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A linearization of Connes’ embedding
problem

Benôıt Collins and Ken Dykema

Abstract. We show that Connes’ embedding problem for II1-factors is
equivalent to a statement about distributions of sums of self-adjoint op-
erators with matrix coefficients. This is an application of a linearization
result for finite von Neumann algebras, which is proved using asymptotic
second-order freeness of Gaussian random matrices.
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1. Introduction

A von Neuman algebra M is said to be finite if it possesses a normal,
faithful, tracial state τ . By “finite von Neumann algebra” M, we will al-
ways mean such an algebra equipped with a fixed such trace τ . Connes’
embedding problem asks whether every such M with a separable predual
can be embedded in an ultrapower Rω of the hyperfinite II1-factor R in a
trace-preserving way. This is well-known to be equivalent to the question of
whether a generating set X for M has microstates, namely, whether there
exist matrices over the complex numbers whose mixed moments up to an
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arbitrary given order approximate those of the elements of X with respect
to τ , to within an arbitrary given tolerance. (See Section 3 where precise
definitions and, for completeness, a proof of this equivalence are given.) We
will say that M posseses Connes’ embedding property if it embeds in Rω.
(It is known that possession of this property does not depend on the choice
of faithful trace τ .)

Seen like this, Connes’ embedding probem, which is open, is about a fun-
damental approximation property for finite von Neumann algebras. There
are several important results, due to E. Kirchberg [14], F. Rădulescu [19],
[20], [21], [22] and N. Brown [7], that have direct bearing on this problem;
see also G. Pisier’s paper [18] and N. Ozawa’s survey [17].

Recently, H. Bercovici and W. S. Li [6] have proved a property enjoyed
by elements in a finite von Neumann algebra that embeds in Rω. This
property is related to a fundamental question about spectra of sums of op-
erators: given Hermitian matrices or, more generally, Hermitian operators
A and B with specified spectra, what can the spectrum of A + B be? For
N × N matrices, a description was conjectured by Horn [12] and was even-
tually proved to be true by work of Klyachko, Totaro, Knutson, Tao and
others, if by “spectrum” we mean the eigenvalue sequence, namely, the list
of eigenvalues repeated according to multiplicity and in nonincreasing order.
In this description, the possible spectrum of A+B is a convex subset of RN

described by certain inequalities, called the Horn inequalities. See Fulton’s
exposition [9] or, for a very abbreviated decription, Section 4 of this paper.
We will call this convex set the Horn body associated to A and B, and de-
note it by Sα,β, where α and β are the eigenvalue sequences of A and B,
respectively.

Bercovici and Li [5], [6] have studied the analogous question for A and B
self-adjoint elements of a finite von Neumann algebra M, namely: if spectral
data of A and of B are specified, what are the possible spectral data of A+B?
Here, by “spectral data” one can take the distribution (i.e., trace of spectral
measure) of the operator in question, which is a compactly supported Borel
probability measure on R, or, in a description that is equivalent, the eigen-
value function of the operator, which is a nonincreasing, right-continuous
function on [0, 1) that is the nondiscrete version of the eigenvalue sequence.

In [6], for given eigenvalue functions u and v, they construct a convex set,
which we will call Fu,v, of eigenvalue functions. This set can be viewed as a
limit (in the appropriate sense) of Horn bodies as N → ∞. They show that
the eigenvalue function of A + B must lie in Fu,v whenever A and B lie in
Rω and have eigenvalue functions u and, respectively, v.

Bercovici and Li’s result provides a concrete method to attempt to show
that a finite von Neumann algebra M does not embed in Rω: find self-
adjoint A and B in M for which one knows enough about the spectral data
of A, B and A + B, and find a Horn inequality (or, rather, it’s appropriate
modification to the setting of eigenvalue functions) that is violated by these.
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Their result also inspires two further questions:

Question 1.1. (i) Which Horn inequalitites must be satisfied by the spec-
tral data of self-adjoints A, B and A + B in arbitrary finite von Neu-
mann algebras?1

(ii) (conversely to Bercovici and Li’s result): If we know, for all self-adjoints
A and B in an arbitrary finite von Neumann algebra M, calling their
eigenvalue functions u and v, respectively, that the eigenvalue function
of A + B belongs to Fu,v, is this equivalent to a positive answer for
Connes’ embedding problem?

Question (ii) above is easily seen to be equivalent to the same question,
but where A and B are assumed to lie in some copies of the matrix algebra
MN (C) in M, for some N ∈ N.

Bercovici and Li, in [5], partially answered the first question by showing
that all in a subset of the Horn inequalities (namely, the Freede–Thompson
inequalities) are always satisfied in arbitrary finite von Neuman algebras.

We attempted to address the second question. We are not able to answer
it, but we prove a related result (Theorem 4.6) which answers the analogous
question for what we call the quantum Horn bodies. These are the like the
Horn bodies, but with matrix coefficients. More precisely, if α and β are
nonincreasing real sequences of length N and if a1 and a2 are self-adjoint
n × n matrices for some n, then the quantum Horn body Ka1,a2

α,β is the set
of all possible eigenvalue functions of matrices of the form

(1) a1 ⊗ Udiag(α)U∗ + a2 ⊗ V diag(β)V ∗

as U and V range over the N ×N unitaries. (In fact, Theorem 4.6 concerns
the appropriate union of such bodies over all N — see Section 4 for details.)

Our proof of Theorem 4.6 is an application of a linearization result (The-
orem 2.1) in finite von Neumann algebras, which implies that if X1, X2, Y1

and Y2 are self-adjoint elements of a finite von Neuman algebra and if the
distributions (i.e., the moments) of

(2) a1 ⊗ X1 + a2 ⊗ X2

and

(3) a1 ⊗ Y1 + a2 ⊗ Y2

agree for all n ∈ N and all self-adjoint a1, a2 ∈ Mn(C), then the mixed
moments of the pair (X1,X2) agree with the mixed moments of the pair
(Y1, Y2), i.e., the trace of

(4) Xi1Xi2 · · ·Xik

1 It was more recently shown in [4] that all Horn inequalities hold in all finite von
Neumann algebras.
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agrees with the trace of

(5) Yi1Yi2 · · ·Yik

for all k ∈ N and all i1, . . . , ik ∈ {1, 2}. This is equivalent to there being a
trace-preserving isomorphism from the von Neumann algebra generated by
X1 and X2 onto the von Neumann algebra generated by Y1 and Y2, that
sends Xi to Yi.

This linearization result for von Neumann algebras is quite analogous to
one for C∗-algebras proved by U. Haagerup and S. Thorbjørnsen [11] (and
quoted below as Theorem 2.2). However, our proof of Theorem 2.1 is quite
different from that of Haagerup and Thorbjørnsen’s result. Our linearization
result is not so surprising because, for example, for a proof it would suffice
to show that the trace of an arbitrary word of the form (4) is a linear
combination of moments of various elements of the form (2). One could
imagine that a combinatorial proof by explicit choice of some a1 and a2,
etc., may be possible. However, our proof does not yield an explicit choice.
Rather, it makes a random choice of a1 and a2. For this we make use of
J. Mingo and R. Speicher’s results on second-order freeness of independent
GUE random matrices.

