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Local geometry of zero sets of
holomorphic functions near the torus

Jim Agler, John E. McCarthy and Mark Stankus

Abstract. We call a holomorphic function f on a domain in C
n locally

toral at the point P in the n-torus if the intersection of the zero set of
f with the n-torus has dimension n − 1 at P . We study the interplay
between the structure of locally toral functions and the geometry of their
zero sets.
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0. Introduction

Throughout this paper, we shall let D denote the unit disk in the complex
plane, T be a unit circle, E be the complement of the closed unit disk in C

and let A(Dn) denote the polydisk algebra, the algebra of functions that are
continuous on the closure of D

n and holomorphic on the interior.
When studying function theory on the polydisk D

n, it is often useful to
focus on the torus T

n, which is the distinguished boundary of D
n. In several

important ways, the behavior of a function in A(Dn) is controlled by its
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behavior on T
n: not only is T

n a set of uniqueness, but every function in
the algebra attains its maximum modulus on T

n.
We shall say that a variety (by which we always mean an irreducible

algebraic set) V is toral if its intersection with T
n is fat enough to be a

determining set for holomorphic functions on V (see Section 2 for a precise
definition). Otherwise we shall call the variety atoral. We shall say that a
polynomial in C[z1, . . . , zn] is toral (respectively, atoral) if the zero set of
every irreducible factor is toral (respectively, atoral).

In [2] it was shown that knowing an algebraic set is toral has interesting
consequences in function theory and operator theory. In this paper we study
the localized versions of this and other related geometric properties of zero
sets. In Section 1 we collect standard basic tools for studying the local
geometry of an analytic set. In Section 2 we define and analyze the local
properties of interest to us. In Section 3 we develop the relationship between
the local properties of Section 2 and the global properties studied in [2]. The
results in Sections 2 and 3 include constraints, both positive and negative,
on which combinations of properties can occur simultaneously. In those
sections we also include a number of specific examples showing that various
combinations of properties can occur.

Let f be a holomorphic function defined on an open subset G of C
n and

suppose τ ∈ T
n ∩ G. To localize the notion of torality, we say f is locally

toral at τ if f(τ) = 0 and, for every neighborhood U of τ in G, there is
a neighborhood V of τ in U such that Zf ∩ V ∩ T

n is determining for
Zf ∩ V . An irreducible holomorphic function may no longer be irreducible
if its domain is restricted to a smaller set, however, there is a well-defined
notion of locally irreducible at a point. If f is locally irreducible at τ , then
we say f is locally atoral at τ if f(τ) = 0 and f is not locally toral at τ .

Every toral polynomial is locally toral at some point and vice versa. A
polynomial which is toral, locally toral at exactly one point and locally atoral
on an arc is presented.

Now let n = 2, f be a holomorphic function defined on an open subset G
of C

2 and suppose τ ∈ T
2∩G. A function ϕ which is holomorphic on an open

neighborhood of the closed unit disk is inner if |ϕ(α)| = 1 for all α ∈ D and
therefore the zero set of the function w−ϕ(z) lies in (D×D)∪ (E×E)∪T

2.
We define f to be locally inner at τ if f(τ) = 0 and its zero set near τ lies in
(D×D)∪(E×E)∪T

2 and locally outer at τ if f(τ) = 0 and its zero sets near
τ lies in (D × E) ∪ (E × D) ∪ T

2. Notice that if f is locally inner (or outer)
at τ , then the zero set of f does not intersect S where S is the set of points
(z,w) ∈ C

2 where either z or w (but not both) is unimodular. With this
notation, C

2 is the disjoint union of T
2, S and the four open “quadrants” in

C
2 determined by the sets D and E, namely, D×D, E×D, D×E, and E×E.

Any curve is C
2 which intersects two or more of the above quadrants does

so by passing through either S or T
2. Replacing T

2 with S in the definitions
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of toral, atoral, locally toral and locally atoral results in our definitions of
sidal, asidal, locally sidal and locally asidal, respectively.

If f is locally inner (or locally outer) at τ , then f is locally asidal at
τ . Moreover, the product of locally inner and locally outer functions is
locally asidal. Every locally asidal function can be decomposed (locally) as
a product of a local inner times a local outer.

After defining inner and outer for holomorphic functions of 2 variables (the
nonlocalized versions of “locally inner” and “locally outer”), we find that
every nonzero atoral polynomial p(z,w) is a product of an inner polynomial
and an outer polynomial.

