}(T[-1])\right) .
$$

This is a morphism in $\mathrm{D}^{b}(X)$ from $\mathbf{S}^{\bullet}(T[-1])$ to itself.

Lemma 5.

$$
\pi_{0}\left(F_{l}\left(\exp \left(\Phi_{R}\right) \|-\right)\right)=\left(\operatorname{td}_{X}^{-1} \mid-\right): \mathbf{S}^{\bullet}(T[-1]) \rightarrow \mathbf{S}^{\bullet}(T[-1])
$$

We postpone the proof of this lemma to Section 5.3.

It follows from (62) and Lemma 5 that $\mathrm{I}_{\mathrm{HKR}}\left(D_{\Delta}^{-1}\left(\widehat{\mathrm{I}_{\mathrm{HKR}}}(x)\right)\right)$ is given by the composite

$$
\begin{gather*}
\mathcal{O}_{X} \\
\downarrow_{\bar{\beta}} \\
\mathbf{S}^{\bullet}(\Omega[1]) \otimes \mathcal{O}_{X} \otimes S_{X}^{-1} \tag{63}\\
\downarrow \mathbf{S}^{\bullet}(\Omega[1]) \otimes \gamma(x) \otimes S_{X}^{-1} \\
\mathbf{S}^{\bullet}(\Omega[1]) \otimes \mathbf{S}^{\bullet}(T[-1]) \otimes S_{X} \otimes S_{X}^{-1} \xrightarrow{\left(-\bullet\left(\operatorname{td}_{X}^{-1} \mid-\right)\right) \otimes \simeq} \mathbf{S}^{\bullet}(\Omega[1])
\end{gather*}
$$

of morphisms in $\widetilde{\mathrm{D}^{b}(X)}$.
Now note that the following diagram commutes in $\widetilde{\mathrm{D}^{b}(X)}$.

where $f=\iota \otimes \mathbf{S}^{\bullet}(T[-1]) \otimes S_{X} \otimes S_{X}^{-1}$.
The topmost square in the above diagram commutes by the definition of $\bar{\beta}$. That the remaining squares in the above diagram commute is obvious. The reader should recall that $S_{X}=\Omega^{n}[n]$ to make sense out of the map $\left(-\bullet\left(\operatorname{td}_{X}^{-1} \mid-\right)\right): S_{X} \otimes \mathbf{S}^{\bullet}(T[-1]) \rightarrow \mathbf{S}^{\bullet}(\Omega[1])$ in the above diagram.

It follows from the above diagram and (63) that $\mathrm{I}_{\mathrm{HKR}}\left(D_{\Delta}^{-1}\left(\widehat{\mathrm{I}_{\mathrm{HKR}}}(x)\right)\right)$ is given by the composite

$$
\begin{gather*}
\downarrow \\
S_{X} \otimes \mathcal{O}_{X} \otimes S_{X}^{-1} \\
\downarrow_{X} \otimes \gamma(x) \otimes S_{X}^{-1} \\
S_{X} \otimes \mathbf{S}^{\bullet}(T[-1]) \otimes S_{X} \otimes S_{X}^{-1} \tag{64}\\
\downarrow\left(-\bullet\left(\operatorname{td}_{X}^{-1} \mid-\right)\right) \otimes \simeq \\
\mathbf{S}^{\bullet}(\Omega[1])
\end{gather*}
$$

of morphisms in $\widetilde{\mathrm{D}^{b}(X)}$.
Let $\tau: S_{X} \otimes \mathbf{S}^{\bullet}(T[-1]) \otimes S_{X} \rightarrow \mathbf{S}^{\bullet}(T[-1]) \otimes S_{X} \otimes S_{X}$ denote the map swapping S_{X} and $\mathbf{S}^{\bullet}(T[-1]) \otimes S_{X}$. Let $\tau^{\prime}: S_{X} \otimes \mathcal{O}_{X} \rightarrow \mathcal{O}_{X} \otimes S_{X}$ swap factors. We now have the following proposition.
Proposition 38. The following diagram commutes in $\widetilde{\mathrm{D}^{b}(X)}$.