Finally, we need more than just the linearization result. We use some
ultrapower techniques to reverse quantifiers. In particular, we show that
for the von Neumann algebra generated by X1 and X2 to be embeddable
in Rω, it suffices that for all self-adjoint matrices a1 and a2, there exists Y1

and Y2 lying in Rω such that the distributions of (2) and (3) agree. For
this, it is for technical reasons necessary to strengten the linearization result
(Theorem 2.1) by restricting the matrices a1 and a2 to have spectra in a
nontrivial bounded interval [c, d].

To recap: in Section 2 we prove the linearization result, making use of
second-order freeness. In Section 3, we review Connes’ embedding problem
and it’s formulation in terms of microstates; then we make an ultrapower
argument to prove a result (Theorem 3.4) characterizing embeddability of a
von Neumann algebra generated by self-adjoints X1 and X2 in terms of dis-
tributions of elements of the form (2). In Section 4, we describe the quantum
Horn bodies, state some related questions and consider some examples. We
finish by rephrasing Connes’ embedding problem in terms of the quantum
Horn bodies.

2. Linearization

Notation: we let Mn(C) denote the set of n × n complex matrices, while
Mn(C)s.a. means the set of self-adjoint elements of Mn(C). We denote by
Tr : Mn(C) → C the unnormalized trace, and we let tr = 1

nTr be the
normalized trace (sending the identity element to 1).

The main theorem of this section is:
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Theorem 2.1. Let M be a von Neumann algebra generated by self-adjoint
elements X1, . . . ,Xk and N be a von Neumann algebra generated by self-
adjoint elements Y1, . . . , Yk. Let τ be a faithful trace on M and χ be a
faithful trace on N .

Let c < d be real numbers and suppose that for all n ∈ N and all a1, . . . , ak

in Mn(C)s.a. whose spectra are contained in the interval [c, d], the distribu-
tions of

∑
i ai ⊗ Xi and

∑
i ai ⊗ Yi are the same.

Then there exists an isomorphism φ : M → N such that φ(Xi) = Yi and
χ ◦ φ = τ .

The statement of this theorem can be thought of as a version for finite
von Neumann algebras of the following C∗-algebra linearization result of
Haagerup and Thorbjørnsen.

Theorem 2.2 ([11]). Let A (respectively B) be a unital C∗-algebra gener-
ated by self-adjoints X1, . . . ,Xk (resp. Y1, . . . , Yk) such that for all positive
integers n and for all a0, . . . , ak ∈ Mn(C)s.a.,

(6) a0 ⊗ 1 + a1 ⊗ X1 + · · · + ak ⊗ Xk

and

(7) a0 ⊗ 1 + a1 ⊗ Y1 + · · · + ak ⊗ Yk

have the same spectrum, then there exists an isomorphism φ from A onto B
such that φ(Xi) = Yi.

However, our proof of Theorem 2.1 is quite different from the proof of
Theorem 2.2. In addition, there is the notable difference that we do not
need to consider matrix coefficients of the identity. In order to simplify our
notation, we restrict to proving the k = 2 case of Theorem 2.1. We indicate
at Remark 2.10 how our proof works in general.

Let X� be the free monoid generated by free elements x1, x2, and

(8) C〈x1, x2〉 = C[X�].

be the free unital ∗-algebra over self-adjoint elements x1, x2.
Let ρ be the rotation action of the integers on the set X�, given by

(9) ρ(xi1 . . . xin) = xi2 . . . xinxi1 .

Let X�/ρ denote the set of orbits of this action. Let I be the vector space
spanned by the commutators [P,Q] with P,Q ∈ C〈x1, x2〉. Recall that an
(algebraic) trace is a linear map τ : C〈x1, x2〉 → C such that τ(ab) = τ(ba).
Equivalently, a linear map τ : C〈x1, x2〉 → C is a trace if and only if it
vanishes on I.

Lemma 2.3. For any orbit O ∈ X�/ρ, let VO = spanO ⊆ C〈x1, x2〉. Then
C〈x1, x2〉 splits as the direct sum

(10) C〈x1, x2〉 =
⊕

O∈X�/ρ

VO.
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Moreover, the commutator subspace I splits across this direct sum as

(11) I =
⊕

O∈X�/ρ

VO ∩ I.

Furthermore, VO ∩ I is of codimension 1 in VO and we have

(12) VO ∩ I =

{∑
x∈O

cxx | cx ∈ C,
∑
x∈O

cx = 0

}
.

Proof. The direct sum decomposition (10) is obvious. From the relation

(13) xi1xi2 . . . xin = [xi1xi2 . . . xin−1 , xin ] + xinxi1xi2 . . . xin−1 ,

one easily sees

I ⊆
{ ∑

x∈X�

cxx

∣∣∣∣∣ cx ∈ C,
∑

x∈X�

cx = 0

}
(14)

{∑
x∈O

cxx

∣∣∣∣∣ cx ∈ C,
∑
x∈O

cx = 0

}
⊆ VO ∩ I,(15)

from which the assertions follow. �

An orbit O ∈ X�/ρ is a singleton if and only if it is of the form {xa
i }

for some i ∈ {1, 2} and some integer a ≥ 0. For each orbit that is not a
singleton, choose a representative of the orbit of the form

(16) x = xa1
1 xb2

2 · · · xan
1 xbn

2

with n ≥ 1 and a1, . . . , an, b1, . . . , bn ≥ 1, and collect them together in a set
S, of representatives for all the orbits in X�/ρ that are not singletons.

Let Ũi and T̃i (i ∈ N) be two families of polynomials, which we will specify
later on, such that the degree of each Ũi and T̃i is i. For x ∈ S written as
in (16), we let

(17) Ũx = Ũa1(x1)Ũb1(x2) · · · Ũan(x1)Ũbn(x2) ∈ C〈x1, x2〉.

Lemma 2.4. The family

(18) Ξ = {1} ∪ {T̃a(xi) | a ∈ N, i ∈ {1, 2}} ∪ {Ũx | x ∈ S} ⊆ C〈x1, x2〉

is linearly independent and spans a space J such that

I + J = C〈x1, x2〉(19)

I ∩ J = {0}.(20)

Proof. For an orbit O ∈ X�/ρ, the total degree of all x ∈ O agree; denote
this integer by deg(O). Letting VO = spanO and using Lemma 2.3, an
argument by induction on deg(O) shows VO ⊆ I + J . This implies (19).
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To see the linear independece of (18) and to see (20), suppose

(21) y = c01 +
∞∑

n=1

(
c(1)
a T̃a(x1) + c(2)

a T̃a(x2)
)

+
∑
x∈S

dxŨx,

for complex numbers c0, c
(i)
n and dx, not all zero, and let us show y /∈ I. We

also write

(22) y =
∑
z∈X�

azz

for complex numbers az.
Suppose dx �= 0 for some x and let x ∈ S be of largest degree such that

dx �= 0. Let O ∈ X�/ρ be the orbit of x. Then

(23)
∑
z∈O

azz = dxx /∈ VO ∩ I.

By the direct sum decomposition (11), we get y /∈ I.
On the other hand, if c

(i)
n �= 0 for some i ∈ {1, 2} and some n ≥ 1. Suppose

n is the largest such that c
(i)
n �= 0. Then axn

i
= c

(i)
n �= 0, and y /∈ I.