While an inner polynomial is locally inner at each point in its zero set
intersect T

2, the converse is not true. The counterexample to the converse
is a polynomial p which is locally inner at each point which is both in the
zero set of p and in T

2 (and, therefore, locally asidal at each of these points),
but is not inner since it is not (globally) sidal.

1. Preliminaries

For the convenience of the reader, in this section we compile a number of
elementary results from the literature ([4],[3]) that describe the local prop-
erties of 0-sets of holomorphic functions of several variables. In addition,
we will indicate, in a general sense, how these results will be used in the
subsequent sections of the paper. If n ≥ 1 and G is an open set in C

n, let
Hol(G) denote the algebra of holomorphic functions on G. If d ≥ 2 and G0

is an open set in C
d−1, let Hol(G0)[w] denote the ring of polynomials in w

with coefficients in Hol(G0). Let P(G0) denote the collection of pseudopoly-
nomials over G0, i.e., the monic elements of Hol(G0)[w]. Thus, P ∈ P(G0)
if and only if there exists an integer n ≥ 1 and s1, . . . , sn ∈ Hol(G0) such
that

(1.1) P (z,w) = wn − s1(z)wn−1 + · · · + (−1)nsn(z).

If G1 is an open subset of G0, then we let P |G1 denote the pseudopolynomial
over G1 obtained by restricting the coefficients of P to G1. Throughout this
section, we denote points in C

d as ordered pairs ζ = (z,w) with z ∈ C
d−1

and w ∈ C. If f ∈ Hol(G), then we let Zf = {ζ | f(ζ) = 0 and ζ ∈ G}. If
P ∈ P(G0), then we shall view P as an element of Hol(G0 × C). Thus,

ZP = {(z,w) ∈ G0 × C | P (z,w) = 0}.
If ζ ∈ C

d, then we will say that G is a neighborhood of ζ if G is an open
subset which contains ζ and say that U is a neighborhood of ζ in G if U is
an open subset of G which contains ζ.

Theorem 1.2 (Weierstrass Preparation Theorem). If G is an open subset
of C

d, (z0, w0) ∈ G, f ∈ Hol(G) and f(z0, w), the holomorphic function of
the single variable w, has a 0 of order n at w = w0, then there exist
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(i) a connected neighborhood G0 of z0 in C
d−1,

(ii) a neighborhood D0 of w0 in C,
(iii) an h ∈ Hol(G0 × D0) such that Zh = ∅, and
(iv) a pseudopolynomial P over G0

such that G0 × D0 ⊆ G,

(1.3) P (z0, w) = (w − w0)n,

and

(1.4) f(z,w) = P (z,w)h(z,w)

for all z ∈ G0 and all w ∈ D0. Moreover, the representation in (1.4) is
unique in the following sense: if Q is a pseudopolynomial over G0, k ∈
Hol(G0 ×D0), Zk = ∅, Q(z0, w) = (w −w0)m for some m ≥ 1, and f = Qk
on G0 × D0, then P = Q and h = k.

In light of the uniqueness assertion in Theorem 1.2, the pseudopolynomial
P of Theorem 1.2 is referred to as the Weierstrass polynomial of f at (z0, w0)
over G0.

Evidently, if f ∈ Hol(G), (z0, w0) ∈ G, f(z0, w0) = 0 and the function
f(z0, w) has a zero of finite order at w = w0, then Theorem 1.2 can be
used to obtain sets G0 and D0 and P ∈ P(G0) such that Zf ∩ (G0 × D0) =
ZP ∩ (G0 × D0).

Now, one of the many hurdles to overcome in the quest to understand
the 0-sets of holomorphic functions in several variables results from the fact
that the ring Hol(G0), while an integral domain (when G0 is connected), fails
to be a unique factorization domain. This has the unpleasant consequence
that Hol(G0)[w] is not a unique factorization domain. It is indeed both a
fundamental and fortuitous event that nevertheless P(G0), while not a ring,
behaves like a unique factorization domain in the following sense.

Theorem 1.5. If d ≥ 2, G0 is an open connected set in C
d−1 and P ∈

P(G0), then P can be written, uniquely up to order, as a finite product of
irreducible elements of P(G0).

In many proofs using Theorem 1.5, it would be desirable to have that
if Q is an irreducible factor of P and G1 ⊂ G0, then Q|G1 is irreducible.
Unfortunately, this is not true. For example, if Q is the pseudopolynomial
over D defined by Q(z,w) = w2−z, U is an open disk in D, and 0 	∈ U , then Q
is irreducible, but Q|U is reducible since

√
z ∈ Hol(U). These considerations

motivate the following robust localized notions of irreducibility.