$$
\begin{array}{cc}
S_{X} \otimes \mathcal{O}_{X} \otimes S_{X}^{-1} & \xrightarrow{\tau^{\prime} \otimes S_{X}^{-1}} \\
S_{X} \otimes \gamma(x) \otimes S_{X}^{-1} \downarrow & \mathcal{O}_{X} \otimes S_{X} \otimes S_{X}^{-1} \\
& \downarrow^{\gamma(x) \otimes S_{X} \otimes S_{X}^{-1}}
\end{array}
$$

$$
S_{X} \otimes \mathbf{S}^{\bullet}(T[-1]) \otimes S_{X} \otimes S_{X}^{-1} \xrightarrow{\tau \otimes S_{X}^{-1}} \mathbf{S}^{\bullet}(T[-1]) \otimes S_{X} \otimes S_{X} \otimes S_{X}^{-1}
$$

$$
\left(-\left(\operatorname{td}_{X}^{-1} \mid-\right)\right) \otimes \simeq \downarrow
$$

$$
\mathbf{S}^{\bullet}(\Omega[1])
$$

$$
\begin{aligned}
& \quad \downarrow \zeta\left(\left(\operatorname{td}_{X}^{-1} \mid-\right) \otimes S_{X}\right) \otimes \simeq \\
& \mathbf{S}^{\bullet}(\Omega[1]) .
\end{aligned}
$$

Proof. The fact that the first two squares in the above diagram commute is clear. The third square commutes by Proposition 28 of Section 3.2.

Recall that $\gamma: \mathbf{S}^{\bullet}(\Omega[1]) \simeq \mathbf{S}^{\bullet}(T[-1]) \otimes S_{X}$ and ζ denotes the inverse of γ. By Proposition 27 of Section 3.2,

$$
\zeta\left(\left(\left(\operatorname{td}_{X}^{-1} \mid-\right) \otimes S_{X}\right)(\gamma(x))=\operatorname{td}_{X}^{-1} \wedge x\right.
$$

Therefore, by Proposition 38, the fact that the composite (64) yields $\mathrm{I}_{\mathrm{HKR}}\left(D_{\Delta}^{-1}\left(\widehat{\mathrm{I}_{\mathrm{HKR}}}(x)\right)\right)$, and the fact that $J^{2}=\mathbf{1}_{\mathrm{S} \bullet(\Omega[1])}$,

$$
\mathrm{I}_{\mathrm{HKR}}\left(D_{\Delta}^{-1}\left(\widehat{\mathrm{I}_{\mathrm{HKR}}}(x)\right)\right)=J\left(\operatorname{td}_{X}^{-1} \wedge x\right) .
$$

It follows that

$$
D_{\Delta}\left(\mathrm{I}_{\mathrm{HKR}}^{-1}(y)\right)=\widehat{\mathrm{I}_{\mathrm{HKR}}}\left(\operatorname{td}_{X} \wedge J y\right) .
$$

This proves Theorem 1.
5.3. Proving Lemma 5. Lemma 5 is the only thing left to be proven. The proof of Lemma 5 uses Lemma 3. We first state and prove the following proposition. All statements in this subsection hold in $\mathrm{D}^{b}(X)$ and hence in $\widetilde{\mathrm{D}^{b}(X)}$.

Proposition 39.

$$
\pi_{0}\left(F_{r}\left(\exp \left(\Phi_{R}\right) \|-\right)\right)=\mathbf{1}: \mathbf{S}^{\bullet}(T[-1]) \rightarrow \mathbf{S}^{\bullet}(T[-1])
$$

Proof. The notation used here is that used while proving Proposition 30. While proving Proposition 30, we noted that $\bar{\omega}^{i} \circ \overline{\mathbf{C}}$ is given by the composite

$$
\begin{aligned}
& \mathbf{S}^{\bullet}(\Omega[1]) \xrightarrow{\overline{\mathbf{C}}} \mathbf{S}^{\bullet}(\Omega[1]) \otimes \Omega[1] \xrightarrow{\mathbf{S}^{\bullet}(\Omega[1]) \otimes \mathrm{At}_{T}^{i}} \mathbf{S}^{\bullet}(\Omega[1]) \otimes \Omega^{i}[i] \otimes \Omega[1] \\
&(-\wedge-) \otimes \Omega[1] \\
& \mathbf{S}^{\bullet}(\Omega[1]) \otimes \Omega[1] .
\end{aligned}
$$