Finally, if dx = 0 for all x ∈ S and if c
(i)
n = 0 for some i ∈ {1, 2} and some

n ≥ 1, then we are left with c0 �= 1 and y = c01 /∈ I. �
We recall that a Gaussian unitary ensemble (also denoted by GUE) is the

probability distribution of the random matrix ZN +Z∗
N on MN (C), where ZN

has independent complex gaussian entries of variance 1/2N . This distribu-
tion has a density proportional to e−NTrX2

with respect to the Lebesgue mea-
sure on the self-adjoint real matrices. A classical result of Wigner [26] states
that the empirical eigenvalue distribution of a GUE converges as N → ∞ in
moments to Wigner’s semicircle distribution

(24)
1
2π

1[−2,2](x)
√

4 − x2dx.

If we view the XN for various N as matrix-valued random variables over
a commone probability space, then almost surely, the largest and smallest
eigenvalues of XN converge as N → ∞ to ±2, respectively. This was proved
by Bai and Yin [3] (see also [2]). See [10] for further discussion and an
alternative proof.

We recall that the Chebyshev polynomials of the first kind Tk are the
monic polynomials orthogonal with respect to the weight

1(−1,1)(x)(1 − x2)−1/2dx

and are also given by Tk(cos θ) = cos(kθ). Alternatively, they are determined
by their generating series

(25)
∑
k≥0

Tk(x)tk =
1 − tx

1 − 2tx + t2
.
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The following result is random matrix folklore, but it is implied by more
general results of Johansson ([13], Cor 2.8):

Proposition 2.5. Let XN be the GUE of dimension N and Tn the Cheby-
shev polynomial of first kind. Let

(26) αn =
1
2π

∫ 2

−2
Tn(t)

√
4 − t2 dt.

Then for every m ∈ N, the real random vector

(27) 2
(

Tr(Tn(XN )) − Nαn√
n

)m

n=1

tends in distribution as N → ∞ toward a vector of independent standard
real Gaussian variables.

Consider two GUE random matrix ensembles (XN )N∈N and (YN )N∈N,
that are independent from each other (for each N). Voiculescu proved [24]
that these converge in moments to free semicircular elements s1 and s2

having first moment zero and second moment 1, meaning that we have

(28) lim
N→∞

E(tr(Xk1
N Y �1

N · · ·Xkm
N Y �m

N )) = τ(sk1
1 s�2

2 · · · skm
1 s�m

2 )

for all m ≥ 1 and ki, 
i ≥ 0, (where τ is a trace with respect to which
s1 and s2 are semicircular and free). Of course, by freeness, this implies
that if pi and qi are polynomials such that τ(pi(s1)) = 0 = τ(qi(s2)) for all
i ∈ {1, . . . ,m}, then

(29) lim
N→∞

E(tr(p1(XN )q1(YN ) · · · pm(XN )qm(YN ))) = 0.

Mingo and Speicher [16] have proved some remarkable results about the
related fluctuations, namely, the (magnified) random variables (30) below.
These are asymptotically Gaussian and provide examples of the phenom-
enon of second-order freeness, which has been treated in a recent series of
papers [16], [15], [8]. In particular, the following theorem is a straightforward
consequence of some of the results in [16].

Theorem 2.6. Let XN and YN be independent GUE random matrix en-
sembles. Let s be a (0, 1)-semicircular element with respect to a trace τ .
Let m ≥ 1 and let p1, . . . , pm, q1, . . . , qm be polynomials with real coefficients
such that τ(pi(s)) = τ(qi(s)) = 0 for each i. Then the random variable

(30) Tr(p1(XN )q1(YN ) · · · pm(XN )qm(YN ))

converges in moments as N → ∞ to a Gaussian random variable. More-
over, if m̃ ≥ 1 and if p̃1, . . . , p̃ em, q̃1, . . . , q̃ em are real polynomials such that
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τ(p̃i(s)) = τ(q̃i(s)) = 0 for each i, then

lim
N→∞

E
(
Tr(p1(XN )q1(YN ) · · · pm(XN )qm(YN ))(31)

· Tr(p̃1(XN )q̃1(YN ) · · · p̃
em(XN )q̃

em(YN ))
)

(32)

=

⎧⎪⎪⎨⎪⎪⎩
m−1∑
�=0

m∏
j=1

τ(pj(s)p̃j+�(s))τ(qj(s)q̃j+�(s)), m = m̃,

0, m �= m̃,

(33)

where the subscripts of p and q are taken modulo m. Furthermore, for any
polynomial r, we have

lim
N→∞

E
(
Tr(p1(XN )q1(YN ) · · · pm(XN )qm(YN ))Tr(r(XN ))

)
= 0(34)

lim
N→∞

E
(
Tr(p1(XN )q1(YN ) · · · pm(XN )qm(YN ))Tr(r(YN ))

)
= 0.(35)

If A is any unital algebra and if a1, a2 ∈ A, we let

(36) eva1,a2 : C〈x1, x2〉 → A

be the algebra homomorphism given by

(37) eva1,a2(P ) = P (a1, a2).

In the corollary below, which follows directly from Theorem 2.6 and Propo-
sition 2.5, we take as A the algebra of random matrices (over a fixed prob-
ability space) whose entries have moments of all orders.

Corollary 2.7. Let u and v be real numbers with u < v. Let AN , BN be
independent copies of

(38)
u + v

2
Id +

v − u

2
X

where X is distributed as the GUE of dimension N . Let

(39) T̃i(x) := Ti

(
2

v − u
x − u + v

v − u

)
and

(40) Ũi(x) := Ui

(
2

v − u
x − u + v

v − u

)
.

If y ∈ S, then we have

(41) lim
N→∞

E(tr ◦ evAN ,BN
(y)) = 0,

and we let β(y) = 0. If y = xn
i for i ∈ {1, 2} and n ∈ N, then we have

(42) lim
N→∞

E(tr ◦ evAN ,BN
(y)) = αn ,

where αn is as in (26), and we set β(y) = αn.
Then the random variables

(43) ( (Tr ◦ evAN ,BN
)(y) − Nβ(y) )y∈Ξ\{1} ,
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where Ξ is as in Lemma 2.4, converge in moments as N → ∞ to indepen-
dent, nontrivial, centered, Gaussian variables.

The following lemma is elementary and we will only use it in the especially
simple case of δ = 0. We will use it to see that for a sequence zN of random
variables converging in moments to a nonzero random variable, we have that
Prob(zN �= 0) is bounded away from zero as N → ∞. This is all unsurprising
and well-known, but we include proofs for completeness.

Lemma 2.8. Let y be a random variable with finite first and second mo-
ments, denoted m1 and m2. Suppose y ≥ 0 and m1 > 0. Then for every
δ > 0 satisfying

(44) 0 ≤ δ < min
(

m2

2m1
,m1

)
,

there is w, a continuous function of m1, m2 and δ, such that 0 ≤ w < 1 and

(45) Prob(y ≤ δ) ≤ w.

More precisely, we may choose

(46) w =

⎧⎪⎪⎨⎪⎪⎩
−m2 + 2δm1 +

√
m2

2 − 4δm2(m1 − δ)
2δ2

, δ > 0,

1 − m2
1

m2
, δ = 0.