Definition 1.6. Let d ≥ 2, z0 ∈ C
d−1, G0 be a neighborhood of z0, and P ∈

P(G0). Let us agree to say that P is locally irreducible at z0 if, there exists
a neighborhood U of z0 in G0 such that for every connected neighborhood
V of z0 in U , P |V is irreducible.
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Definition 1.7. If d ≥ 2, ζ ∈ C
d, G is a neighborhood of ζ and f ∈ Hol(G),

we will say that f is locally irreducible at ζ if there exists a neighborhood U
of ζ in G such that for every connected neighborhood V of ζ in U , for every
g ∈ Hol(V ) and every h ∈ Hol(V ), f |V = gh implies either Zg or Zh equals
the empty set.

Clearly, if G is a connected neighborhood of (z0, w0), f ∈ Hol(G), and P
is a Weierstrass polynomial for f at (z0, w0), then f is locally irreducible at
(z0, w0) if and only if P is locally irreducible at z0.

An alternate approach to handling considerations pertaining to local ir-
reducibility is to employ the theory of germs of analytic varities. We will
not use this theory.

Since the ring of power series which converge on some neighborhood of
a given point z0 ∈ C

d−1 is a unique factorization domain, the following
theorems follow from Theorem 1.5.

Theorem 1.8. If d ≥ 2, z0 ∈ C
d−1, G0 is a neighborhood of z0, and P ∈

P(G0), then there exists a connected neighborhood G1 of z0 in G0 such that
every irreducible factor of P |G1 is locally irreducible at z0.

Theorem 1.9. If ζ ∈ C
d, G is a connected neighborhood of ζ, f ∈ Hol(G)

and f is not identically zero, then there exists a connected neighborhood U
of ζ and f1, . . . , fN ∈ Hol(U) such that f |U = f1f2 · · · fN and each fj is
locally irreducible at ζ.

The singular points of a pseudopolynomial without multiple factors can be
described via a discriminant. Recall that if p = wn−s1w

n−1+· · ·+(−1)nsn =
(w − r1) · · · (w − rn) is a polynomial with complex coefficients, then the
coefficients s1, . . . , sn equal symmetric polynomials evaluated at the roots
r1, . . . , rn and �p, the discriminant of p, is defined by writing the symmetric
function

∏
i<j

(ri − rj)2 as a polynomial �p in the elementary symmetric

functions of r1, . . . , rn. Thus,

�p = �p(s1, . . . , sn) =
∏
i<j

(ri − rj)2 .

As a consequence, p has a multiple factor if and only if �p = 0. Now, if
P ∈ P(G0), then �P is naturally an element of Hol(G0). Furthermore, the
following theorem is obtained.

Theorem 1.10. If G0 is a connected set in C
d−1 and P ∈ P(G0), then P

has a multiple factor if and only if �P is identically 0 on G0.

The next theorem shows that if �P does not vanish at z0, then, for a
sufficiently small neighborhood U of z0 in G0, P factors as a product of
pseudopolynomials of degree 1.
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Theorem 1.11. Let z0 ∈ C
d−1, G0 be a neighborhood of z0 and P be a

pseudopolynomial over G0 of degree n. If �P (z0) 	= 0, then there exists a
neighborhood U of z0 in G0 and n functions r1, . . . rn ∈ Hol(U) so that

P (z,w) = (w − r1(z)) · · · (w − rn(z))

for all z ∈ U and w ∈ C.

For P ∈ P(G0) define SP (G0,D0) = {(z0, w0) ∈ G0×D0

∣∣�P (z0) = 0 and
w = w0 is a repeated root of the one variable polynomial P (z0, w)}. Thus,
if P has no multiple factors, then SP (G0,D0) consists of the singular points
of the analytic set ZP ∩ (G0 × D0).

Proposition 1.12. If G0 is an open connected set in C
d−1, D0 is an open set

in C, P ∈ P(G0), P is irreducible and ZP ⊆ G0 ×D0, then ZP \SP (G0,D0)
is connected.

In applying Proposition 1.12 the following observation is often useful.
Notice that if a pseudopolynomial P arises as the Weierstrass polynomial of
a function f at (z0, w0) over G0, then condition (1.3) of Theorem 1.2 implies
that for a sufficiently small connected neighborhood U of z0 in G0,

(1.13) P (z,w) = 0 and z ∈ U imply w ∈ D0 .

If Q is an irreducible factor of P |U , then Proposition 1.12 implies that

(1.14) ZQ\SQ(U,D0)

is connected.
Since every pseudopolynomial is monic, the following theorem holds.