It follows by the definition of $\pi_{0} \circ F_{r}$ that

$$
\left(\pi_{0} \circ F_{r} \otimes \Omega[1]\right)\left(\bar{\omega}^{i} \circ \overline{\mathbf{C}}\right)=0
$$

if $i>0$. It follows from the fact that $\frac{z}{1-\mathrm{e}^{-z}}=1+\sum_{i \geq 1} c_{i} z^{i}$ that

$$
\left(\pi_{0} \circ F_{r} \otimes \Omega[1]\right)\left(\Phi_{R}\right)=\left(\pi_{0} \circ F_{r} \otimes \Omega[1]\right)(\overline{\mathbf{C}})
$$

Therefore, by Proposition 23,

$$
\left(\pi_{0} \circ F_{r} \otimes \mathbf{S}^{\bullet}(\Omega[1])\right)\left(\exp \left(\Phi_{R}\right)\right)=\left(\pi_{0} \circ F_{r} \otimes \mathbf{S}^{\bullet}(\Omega[1])\right)(\exp (\overline{\mathbf{C}}))
$$

Note that

$$
\exp (\overline{\mathbf{C}})=\mathbf{C}_{\Omega}
$$

where \mathbf{C}_{Ω} is the comultiplication on $\mathbf{S}^{\bullet}(\Omega[1])$ treated as an element of

$$
\operatorname{Hom}_{D^{b}(X)}\left(\mathcal{O}_{X}, \mathcal{E} \operatorname{nd}\left(\mathbf{S}^{\bullet}(\Omega[1])\right) \otimes \mathbf{S}^{\bullet}(\Omega[1])\right) .
$$

For the rest of this proof let $\left(\mathbf{C}_{\Omega} \|-\right)$ denote

$$
\left[\mathcal{E n d}\left(\mathbf{S}^{\bullet}(\Omega[1])\right) \otimes(-\|-)\right] \circ \mathbf{C}_{\Omega} .
$$

Therefore,

$$
\pi_{0}\left(F_{r}\left(\exp \left(\Phi_{R}\right) \|-\right)\right)=\pi_{0}\left(F_{r}\left(\mathbf{C}_{\Omega} \|-\right)\right): \mathbf{S}^{\bullet}(T[-1]) \rightarrow \mathbf{S}^{\bullet}(T[-1])
$$

But $\left(\mathbf{C}_{\Omega} \|-\right)=\mathbf{j}: \mathbf{S}^{\bullet}(T[-1]) \rightarrow \mathcal{E} \operatorname{nd}\left(\mathbf{S}^{\bullet}(T[-1])\right.$ by Proposition 29 . This proves the desired proposition.

Proof of Lemma 5. Let $\left(\exp \left(\Phi_{R}\right) \|-\right)^{+}: \mathbf{S}^{\bullet}(T[-1]) \rightarrow \mathcal{E} \operatorname{nd}\left(\mathbf{S}^{\bullet}(\Omega[1])\right)$ denote the map $\mathbf{A} \circ\left(\exp \left(\Phi_{R}\right) \|-\right): \mathbf{S}^{\bullet}(T[-1]) \rightarrow \mathcal{E} \operatorname{nd}\left(\mathbf{S}^{\bullet}(\Omega[1])\right)$ where \mathbf{A} is as in Section 3.2.

By Proposition 22,

$$
\pi_{0}\left(F_{l}\left(\exp \left(\Phi_{R}\right) \|-\right)\right)=I\left(\pi_{0}\left(F_{r}\left(\exp \left(\Phi_{R}\right) \|-\right)^{+}\right)\right): \mathbf{S}^{\bullet}(T[-1]) \rightarrow \mathbf{S}^{\bullet}(T[-1])
$$

By part (2) of Proposition 21,

$$
\left(\exp \left(\Phi_{R}\right) \|-\right)^{+}=\left(\exp \left(\Phi_{R}^{+}\right) \|-\right): \mathbf{S}^{\bullet}(T[-1]) \rightarrow \mathcal{E} \operatorname{nd}\left(\mathbf{S}^{\bullet}(\Omega[1])\right)
$$