Proof. Say that y is a random variable on a probability space (Ω, μ) and
let V ⊆ Ω be the set where y takes values ≤ δ. Using the Cauchy–Schwarz
inequality, we get

(47) m1 ≤ δμ(V ) +
∫

V c

y dμ ≤ δμ(V ) + m
1/2
2 (1 − μ(V ))1/2,

which yields

(48) δ2μ(V )2 + (m2 − 2δm1)μ(V ) + m2
1 − m2 ≤ 0.

If δ = 0, then this gives μ(V ) ≤ 1 − m2
1

m2
=: w. When δ > 0, consider the

polynomial

(49) p(x) = δ2x2 + (m2 − 2δm1)x + m2
1 − m2.

Its minimum value occurs at x = 2δm1−m2
2δ2 < 0 and we have

p(0) = m2
1 − m2 ≤ 0

(by the Cauchy–Schwarz inequality) and p(1) = (δ − m1)2 > 0. Therefore,
letting r2 denote the larger of the roots of p, we have 0 ≤ r2 < 1. Moreover,
if x ≥ 0 and p(x) ≤ 0, then x ≤ r2. Taking w = r2, we conclude that
μ(V ) ≤ w, and we have the formula (46). It is easy to see that w is a
continuous function of m1, m2 and δ. �



Connes’ embedding problem 627

Lemma 2.9. Let c < d be real numbers. For matrices a1 and a2, consider
the maps Tr ◦ eva1,a2 : C〈x1, x2〉 → C. Then we have

(50)
⋂

N∈N

a1,a2∈MN (C)s.a.

c·1≤ai≤d·1, (i=1,2)

ker(Tr ◦ eva1,a2) = I.

Proof. The inclusion ⊇ in (50) follows from the trace property.
Let c < u < v < d and make the choice of polynomials T̃i and Ũi described

in Corollary 2.7. Letting Ξ and J be as in Lemma 2.4, for each y ∈ J \{0},
we will find matrices a1 and a2 such that

(51) Tr(eva1,a2(y)) �= 0.

By (19) and (20) of Lemma 2.4, this will suffice to show ⊆ in (50). Rather
than find a1 and a2 explicitly, we make use of random matrices.

We may write

(52) y = c01 +
∞∑

n=1

(
c(1)
a T̃a(x1) + c(2)

a T̃a(x2)
)

+
∑
x∈S

dxŨx,

with c0, c
(i)
n and dx, not all zero. If c0 is the only nonzero coefficient, then

y is a nonzero constant multiple of the identity and any choice of a1 and
a2 gives (51). So assume some c

(i)
n �= 0 or dx �= 0. Let AN and BN be the

independent N ×N random matrices as described in Corollary 2.7. Extend
the function β : Ξ\{1} → R that was defined in Corollary 2.7 to a function
β : J → R by linearity and by setting β(1) = 1. By that corollary, the
random variable

(53) zN := Tr ◦ evAN ,BN
(y) − Nβ(y)

converges as N → ∞ in moments to a Gausian random variable with some
nonzero variance σ2. It is now straightforward to see that

(54) Prob
(
Tr ◦ evAN ,BN

(y) �= 0
)

is bounded away from zero as N → ∞. Indeed, If β(y) �= 0, then since
Nβ(y) → ±∞ and since the second moment of zN stays bounded as N → ∞,
the quantity (54) stays bounded away from zero as N → ∞. On the other
hand, if β(y) = 0, then considering the second and fourth moments of zN

and applying Lemma 2.8, we find w < 1 such that for all N sufficiently large,
we have Prob(zN �= 0) ≥ 1−w. Thus, also in this case, the quantity (54) is
bounded away from zero as N → ∞.

By work of Haagerup and Thorbjørnsen (see Equation (3.7) and the next
displayed equation of [10]), we have

(55) lim
N→∞

Prob(c · 1 ≤ AN ≤ d · 1) = 1,

and also for BN . Combining boundedness away from zero of (54) with (55),
for some N sufficiently large, we can evaluate AN and BN on a set of nonzero



628 Benôıt Collins and Ken Dykema

measure to obtain a1, a2 ∈ MN (C) so that Tr ◦ eva1,a2(y) �= 0 and c · 1 ≤
ai ≤ d · 1 for i = 1, 2. �

Proof of Theorem 2.1. As mentioned before, we concentrate on the case
k = 2, and the other cases follow similarly. By the Gelfand–Naimark–Segal
representation theorem, it is enough to prove that for all monomials P in k
noncommuting variables, we have

(56) τ(P (Xi)) = χ(P (Yi)).

Rephrased, this amounts to showing that we have

(57) τ ◦ evX1,X2(x) = χ ◦ evY1,Y2(x)

for all x ∈ X�. By hypothesis, for all p ≥ 0, all N ∈ N and all a1, a2 ∈ MN (C)
we have

(58) tr ⊗ τ((a1 ⊗ X1 + a2 ⊗ X2)p) = tr ⊗ χ((a1 ⊗ Y1 + a2 ⊗ Y2)p).

Developing the right-hand side minus the left-hand side of (58) gives that
the equality

(59)
∑

i1,...ip∈{1,2}
tr(ai1 . . . aip)(τ(Xi1 . . . Xip) − χ(Yi1 . . . Yip)) = 0

holds true for any choice a1, a2 ∈ MN (C)s.a.. This equation can be rewritten
as

(60)
∑
x∈Sp

cx

(
(tr ◦ eva1,a2)(x)

)(
τ ◦ evX1,X2(x) − χ ◦ evY1,Y2(x)

)
= 0,

where Sp ⊂ X� is a set representatives, one from each orbit in X�/ρ, of the
monomials of degree p, and where cx is the cardinality of each class.

Suppose, for contradiction, that (57) fails for some x ∈ Sp. Let

(61) y =
∑
x∈Sp

cx

(
τ ◦ evX1,X2(x) − χ ◦ evY1,Y2(x)

)
x ∈ C〈x1, x2〉.

By Lemma 2.3, y /∈ I. By Lemma 2.9, there are N ∈ N and a1, a2 ∈ MN (C)
such that c1 ≤ ai ≤ d1 for i = 1, 2 and tr ◦eva1,a2(y) �= 0. But tr ◦eva1,a2(y)
is the left-hand side of (60), and we have a contradiction. �

Remark 2.10. We only proved the result for k = 2. The proof for arbitrary
k is actually exactly the same. The only difference is that the notations in
the definition of second-order freeness is more cumbersome, but Theorem 2.6
as well as the other lemmas are unchanged.

Remark 2.11. The main ingredient in the proof of Theorem 2.1 is to pro-
vide a method of constructing a1, a2 ∈ MN (C)s.a. such that

(62) (Tr ◦ eva1,a2)(y) �= 0,
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whenever this is not ruled out by reasons of symmetry. Our approach is
probabilistic, and makes unexpected use of second-order freeness. In par-
ticular, our approach is nonconstructive. It would be interesting to find a
direct approach. For an alternative approach, see [23].

It is natural to wonder how much one can shrink the choice of matrices
from which a1 and a2 in Remark 2.11 are drawn. We would like to point
out here that in Lemma 2.9 we need at least infinitely many values of N .
More precisely, we can prove the following:

Proposition 2.12. For each N0 ∈ N, we have

(63)
⋂

N≤N0
a1,a2∈MN (C)s.a.

ker(Tr ◦ eva1,a2) � I.