Theorem 1.15. If G0 is an open set in C
d−1, and both P and Q are pseu-

dopolynomials over G0, then there exist a quotient R ∈ P(G0) and a re-
mainder S ∈ Hol(G0)[w] such that P = RQ + S and either S is identically
zero or the degree of S is less than the degree of Q.

Combining Theorems 1.5, 1.10 and 1.15, it is easy to see the following
Nullstellensatz result for pseudopolynomials: if G0 is an open connected
set in C

d−1, P ∈ P(G0), Q ∈ P(G0), and ZQ ⊆ ZP , then there exists a
positive integer n such that Q divides Pn. Therefore, if (z0, w0) ∈ T

d, G
is a connected neighborhood of (z0, w0), f ∈ Hol(G), and g ∈ Hol(G), then
there exists a neighborhood of the form G0 × D0 of (z0, w0) in G such that

(1.16) Zg ⊆ Zf implies there exists a positive integer
n such that g|(G0 × D0) divides (f |(G0 × D0))n .

2. The local geometry of analytic sets near the
torus

We shall employ standard notations by letting D denote the open unit
disc in C centered at the origin and T denote the boundary of D. Thus, for
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d ≥ 1, D
d is the standard unit polyidisc centered at the origin in C

d and T
d

is the distinguished boundary of D
d. In addition we set E = C\(D∪T). For

the special case when d = 2, note that there are four open “quadrants” in
C

2 determined by the sets D and E, namely, D×D, E×D, D×E, and E×E.
We shall let S denote the union of the “sides” of these quadrants. Thus,

S =
[(

T × C
) ∪ (

C × T
)]∖

T
2.

Recall from [2] that a polynomial p ∈ C[z1, . . . , zn] is said to be toral if
Zp∩T

n is determining for Zp and p is said to be atoral if there does not exist
a nonconstant q ∈ C[z1, . . . , zn] such that q is toral and q divides p. Here,
Zp denotes the 0-set of p and for a set X ⊆ C

n, we say X is determining for
Zp if X ∩ Zp is a set of uniqueness for Hol(Zp), the algebra of holomorphic
functions on Zp.

We wish here to localize the notions of torality and atorality to a point
τ on the torus. Accordingly, if G is an open set in C

d and f ∈ Hol(G), let
Zf = {ζ ∈ G | f(ζ) = 0}. Further, if X ⊆ G, we say X is determining for
Zf if X ∩ Zf is a set of uniqueness for Hol(Zf ), the algebra of holomorphic
functions on Zf .

Definition 2.1. If G is an open set in C
d, f ∈ Hol(G) and τ ∈ T

d, then we
say f is locally toral at τ if f(τ) = 0 and, for every neighborhood U of τ in
G, there is a neighborhood V of τ in U such that Zf ∩V ∩T

d is determining
for Zf ∩ V . We say f is locally atoral at τ if f(τ) = 0 and there does not
exist a neighborhood W of τ in G together with a g ∈ Hol(W ) such that g
is locally toral at τ and Zg ⊆ Zf .

It easily follows from these definitions that if f ∈ Hol(G), τ ∈ T
d and U

is a neighborhood of τ in G, then f is locally toral (respectively, atoral) at
τ if and only if f |U is locally toral (respectively, atoral) at τ . In addition,
if g ∈ Hol(G) and g(τ) 	= 0, then f is locally toral (respectively, atoral) at τ
if and only if fg is locally toral (respectively, atoral) at τ .

In [2] it was an immediate consequence of the definitions that any irre-
ducible polynomial in C[z,w] is either toral or atoral. We now prove the
localized version of this result. Let τ = (τ1, τ2) ∈ T

2, G be a neighborhood
of τ and f ∈ Hol(G). We will say that f is nondegerate at τ if there exists a
neighborhood U of τ in G such that Zz−τ1 ∩Zf ∩U = {τ} and say that f is
degenerate at τ if f(τ) = 0 and f is not nondegenerate at τ . Clearly, for any
f , if f(τ) = 0, then f can be written uniquely in the form f = (z − τ1)mg
where m ≥ 0 and either g(τ) 	= 0 or g is nondegenerate. Notice also that if
f is nondegenerate at τ , then f(τ1, w) has a zero of finite order at w = τ2.