By Lemma 3,

$$
\begin{aligned}
& \left(\exp \left(\Phi_{R}^{+}\right) \|-\right) \\
& =\left(\exp \left(-\mathbf{i}(\mathbf{f}) \circ \Phi_{R} \circ \mathbf{i}(\mathbf{f})^{-1}\right) \|-\right) \\
& =\mathbf{i}(\mathbf{f}) \circ\left(\exp \left(-\Phi_{R}\right) \|-\right) \circ \mathbf{i}\left(\mathbf{f}^{-1}\right): \mathbf{S}^{\bullet}(T[-1]) \rightarrow \mathcal{E} \operatorname{nd}\left(\mathbf{S}^{\bullet}(\Omega[1])\right) .
\end{aligned}
$$

We remark that $\mathbf{i}(\mathbf{f}) \circ\left(\exp \left(-\Phi_{R}\right) \|-\right) \circ \mathbf{i}\left(\mathbf{f}^{-1}\right)$ is precisely the composite

$$
\begin{aligned}
& \mathcal{O}_{X} \otimes \mathbf{S}^{\bullet}(\\
&([-1]) \otimes \mathcal{O}_{X} \\
& \quad \downarrow \mathbf{i}(\mathbf{f}) \otimes\left(\exp \left(-\Phi_{R}\right) \|-\right) \otimes \mathbf{i}\left(\mathbf{f}^{-1}\right)
\end{aligned}
$$

$\mathcal{E} \operatorname{nd}\left(\mathbf{S}^{\bullet}(\Omega[1])\right) \otimes \mathcal{E} \operatorname{nd}\left(\mathbf{S}^{\bullet}(\Omega[1])\right) \otimes \mathcal{E} \operatorname{nd}\left(\mathbf{S}^{\bullet}(\Omega[1]) \xrightarrow{\circ} \operatorname{End}\left(\mathbf{S}^{\bullet}(\Omega[1])\right)\right.$.
Thus,

$$
\begin{align*}
& \pi_{0}\left(F_{l}\left(\exp \left(\Phi_{R}\right) \|-\right)\right) \tag{65}\\
= & I\left(\pi_{0}\left(F_{r}\left(\mathbf{i}(\mathbf{f}) \circ\left(\exp \left(-\Phi_{R}\right) \|-\right) \circ \mathbf{i}\left(\mathbf{f}^{-1}\right)\right)\right)\right): \mathbf{S}^{\bullet}(T[-1]) \rightarrow \mathbf{S}^{\bullet}(T[-1]) .
\end{align*}
$$

Note that $\pi_{0}\left(F_{r}(\mathbf{i}(\mathbf{f}))\right)=1$ since $\mathbf{f}=\operatorname{det}\left(1+\sum_{i>0} c_{i} \mathrm{At}_{T}^{i}\right)$. It follows from Proposition 23 that

$$
\begin{align*}
& \pi_{0}\left(F_{l}\left(\exp \left(\Phi_{R}\right) \|-\right)\right) \tag{66}\\
& \quad=I\left(\pi_{0}\left(F_{r}\left(\left(\exp \left(-\Phi_{R}\right) \|-\right) \circ \mathbf{i}\left(\mathbf{f}^{-1}\right)\right)\right)\right): \mathbf{S}^{\bullet}(T[-1]) \rightarrow \mathbf{S}^{\bullet}(T[-1])
\end{align*}
$$

Another point to note is that

$$
\left(\exp \left(-\Phi_{R}\right) \|-\right)=\left(\exp \left(\Phi_{R}\right) \|-\right) \circ I: \mathbf{S}^{\bullet}(T[-1]) \rightarrow \mathcal{E} \operatorname{nd}\left(\mathbf{S}^{\bullet}(\Omega[1])\right)
$$