Proof. Without loss of generality (for example, by taking N0!), it will be
enough to prove

(64)
⋂

a1,a2∈MN (C)s.a.

ker(Tr ◦ eva1,a2) � I

for each N ∈ N.
Following the proof of Theorem 2.1, let Wp = span {x + I | x ∈ Sp} be

the degree p vector subspace of the quotient of vector spaces C〈x1, x2〉/I.
The dimension of Wp is at least 2p/p.

Consider the commutative polynomial algebra

C[x11, . . . , xNN , y11, . . . , yNN ]

in the 2N2 variables {xij , yij | 1 ≤ i, j ≤ N}. Consider matrices

(65) X = (xij), Y = (yij) ∈ MN (C) ⊗ C[x11, . . . , xNN , y11, . . . , yNN ]

over this ring. In this setting,

(66) φ := (Tr ⊗ idC[x11,...,xNN ,y11,...,yNN ]) ◦ evX,Y

is a C-linear map from C〈x1, x2〉 to C[x11, . . . , xNN , y11, . . . , yNN ] that van-
ishes on I and every map of the form Tr ◦ eva1,a2 for a1, a2 ∈ MN (C) is φ
composed with some evaluation map on the polynomial ring

C[x11, . . . , xNN , y11, . . . , yNN ].

Therefore, we have

(67) ker φ ⊆
⋂

a1,a2∈MN (C)s.a.

ker(Tr ◦ eva1,a2).

We denote also by φ the induced map

(68) C〈x1, x2〉/I → C[x11, . . . , xNN , y11, . . . , yNN ].

Clearly, φ maps Wp into the vector space of homogeneous polynomials in
C[x11, . . . , xNN , y11, . . . , yNN ] of degree p. The space of homogenous poly-
nomials of degree p in M variables has dimension equal to the binomial
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coefficient
(
p+M−1

M−1

)
. Therefore, there exists a constant C > 0, depending on

N , such that φ maps into a subspace of complex dimension ≤ CpN2−1. For
fixed N , there is p large enough so that one has 2p/p > CpN2−1. Therefore,
by the rank theorem, the kernel of φ restricted to Wp must be nonempty.
Combined with (67), this proves (64). �

3. Application to embeddability

We begin by recalling the ultrapower construction. Let R denote the
hyperfinite II1-factor and τR its normalized trace. Let ω be a free ultra-
filter on N and let Iω denote the ideal of 
∞(N, R) consisting of those se-
quences (xn)∞n=1 such that limn→ω τR((xn)∗xn) = 0. Then Rω is the quotient

∞(N, R)/Iω , which is actually a von Neumann algebra.

Let M be a von Neumann algebra with normal, faithful, tracial state τ .

Definition 3.1. The von Neumann algebra M is said to have Connes’
embedding property if M can be embedded into an ultra power Rω of the
hyperfinite von Neumann algebra R in a trace-preserving way.

Definition 3.2. If X = (x1, . . . , xn) is a finite subset of

Ms.a. := {x ∈ M | x∗ = x},
we say that X has matricial microstates if for every m ∈ N and every ε > 0,
there is k ∈ N and there are self-adjoint k×k matrices A1, . . . , An such that
whenever 1 ≤ p ≤ m and i1, . . . , ip ∈ {1, . . . , n}, we have

(69) |trk(Ai1Ai2 · · ·Aip) − τ(xi1xi2 · · · xip)| < ε,

where trk is the normalized trace on Mk(C).

It is not difficult to see that if X has matricial microstates, then for every
m ∈ N and ε > 0, there is K ∈ N such that for every k ≥ K there are matri-
ces A1, . . . , An ∈ Mk(C) whose mixed moments approximate those of X in
the sense specified above. Also, as proved by an argument of Voiculescu [25],
if X has matricial microstates, then each approximating matrix Aj above
can be chosen to have norm no greater than ‖xj‖.

The following result is well-known. For future reference, we briefly de-
scribe a proof.

Proposition 3.3. Let M be a von Neumann algebra with seperable pred-
ual and τ a normal, faithful, tracial state on M. Then the following are
equivalent:

(i) M has Connes’ embedding property.
(ii) Every finite subset X ⊆ Ms.a. has matricial microstates.
(iii) If Y ⊆ Ms.a. is a generating set for M, then every finite subset X of

Y has matricial microstates.
In particular, if Y is a finite generating set of M then the above conditions
are equivalent to Y having matricial microstates.
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Proof. The implication (i) =⇒ (ii) follows because if

X = (x1, . . . , xn) ⊆ (Rω)s.a.,

then choosing any representatives of the xj in 
∞(N, R), we find elements
a1, . . . , an of R whose mixed moments up to order m approximate those
of the xj as closely as desired. Now we use that any finite subset of R is
approximately (in ‖ ‖2-norm) contained in some copy Mk(C) ⊆ R, for some
k sufficiently large.

The implication (ii) =⇒ (iii) is evident.
For (iii) =⇒ (i), we may without loss of generality suppose that

Y = {x1, x2, . . . }

for some sequence (xj)∞1 possibly with repetitions. Fix m ∈ N, let k ∈ N

and let A
(m)
1 , . . . , A

(m)
m ∈ Mk(C) be matricial microstates for x1, . . . , xm so

that (69) holds for all p ≤ m and for ε = 1/m, and assume ‖A(m)
i ‖ ≤ ‖xi‖

for all i. Choose a unital ∗-homomorphism πk : Mk(C) ↪→ R, and let
am

i = πk(A
(m)
i ). Let bi = (am

i )∞m=1 ∈ 
∞(N, R), where we set am
i = 0 if

i > m. Let zi be the image of bi in Rω. Then z1, z2, . . . has the same joint
distribution as x1, x2, . . . , and this yields an embedding M ↪→ Rω sending
xi to zi. �

A direct consequence of Theorem 2.1 is:

Theorem 3.4. Suppose that a von Neumann algebra M with trace τ is
generated by self-adjoint elements x1 and x2. Let c < d be real numbers.
Then M has Connes’ embedding property if and only if there exists

y1, y2 ∈ (Rω)s.a.

such that for all a1, a2 ∈ Mn(C)s.a. whose spectra are contained in [c, d],

(70) distr(a1 ⊗ x1 + a2 ⊗ x2) = distr(a1 ⊗ y1 + a2 ⊗ y2).

In this section we will prove that Connes’ embedding property is equiva-
lent to a weaker condition.

Lemma 3.5. Suppose that a von Neumann algebra M with trace τ is gen-
erated by self-adjoint elements x1 and x2. Let c < d be real numbers and for
every n ∈ N, let En be a dense subset of the set of all elements of Mn(C)
whose spectra are contained in the interval [c, d]. Then M has Connes’ em-
bedding property if and only if for all finite sets I and all choices of n(i) ∈ I
and ai

1, a
i
2 ∈ En(i), (i ∈ I), there exists y1, y2 ∈ Rω

s.a. such that

distr(x1) = distr(y1)(71)

distr(x2) = distr(y2)(72)

distr(ai
1 ⊗ x1 + ai

2 ⊗ x2) = distr(ai
1 ⊗ y1 + ai

2 ⊗ y2), (i ∈ I).(73)
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Proof. Necessity is clear.
For sufficiency, we’ll use an ultraproduct argument. Let (ai

1, a
i
2)i∈N be an

enumeration of a countable, dense subset of the disjoint union �n≥1En×En.
We let n(i) be such that ai

1, a
i
2 ∈ Mn(i)(C). For each m ∈ N, let ym

1 , ym
2 be

elements of Rω satisfying distr(ym
j ) = distr(xj) and

(74) distr(ai
1 ⊗ x1 + ai

2 ⊗ x2) = distr(ai
1 ⊗ ym

1 + ai
2 ⊗ ym

2 )

for all i ∈ {1, . . . ,m}. In particular, ‖ym
j ‖ = ‖xj‖ for j = 1, 2 and all m.