Proposition 2.2. Let τ ∈ T
2, G be a neighborhood of τ , and f ∈ Hol(G)

with f(τ) = 0. If f is locally irreducible at τ , then either f is locally toral
at τ or f is locally atoral at τ .
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Proof. Suppose f is locally irreducible at τ so that either Zz−τ1∩U = Zf∩U
for some neighborhood U of τ in G or f is nondegenerate at τ . In the
first case, clearly, f is locally toral at τ . In the second case, we let P
be a Weierstrass polynomial of f at τ over G0 so that Zf ∩ (G0 × D0) =
ZP ∩ (G0×D0). Suppose that f is not locally atoral at τ . Thus, there exists
a neighborhood W of τ in G0 × D0 and g ∈ Hol(W ) such that g is locally
toral at τ and Zg ⊆ Zf . The local irreducibility of P , the torality of g and
(1.16) imply that P is locally toral at τ . Thus, f is locally toral at τ . �

If f is locally atoral at τ , g is a divisor of f and g(τ) = 0, then, by
the definition of locally atoral, g is locally atoral at τ . A straightforward
modification of the proof of Proposition 1.3 of [2] shows that if f is locally
toral at τ , g is a divisor of f and g(τ) = 0, then g is locally toral at τ .

Now, the product of toral (respectively, atoral) polynomials is clearly toral
(respectively, atoral). Clearly, the product of functions which are locally
atoral is locally atoral. The following proposition shows that the product of
functions which are locally toral is locally toral.

Proposition 2.3. Let τ ∈ T
2, G be a neighborhood of τ and f, g ∈ Hol(G).

If f and g are locally toral at τ , then the product fg is locally toral at τ .

Proof. Without loss of generality, we may assume that both f and g are
nondegenerate at τ . Let h = fg. By Theorems 1.2 and 1.8, there exist
connected neighborhoods G0 and G1 of τ1, neighborhoods D0 and D1 of
τ2, and pseudopolynomials Pf and Pg over G0 such that G0 × D0 ⊂ G,
G1 × D1 ⊂ G,

Zf ∩ (G0 × D0) = ZPf
∩ (G0 × D0),

Zg ∩ (G1 × D1) = ZPg ∩ (G1 × D1),

each irreducible factor of Pf is locally irreducible at τ and each irreducible
factor of Pg is locally irreducible at τ . Let R1, . . . , Rm, S1, . . . , Sn be pseu-
dopolynomials over G0 ∩ G1 such that

(2.4) Pf |(G0 ∩ G1) = R1 · · ·Rm and Pg|(G0 ∩ G1) = S1S2 · · ·Sn

are the decompositions of Pf and Pg into a product of irreducible pseu-
dopolynomials.

To show h is locally toral at τ , let U be a neighborhood of τ in G. There
exists a sufficiently small connected neighborhood V of τ in

U ∩ ((G0 ∩ G1) × (D0 ∩ D1))

such that for 1 ≤ j ≤ m and 1 ≤ k ≤ n,

(2.5) (ZRj ∩ V )\{τ} and (ZSk
∩ V )\{τ} are connected

and

(2.6) (ZRj ∩ V )\{τ} and (ZSk
∩ V )\{τ} do not have any singular points.
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To show that Zh ∩ V ∩ T
2 is determining for Zh ∩ V , fix F ∈ Hol(Zh ∩ V )

with F |(Zh ∩ V ∩T
2) = 0. We shall show that F = 0 on Zf ∩ V by showing

that F = 0 on ZRj ∩ V for each j.
Fix j such that 1 ≤ j ≤ m. Rj is locally toral at τ and so there exists a

neighborhood W of τ in V such that ZRj∩W∩T
2 is determining for ZRj∩W .

Since ZRj ∩W ∩ T
2 ⊂ Zf ∩W ∩ T

2 ⊂ Zh ∩ W ∩ T
2, F |(ZRj ∩ W ∩ T

2) = 0,
and, since ZRj ∩W ∩T

2 is determining for ZRj ∩W , F |(ZRj ∩W ) = 0. Now
(ZRj ∩W )\{τ} is a relatively open subset of the connected set (ZRj ∩V )\{τ}
and each point of (ZRj ∩ V )\{τ} is not a singular point of ZRj . Thus, the
use of Theorem 1.11 and analytic continuation yields F |(ZRj ∩V ) = 0. Since
F |(ZRj ∩ V ) = 0 for each j, (2.4) shows that F |(Zf ∩ V ) = 0.