It follows from this observation and (66) that

$$
\begin{aligned}
& \pi_{0}\left(F_{l}\left(\exp \left(\Phi_{R}\right) \|-\right)\right) \\
& =I\left(\pi_{0}\left(F_{r}\left(\left(\exp \left(\Phi_{R}\right) \|-\right) \circ \mathbf{i}\left(\mathbf{f}^{-1}\right)\right)\right)\right) \circ I \\
& =I\left(\pi_{0}\left(F_{r}\left(\mathbf{j}\left(\pi_{0}\left(F_{r}\left(\exp \left(\Phi_{R}\right) \|-\right)\right)\right) \circ \mathbf{i}\left(\mathbf{f}^{-1}\right)\right)\right)\right) \circ I \text { by Proposition } 23 \\
& =I\left(\pi_{0}\left(F_{r}\left(\mathbf{j}(I(-)) \circ \mathbf{i}\left(\mathbf{f}^{-1}\right)\right)\right)\right) \text { by Proposition } 39 \\
& =I\left(\mathbf{f}^{-1} \mid I(-)\right): \mathbf{S}^{\bullet}(T[-1]) \rightarrow \mathbf{S}^{\bullet}(T[-1]) \text { by Proposition } 26
\end{aligned}
$$

where $(-\mid-): \mathbf{S}^{\bullet}(\Omega[1]) \otimes \mathbf{S}^{\bullet}(T[-1]) \rightarrow \mathbf{S}^{\bullet}(T[-1])$ is as in Section 3.2.
We remind the reader that $\left(\mathbf{f}^{-1} \mid I(-)\right): \mathbf{S}^{\bullet}(T[-1]) \rightarrow \mathbf{S}^{\bullet}(T[-1])$ is the composite

of morphisms in $\mathrm{D}^{b}(X)$.
Note that

$$
I\left(\mathbf{f}^{-1} \mid I(-)\right)=\left(J\left(\mathbf{f}^{-1}\right) \mid-\right): \mathbf{S}^{\bullet}(T[-1]) \rightarrow \mathbf{S}^{\bullet}(T[-1])
$$

Also observe that $J\left(\mathbf{f}^{-1}\right)=\operatorname{td}_{X}^{-1}$. This proves Lemma 5.

References

[1] Caldararu, Andrei. The Mukai pairing. I. The Hochschild structure. arXiv:math.AG/0308079.
[2] Caldararu, Andrei. The Mukai pairing. II. The Hochschild-Kostant-Rosenberg isomorphism. Adv. Math. 194 (2005) 34-66. MR2141853 (2006a:14029). arXiv:math.AG/0308080.
[3] Kapranov, M. Rozansky-Witten invariants via Atiyah classes. Compositio Math. 115 (1999) 71-113. MR1671737 (2000h:57056), Zbl 0993.53026.
[4] Loday, Jean-Louis. Cyclic homology. Second Edition. Grundlehren der Mathematischen Wissenschaften, 301. Springer-Verlag, Berlin, 1998. xx +513 pp. ISBN: 3-540-63074-0. MR1600246 (98h:16014), Zbl 0885.18007.
[5] Markarian, Nikita. Poincare-Birkhoff-Witt isomorphism, Hochschild homology and Riemann-Roch theorem. Preprint(2001), MPI 2001-52, available at the Max Planck Institute's website.
[6] Markarian, Nikita. The Atiyah class, Hochschild cohomology and the RiemannRoch theorem. arXiv:math.AG/0610553.
[7] Ramadoss, Ajay. The big Chern classes and the Chern character. arXiv:math.AG/0512104.
[8] Roberts, Justin; Willerton, Simon. On the Rozansky-Witten weight systems. arXiv:math.DG/0602653.
[9] Yekutieli, Amnon. The continuous Hochschild cochain complex of a scheme. Canad. J. Math. 54 (2002), no. 6, 1319-1337. MR1940241 (2004d:16016b), Zbl 1047.16004.

Department of Mathematics, University of Oklahoma, 621 Elm Avenue, Norman, OK-73019
aramadoss@math.ou.edu
This paper is available via http://nyjm.albany.edu/j/2008/14-29.html.

[^0]: Received April 10, 2008.
 Mathematics Subject Classification. 19L10, 16E40, 14F40.
 Key words and phrases. Riemann-Roch theorem, Mukai pairing, Hochschild-KostantRosenberg map.