Let

(75) bm
j = (bm

j,n)∞n=1 ∈ 
∞(N, R)

be such that ‖bm
j ‖ ≤ ‖xj‖ + 1 and the image of bm

j in Rω is ym
j (j = 1, 2).

This implies that for all p ∈ N and all i ∈ {1, . . . ,m}, we have

(76) lim
k→ω

trn(i)⊗τR

(
(ai

1⊗bm
1,k +ai

2⊗bm
2,k)

p
)

= trn(i)⊗τ
(
(ai

1⊗x1+ai
2⊗x2)p

)
,

which in turn implies that there is a set Fm belonging to the ultrafilter ω
such that for all p, i ∈ {1, . . . ,m} and all k ∈ Fm, we have

(77)
∣∣trn(i)⊗τR

(
(ai

1⊗bm
1,k+ai

2⊗bm
2,k)

p
)
−trn(i)⊗τ

(
(ai

1⊗x1+ai
2⊗x2)p

)∣∣ <
1
m

.

For q ∈ N, let k(q) ∈ ∩q
m=1Fm and for j = 1, 2, let

(78) bj = (bq
j,k(q))

∞
q=1 ∈ 
∞(N, R).

Then for all i, p ∈ N, we have
(79)
lim

q→∞ trn(i)⊗τR

(
(ai

1⊗bq
1,k(q) +ai

2⊗bq
2,k(q))

p
)

= trn(i)⊗τ
(
(ai

1⊗x1 +ai
2⊗x2)p

)
,

Let yj be the image in Rω of bj. Then we have

(80) distr(ai
1 ⊗ x1 + ai

2 ⊗ x2) = distr(ai
1 ⊗ y1 + ai

2 ⊗ y2)

for all i ∈ N. By density, we have that (70) holds for all n ∈ N and all
a1, a2 ∈ Mn(C)s.a. having spectra in [c, d]. Therefore, by Theorem 3.4, M
is embeddable in Rω. �

Theorem 3.6. Suppose that a von Neumann algebra M with trace τ is
generated by self-adjoint elements x1 and x2 and suppose that both x1 and
x2 are positive and invertible. Then M has Connes’ embedding property if
and only if for all n ∈ N and all a1, a2 ∈ Mn(C)+ there exists y1, y2 ∈ Rω

s.a.

such that

distr(x1) = distr(y1)(81)

distr(x2) = distr(y2)(82)

distr(a1 ⊗ x1 + a2 ⊗ x2) = distr(a1 ⊗ y1 + a2 ⊗ y2)(83)

hold.
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Proof. Again, necessity is clear.
For the reverse implication, we will show that the conditions of Lemma 3.5

are satisfied. Suppose that for all n ∈ N and all a1, a2 ∈ Mn(C)+, there exist
y1 and y2 such that (81)–(83) hold. Let K > 1 be such that

(84) ‖xj‖ ≤ K, ‖x−1
j ‖ ≤ K.

Let En be the set of all elements of Mn(C)s.a. having spectra in the interval
[K,K2]. We will show that the condition appearing in Lemma 3.5 is satisfied
for these sets. Let I = {1, 2, . . . ,m} and for every i ∈ I let n(i) ∈ N, and
ai

1, a
i
2 ∈ En(i). We will find y1, y2 ∈ Rω such that (71)–(73) hold. For any

j ∈ {1, 2} and i ∈ I, the spectrum of ai
j ⊗ xj lies in the interval

(85) [1,K3].

Let N =
∑m

i=1 n(i) and let a1, a2 ∈ MN (C) be the block diagonal matrices

(86) aj = ⊕m
i=1K

4iai
j, (j = 1, 2).

By hypothesis, there exists y1, y2 ∈ Rω such that (81)–(83) hold. We have

(87) a1 ⊗ x1 + a2 ⊗ x2 = ⊕m
i=1K

4i(ai
1 ⊗ x1 + ai

2 ⊗ x2)

and similarly for a1⊗y1+a2⊗y2. Since the spectrum of ai
j⊗xj lies in [1,K3]

for all j and i, the spectrum of ai
1⊗x1+ai

2⊗x2 lies in [2, 2K3] as does the spec-
trum of ai

1⊗y1+ai
2⊗y2. Since the intervals in the family ([2K4i, 2K4i+3])mi=1

are pairwise disjoint, it follows that for every i ∈ {1, . . . ,m}, the projections

(0n(1) ⊕ · · · 0n(i−1) ⊕ In(i) ⊕ 0n(i+1) ⊕ · · · 0n(m)) ⊗ 1M
(0n(1) ⊕ · · · 0n(i−1) ⊕ In(i) ⊕ 0n(i+1) ⊕ · · · 0n(m)) ⊗ 1Rω

arise as the spectral projections of

a1 ⊗ x1 + a2 ⊗ x2 and a1 ⊗ y1 + a2 ⊗ y2,

respectively, for the inverval [2K4i, 2K4i+3]. Cutting by these spectral pro-
jections, we thus obtain that the distributions of ai

1 ⊗ x1 + ai
2 ⊗ x2 and

ai
1 ⊗ y1 + ai

2 ⊗ y2 are the same, as required. �

4. Quantum Horn bodies

Let RN
≥ denote the set of N -tuples of real numbers listed in nonincreasing

order. The eigenvalue sequence of an N×N self-adjoint matrix is its sequence
of eigenvalues repeated according to multiplicity and in nonincreasing order,
so as to lie in RN

≥ . Consider α = (α1, . . . , αN ) and β = (β1, . . . , βN ) in RN
≥ .

Let Sα,β be the set of all possible eigenvalue sequences γ = (γ1, . . . , γN )
of A + B, where A and B are self-adjoint N × N matrices with eigenvalue
sequences α and β, respectively. Thus, Sα,β is the set of all eigenvalue
sequences of N × N -matrices of the form

(88) Udiag(α)U∗ + V diag(β)V ∗, (U, V ∈ UN),
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where UN is the group of N × N -unitary matrices. Klyatchko, Totaro,
Knutson and Tao described the set Sα,β in terms first conjectured by Horn.
See Fulton’s exposition [9]. Taking traces, clearly every γ ∈ Sα,β must satisfy

(89)
N∑

k=1

γk =
N∑

i=1

αi +
N∑

j=1

βj .

Consider the inequality

(90)
∑
i∈I

αi +
∑
j∈J

βj ≥
∑
k∈K

γk.

for a triple (I, J,K) of subsets of {1, . . . , N}. Horn defined sets TN
r of triples

(I, J,K) of subsets of {1, . . . , N} of the same cardinality r, by the following
recursive procedure. Set

(91) UN
r =

{
(I, J,K)

∣∣∣∣∣ ∑
i∈I

i +
∑
j∈J

j =
∑
k∈K

k +
r(r + 1)

2

}
.