An analogous argument show that F |(Zg ∩V ) = 0. Thus, F is identically
zero. In summary, therefore, Zh ∩ V ∩ T

2 is determining for Zh ∩ V and h
is locally toral at τ . �

Corollary 2.2 of [2] shows that every polynomial can be written uniquely,
up to multiplicitive constants, as a product of a toral and an atoral polyno-
mial. Proposition 2.2, Proposition 2.3 and Theorem 1.9 imply the following
localized version of that result.

Corollary 2.7. Let τ ∈ T
2, G be a neighborhood of τ , and f ∈ Hol(G) with

f(τ) = 0. If f is neither locally toral nor locally atoral at τ , then there exists
a neighborhood U of τ , and an essentially unique factorization f |U = qr for
some q ∈ Hol(U) which is locally toral at τ and r ∈ Hol(U) which is locally
atoral at τ .

Theorem 2.8 below generalizes and proves the following: if τ = (τ1, τ2) ∈
T

2, G0 is a neighborhood of τ1, r ∈ Hol(G0) and r(τ1) = τ2, then the
pseudopolynomial w − r(z) is locally toral at τ if and only if there exists
a connected neighborhood N1 of τ1 in G0 such that, for all z ∈ N1 ∩ T,
r(z) ∈ T.

Theorem 2.8. Let ζ = (z0, w0) ∈ T
2, G be a neighborhood of ζ and

f ∈ Hol(G) be such that ζ is not a singular point of Zf , f(ζ) = 0, and
f is nondegenerate at ζ. f is locally toral at ζ if and only if there exist a
neighborhood N1 of z0, a neighborhood N2 of w0 and a function r ∈ Hol(N1)
such that

(2.9) Zf ∩ (N1 × N2) = {(z, r(z)) : z ∈ N1}
and

(2.10) r(z) ∈ T whenever z ∈ N1 ∩ T .

Proof. Suppose that f is locally toral at ζ. By shrinking G if necessary, we
may assume that Zf does not have any singular points. By Theorem 1.2,
there exists a neighborhood G0×D0 of ζ in G and P a Weierstruass polyno-
mial of f at ζ over G0 such that Zf ∩ (G0×D0) = ZP ∩ (G0 ×D0). Without
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loss of generality, we may assume that 0 	∈ G0. By the discussion preceeding
(1.13), we may assume ZP ∩ (G0 × C) = ZP ∩ (G0 × D0). Let Q be a pseu-
dopolynomial over G0 without multiple factors such that ZP = ZQ. Since
Zf ∩ (G0 ×D0) = ZQ ∩ (G0 ×D0) and Zf does not have any singular points,
SQ(G0,D0) = ∅ and �Q(z) 	= 0 for all z ∈ G0. Since P is a Weierstrass
polynomial at ζ and ZQ = ZP , Q(z0, w) = (w−w0)m where m is the degree
of Q. To show that m = 1, note that since ζ is not a singular point of Zf

and Zf ∩ (G0 × D0) = ZQ ∩ (G0 × D0), ζ is not a singular point of ZQ and
�Q(z0) 	= 0. Thus, by Theorem 1.11, m = 1 and there exists r ∈ Hol(G0)
such that Q(z,w) = w− r(z). For a sufficiently small neighborhood U of z0

in G0, r(1/z) is well-defined and nonzero and since Q is locally toral at ζ
by construction, ZQ ∩ U ∩ T

2 is determining for ZQ ∩ U . Therefore, since
w− 1/r(1/z) vanishes on ZQ ∩U ∩T

2, w = 1/r(1/z) for z ∈ ZQ ∩U and so
r(z) ∈ T whenever z ∈ U ∩T. Thus, (2.9) and (2.10) hold with N1 = U and
N2 = D0.

Now suppose that N1 × N2 is a neighborhood of ζ and (2.9) and (2.10)
hold. Let Q be the pseudopolynomial over N1 defined by Q(z,w) = w −
r(z). To show Q is locally toral at (z0, w0), let U be a neighborhood of
(z0, w0) in G. By the discussion preceeding (1.13), there exist a connected
neighborhood V1 of z0 and a neighborhood V2 of w0 such that V1 × V2 ⊆
U, V1 ×V2 ⊆ G0 ×D0 and ZQ ∩ (V1 ×C) = ZQ ∩ (V1 ×V2). With this choice
of V1 and V2,

(2.11) ZQ ∩ (V1 × V2) = {(z, r(z)) : z ∈ V1}.
To show ZQ ∩ (V1 × V2) ∩ T

2 is determining for ZQ ∩ (V1 × V2), fix F ∈
Hol(ZQ∩(V1×V2)) with F |(ZQ∩(V1×V2)∩T

2) = 0. By (2.9), (z, r(z)) ∈ T
2

whenever z ∈ V1∩T and so F (z, r(z)) = 0 whenever z ∈ V1∩T. Since V1∩T

is determining for V1, (2.11) implies that F vanishes on ZQ ∩ (V1 × V2).
Hence, ZQ ∩ (V1 × V2) ∩ T2 is determining for ZQ ∩ (V1 × V2), Q is locally
toral at τ and, consequently, f is locally toral at τ . �

Recall from [2] that p ∈ C[z1, . . . , zn] is atoral if and only if there exists
an algebraic set A such that dim A ≤ n − 2 and Zp ∩ T

2 ⊆ A. When
n = 2, this result simply says that p is atoral if and only if Zp ∩ T

2 is
finite. Thus, Proposition 2.12 below, which gives a characterization of local
atorality, does not come as a great surprise.

Proposition 2.12. Let τ ∈ T
2, G be a neighborhood of τ and f ∈ Hol(G)

with f(τ) = 0. f is locally atoral at τ if and only if τ is an isolated point of
Zf ∩ T

2.

Proof. First assume that τ is an isolated point of Zf ∩ T
2. We argue by

contradiction. If f is not locally atoral at τ , then there exist a neighborhood
W of τ and g ∈ Hol(W ) such that g is locally toral at τ and Zg ⊆ Zf . Since
τ is isolated, there exists an open set U ⊆ C

2 such that Zg ∩ U ∩ T
2 = {τ}.

Since g is locally toral at τ , there exists a neighborhood V of τ in U such that
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Zg∩V ∩T
2 is determining for Zf ∩V . Since Zg∩V ∩T

2 ⊆ Zg∩U∩T
2 = {τ},

{τ} is determining for Zg ∩ V , an impossibility.
Now assume that τ = (τ1, τ2) is not an isolated point of Zf ∩ T

2. If
f(τ1, w) is identically 0, then f is degenerate at τ and hence is not locally
atoral at τ . Therefore, we may assume that f(τ1, w) has a zero of finite order
n at w = τ2. Let G0, D0, P and h be the sets and functions guaranteed by
Theorem 1.2 with P the Weierstrass polynomial for f at τ over G0. Without
loss of generality we may assume that 0 	∈ D0 and D0 is symmetric, i.e., if
z ∈ D0, then 1/z ∈ D0. Similarly, we may assume that 0 	∈ G0 and G0 is
symmetric. Since Theorem 1.2 asserts that P (τ1, 0) = (−τ2)n, P (z, 0) 	= 0
on a neighborhood of τ1. As sn(z) = (−1)nP (z, 0), we may choose G0 to be
sufficiently small so that

(2.13) sn(z) 	= 0 for z ∈ G0.

Now since τ is not isolated, P has an irreducible factor Q ∈ P(G0) such
that there is a sequence of distinct points τ � ∈ T

2 ∩ (G0 × C) such that
τ � → τ and

(2.14) Q(τ �) = 0 for all �.

Furthermore, since f(τ1, w) is not identically 0, we may assume that τ �
1 	= τ j

1
if � 	= j. Let m be the degree of Q and t1, . . . , tm ∈ Hol(G0) be such that

Q(z,w) = wm − t1(z)wm−1 + · · · + (−1)m tm(z) .

Now, recalling that 0 	∈ G0, 0 	∈ D0, and that both G0 and D0 are symmetric,
we define R ∈ P(G0) by

(2.15) R(z,w) =
(−1)m

tm(1/z)
wmQ

(
1
z
,

1
w

)
.

Here, tm 	= 0 on G0 by (2.13).
Now consider QR ∈ P(G0). By (2.14), Q(τ �) = 0 for � ≥ 1 and by (2.15)

R(τ �) = 0 for � ≥ 1. Hence �QR vanishes on the sequence {τ �}, a set of
uniqueness for G0, and we see that �QR is identically 0 on G0. Since Q and
R are irreducible pseudopolynomials and �QR is identically zero, Q = R by
Theorem 1.10.