When r = 1, set TN
1 = UN

1 . Otherwise, let

(92) TN
r =

{
(I, J,K) ∈ UN

r

∣∣∣∣∣ ∑
f∈F

if +
∑
g∈G

jg ≤
∑
h∈H

kh +
p(p + 1)

2
,

for all p < r and (F,G,H) ∈ T r
p

}
.

The result of Klyatchko, Totaro, Knutson and Tao is that Sα,β consists of
those elements γ ∈ RN

≥ such that the equality (89) holds and the inequal-
ity (90) holds for every triple (I, J,K) ∈

⋃N−1
r=1 TN

r . We will refer to Sα,β as
the Horn body of α and β. It is, thus, a closed, convex subset of RN

≥ .
The analogue of this situation occuring in finite von Neumann algebras

has been considered by Bercovici and Li [5], [6]; let us summarize part
of what they have done. We denote by F the set of all right-continuous,
nonincreasing, bounded functions λ : [0, 1) → R. Let M be a von Neumann
algebra with normal, faithful, tracial state τ and let a = a∗ ∈ M. The
distribution of a is the Borel measure μa, supported on the spectrum of a,
such that

(93) τ(an) =
∫

R

tn dμa(t) (n ≥ 1).

The eigenvalue function of a is λa ∈ F defined by

(94) λa(t) = sup{x ∈ R | μa((x,∞)) > t}.
We call F the set of all eigenvalue functions. It is an affine space, where we
take scalar multiples and sums of functions in the usual way. Identifying F
with the set of all compactly supported Borel measures on the real line, it
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is a subspace of the dual of C(R). We endow F with the weak∗-topology
inherited from this pairing.

It is clear that for every λ ∈ F and every II1-factor M, there is a = a∗ ∈
M such that λa = λ. Note that if M = MN (C) and if a = a∗ ∈ MN (C) has
eigenvalue sequence α = (α1, . . . , αN ), then its eigenvalue function is given
by

(95) λa(t) = αj ,
j − 1
N

≤ t <
j

N
, (1 ≤ j ≤ N).

In this way, RN
≥ is embedded as a subset F (N) of F , and the affine structure

on F (N) inherited from F corresponds to the usual one on RN
≥ coming from

the vector space structure of RN .
For a set (I, J,K) ∈ TN

r , consider the triple (σN
I , σN

J , σN
K ), where for

F ⊆ {1, 2, . . . , N}, we set

(96) σN
F =

⋃
i∈F

[
i − 1
N

,
i

N

)
.

Let

(97) T =
∞⋃

N=1

N−1⋃
r=1

{
(σN

I , σN
J , σN

K ) | (I, J,K) ∈ TN
r

}
.

Theorem 4.1 ([6], Theorem 3.2). For any u, v,w ∈ F , there exists self-
adjoint elements a and b in the ultrapower Rω of the hyperfinite II1-factor
with u = λa, v = λb and w = λa+b if and only if

(98)
∫ 1

0
u(t) dt +

∫ 1

0
v(t) dt =

∫ 1

0
w(t) dt

and, for every (ω1, ω2, ω3) ∈ T , we have

(99)
∫

ω1

u(t) dt +
∫

ω2

v(t) dt ≥
∫

ω3

w(t) dt.

Given eigenvalue functions u, v ∈ F , let Fu,v be the set of all w ∈ F such
that (98) holds and (99) holds for every (ω1, ω2, ω3) ∈ T . Since the functions
in Fu,v are uniformly bounded, we see that Fu,v is a compact, convex subset
of F .

Now we consider an alternative formulation of a special case of Theo-
rem 4.1. Let N ∈ N and α, β ∈ RN

≥ . For d ∈ N, let

(100) Kα,β,d = {λC | C = diag(α) ⊗ 1d + U(diag(β) ⊗ 1d)U∗, U ∈ UNd}.
For d = 1, this is just the set of eigenvalue functions corresponding to the
Horn body Sα,β. Let

(101) Kα,β,∞ =
⋃
d≥1

Kα,β,d .

As a consequence of Bercovici and Li’s results we have the following.
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Proposition 4.2. Let α, β ∈ RN
≥ and let u = λdiag(α) and v = λdiag(β) be

the correspoding eigenvalue functions. Then

(102) Kα,β,∞ = Fu,v

is a compact, convex subset of F .
If Connes’ embedding problem has a positive solution, then for every II1-

factor M and every a, b ∈ Ms.a. whose eigenvalue functions are u and v,
respectively, we have λa+b ∈ Kα,β,∞.

Proof. The inclusion ⊆ in (102) is clear. For the reverse inclusion, let
w ∈ Fu,v. Then (98) holds and (99) holds for every (ω1, ω2, ω3) ∈ T . For
n ∈ N, let w(n) ∈ F be obtained by averaging over the intervals of length
1/n, namely,

(103) w(n)(t) =
∫ i/n

(i−1)/n
f(s) ds,

(
i − 1

n
≤ t <

i

n
, i ∈ {1, 2, . . . , n}

)
.

Then w(n) corresponds to an eigenvalue sequence γ ∈ Rn
≥. We have

(104)
∫ 1

0
u(t) dt +

∫ 1

0
v(t) dt =

∫ 1

0
w(n)(t) dt

and, for every (ω1, ω2, ω3) = (σn
I , σn

J , σn
K) ∈ T for (I, J,K) ∈ T n

r , we have

(105)
∫

ω1

u(t) dt +
∫

ω2

v(t) dt ≥
∫

ω3

w(n)(t) dt.

Therefore, taking n = Nd to be a multiple of N , by the theorem formerly
known as Horn’s conjecture, we have γ ∈ Sα⊗1d,β⊗1d

and, consequently,
w(Nd) ∈ Kα,β,d. Since w(Nd) converges as d → ∞ to w, we have w ∈ Kα,β,∞.
This proves the equality (102).

The final statement is a consequence of Bercovici and Li’s result, Theo-
rem 4.1. �

Bercovici and Li’s results provide a means of trying to find a II1-factor
M that lack’s Connes’ embedding property: namely, by finding self-adjoint
elements a, b ∈ M such that λa+b /∈ Fλa,λb

; this amounts to finding some
(I, J,K) ∈ TN

r such that

(106)
∫

σN
I

λa(t) dt +
∫

σN
J

λb(t) dt <

∫
σN

K

λa+b(t) dt.

On the other hand we will use Theorem 3.6 to see that Connes’ embedding
problem is equivalent to an anlogous question about versions of the Horn
body with “matrix coefficients.”

Let a1, a2 ∈ Mn(C)s.a., and α, β ∈ RN
≥ . We introduce the set Ka1,a2

α,β of
the eigenvalue functions of all matrices of the form

(107) a1 ⊗ Udiag(α)U∗ + a2 ⊗ V diag(β)V ∗, (U, V ∈ UN ).
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Although, for reasons that will be immediately apparent, we choose to view
Ka1,a2

α,β as a subset of F , we may equally well consider the corresponding
eigenvalue sequences and view Ka1,a2

α,β as a subset of RnN
≥ . Comparing to (88),

the set Ka1,a2

α,β is seen to be the analogue of the Horn body Sα,β, but with
“coefficients” a1 and a2. We will refer to these sets as quantum Horn bodies.

The example below shows that Ka1,a2

α,β need not be convex, even in the
case where a1, a2 commute.

Example 4.3. Let

(108) a1 =
(

1 0
0 4

)
, a2 =

(
2 0
0 1

)
and let α = β = (2, 1). Then the 4 × 4 matrices of the form (107) are all
unitary conjugates of the matrices

(109) Rt =
(

1 0
0 4

)
⊗

(
1 0
0 2

)
+

(
2 0
0 1

)
⊗

(
1 + t

√
t(1 − t)√

t(1 − t) 2 − t

)
,

for 0 ≤ t ≤ 1. One easily finds the eigenvalues λ1(t) ≥ λ2(t) ≥ λ3(t) ≥ λ4(t)
of Rt to be

λ1(t) =
15
2

+
1
2

√
25 − 16t(110)

λ2(t) =

{
9
2 + 1

2

√
9 − 8t, 0 ≤ t ≤ t1

15
2 − 1

2

√
25 − 16t, t1 ≤ t ≤ 1

(111)

λ3(t) =

{
15
2 − 1

2

√
25 − 16t, 0 ≤ t ≤ t1

9
2 + 1

2

√
9 − 8t, t1 ≤ t ≤ 1

(112)

λ4(t) =
9
2
− 1

2
√

9 − 8t,(113)

where t1 = 3
2

√
65− 23

2 ≈ 0.593. Then the set {(λ1(t), . . . , λ4(t)) | 0 ≤ t ≤ 1}
is a 1-dimensional subset of 4-space that is far from being convex. For
example, a plot of the projection of this set onto the last two coordinates is
the curve in Figure 1. The upper part of this curve is a line segment, while
the lower part is not.

Extending the notions introduced above, for integers d ≥ 1, let Ka1,a2

α,β,d be
the set of the eigenvalue functions of all matrices of the form

(114) a1⊗U(diag(α)⊗1d)U∗+a2⊗V (diag(β)⊗1d)V ∗, (U, V ∈ UNd).

If d′ divides d, then we have

(115) Ka1,a2

α,β,d′ ⊆ Ka1,a2

α,β,d .
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Figure 1. A parametric plot of λ4 (vertical axis) and λ3

(horizontal axis).

5.1 5.2 5.3 5.4 5.5
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3.4

3.6

3.8

4

Let us define

(116) Ka1,a2

α,β,∞ =
⋃
d∈N

Ka1,a2

α,β,d ,

where the closure is in the weak∗-topology for F described earlier in this
section. Note that the set Ka1,a2

α,β,∞ is compact.

Question 4.4. Though Example 4.3 shows that Ka1,a2

α,β need not be convex,
is it true that Ka1,a2

α,β,∞ must be convex, or even that Ka1,a2

α,β,d must be convex
for all d sufficiently large? Note that it is clear that Ka1,a2

α,β,∞ is convex with
respect to the affine structure on F that arises from taking convex combina-
tions of measures, under the correspondence between F and the set of Borel
probability measures on R. However, we are interested in the other affine
structure of F , resulting from addition of functions on [0, 1).

For a1, a2 ∈ Mn(C)s.a. with eigenvalue sequences γ1, γ2 ∈ Rn
≥, we obvi-

ously have

(117) Ka1,a2

α,β ⊆ Kγ1⊗α,γ2⊗β

and

(118) Ka1,a2

α,β,∞ ⊆ Kγ1⊗α,γ2⊗β,∞.

The following example shows that these inclusions can be strict.

Example 4.5. Let

(119) a1 =
(

1 0
0 0

)
, a2 =

(
0 0
0 1

)
.

One directly sees that for any eigenvalue sequences α and β of length N and
any U, V ∈ UN , the eigenvalue sequence of

(120) a1 ⊗ U(diag(α) ⊗ 1d)U∗ + a2 ⊗ V (diag(β) ⊗ 1d)V ∗
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is the re-ordering of the concatenation of α and β. Thus, Ka1,a2

α,β has only one
element. Moreover, dilating α to α ⊗ 1d does not change the corresponding
eigenvalue functions of

(121) a1 ⊗ Udiag(α ⊗ 1d)U∗ + a2 ⊗ V diag(α ⊗ 1d)V ∗.

This shows that Ka1,a2
α,α,∞ has only one element. Now we easily get

(122) Ka1,a2

α,β,∞ �= Kα⊕0N ,β⊕0N
,

where α ⊕ 0N means the eigenvalue sequence of a1 ⊗ diag(α), etc.

For M a II1-factor, we define La1,a2

α,β,M to be the set of all eigenvalue func-
tions of all operators of the form

(123) a1 ⊗ x1 + a2 ⊗ x2 ∈ Mn(C) ⊗M,

where x1 and x2 are self-adjoint elements of M whose eigenvalue functions
agree with those of the matrices diag(α) and diag(β), respectively (see (95)
for an explicit description of the latter). It is easliy seen that we have

(124) Ka1,a2

α,β,∞ = La1,a2

α,β,Rω .

Let

(125) La1,a2

α,β =
⋃
M

La1,a2

α,β,M,

where the union is over all II1-factors M with separable predual (acting on
a specific separable Hilbert space, say). Using an ultraproduct argument,
one can show that La1,a2

α,β is closed in F and compact. Also, one obviously
has

(126) Ka1,a2

α,β,∞ ⊆ La1,a2

α,β .

Theorem 3.6 gives us the following equivalent formulation of the embed-
ding question.

Theorem 4.6. The following are equivalent:
(i) Every II1-factor M with separable predual has Connes’ embedding prop-

erty.
(ii) For all integers n,N ≥ 1 and all a1, a2 ∈ Mn(C)s.a., and α, β ∈ RN

≥ ,
we have

(127) Ka1,a2

α,β,∞ = La1,a2

α,β .

Proof. Clearly, (i) implies La1,a2

α,β = La1,a2

α,β,Rω . We then get (127) from (124).
Suppose (ii) holds. It is well-known that to solve Connes’ embedding prob-

lem in the affirmative, it will suffice to show that every tracial von Neuman
algebra M that is generated by two self-adjoints x1 and x2 is embeddable
in Rω.

So suppose M is generated by self-adjoints x1 and x2. By Proposition 3.3,
it will suffice to show that x1 and x2 have matricial microstates. Approxi-
mating x1 and x2, if necessary, we may without loss of generality assume that
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the eigenvalue functions of both belong to F (N) for some N ∈ N, namely,
that they correspond to sequences α and, respectively, β in RN

≥ . By adding
constants, if necessary, we may without loss of generality assume that x1

and x2 are positive and invertible. Let n ∈ N and let a1, a2 ∈ Mn(C). Us-
ing (124) and (127), there are y1, y2 ∈ Rω such that (81)–(83) of Theorem 3.6
hold. So by that theorem, the pair x1, x2 has matricial microstates. �
Note. We recently learned of a result of Mikaël de la Salle [23] that gives
more direct proofs of our Lemma 2.9 and Theorem 2.1. We also learned
about the work [1] of Akemann, Anderson and Weaver, that seems related
to Theorem 2.1.
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