Now notice that by construction ZQ ∩ (G0 × D0) ⊆ Zf ∩ (G0 × D0).
Thus, as we need to show that f is not locally atoral, the proof of the
proposition will be complete if we can show Q is locally toral at (z0, w0).
Accordingly, assume that U is a neighborhood of τ in G0×D0. By the remark
following Proposition 1.12, there exists a neighborhood V0 of z0 in G0 and
a neighborhood D1 of w0 in D0 such that V0 × D1 ⊆ U,SQ(V0,D1) = {τ},
and

(ZQ ∩ (V0 × D1))\{τ}
is connected. We claim that ZQ ∩ (V0 × D1) ∩ T

2 is determining for ZQ ∩
(V0 × D1). Since τ � → τ , there exists � ≥ 1 such that τ � ∈ V0 × D1.
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Since �Q(τ �
1) 	= 0, Theorem 1.11 implies that there exists a symmetric

neighborhood N1 of τ �
1 , a symmetric neighborhood N2 of τ �

2 and a function
r ∈ Hol(N1) such that r(τ �

1) = τ �
2 and

(2.16) ZQ ∩ (N1 × N2) = {(z, r(z))|z ∈ N1} .

Recalling (2.15) and that Q = R, we see immediately, that for z ∈ N1,
r(z) = 1

r
“

1
z

” , i.e.,

(2.17) |r(z)| = 1 whenever z ∈ N1 ∩ T.

To show ZQ ∩ (V0 × D1) ∩ T
2 is determining for ZQ ∩ (V0 × D1), fix

F ∈ Hol(ZQ ∩ (V0 × D1)) with F |(ZQ ∩ (V0 × D1) ∩ T
2) = 0. Since

F |(ZQ ∩ (N1 × N2) ∩ T
2)

is identically zero, (2.15) and (2.17) and Theorem 2.8 imply

F |(ZQ ∩ (N1 × N2))

is identically zero. Now (ZQ ∩ (N1 ×N2))\{τ} is a relatively open subset of
the connected set (ZQ∩(V0×D1))\{τ} and each point of (ZQ∩(V0×D1))\{τ}
is not a singular point of ZQ by (2.16). Thus the use of Theorem 1.11 and
analytic continuation yields F |(ZQ∩(V1×D0)) = 0. Thus, ZQ∩(V1×D0)∩T

2

is determining for ZQ ∩ (V1 ×D0), Q is locally toral at τ and, consequently,
f is locally toral at τ . Since ZQ ⊂ Zf and Q is locally toral at τ , f is not
locally atoral at τ . �

Before continuing to the geometry of toral points we wish to formalize an
additional fact about the geometry of atoral points (Proposition 2.19 below).
Note the following definition is exactly the same as Definition 2.1 with T

2

replaced by S.

Definition 2.18. Let τ ∈ T
2, G be a neighborhood of τ , and f ∈ Hol(G).

Let us agree to say f is locally sidal at τ if f(τ) = 0 and for every neigh-
borhood U of τ in G there exists a neighborhood V of τ in U such that
Zf ∩ V ∩ S is determining for Zf ∩ V . We say f is locally asidal at τ if
f(τ) = 0 and there does not exist a neighborhood W of τ in G together
with a g ∈ Hol(W ) such that g is locally sidal at τ and Zg ⊆ Zf .

The following facts follow in a direct way using the ideas in the proof of
Proposition 2.12.

Proposition 2.19. Let τ ∈ T
2, G be a neighborhood of τ , and f ∈ Hol(G).

f is locally asidal at τ if and only if f(τ) = 0 and there exists a neighborhood
U of τ in G such that Zf ∩ U ∩ S = ∅.
Corollary 2.20. Let τ ∈ T

2, G be a neighborhood of τ and f ∈ Hol(G).
If f(τ) = 0 and f is neither locally sidal nor locally asidal at τ , then there
exists a neighborhood U of τ in G and functions f1, f2 ∈ Hol(U) such that f1

is locally sidal at τ , f2 is locally asidal at τ and f |U = f1f2. Furthermore,
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f1 and f2 are essentially unique on U (i.e., if f |U = g1g2 is any other
factorization of f with g1 locally sidal at τ and g2 locally asidal at τ , then
there exists a nonvanishing u ∈ Hol(U) such that g1 = uf1).

Proposition 2.21. Let τ ∈ T
2, G a neighborhood of τ , and f ∈ Hol(G). If

f is locally atoral at τ , then f is locally sidal at τ .

While the converse of Proposition 2.21 is false, nevertheless, it is true that
in a certain generic sense, locally sidal points are locally atoral. We make
this assertion precise later in this section.

Before continuing, note that Propositions 2.21, 2.2 and 2.3 imply that if
f(τ) = 0 and f is locally asidal at τ , then f is locally toral at τ . If τ is a
nonsingular point of Zf , then the following local conditions which are weaker
than local asidality guarantee local torality. In the following corollary, the
first conclusion follows from Theorem 2.8 and the second follows from the
first by considering g(z,w) = f(w, z).

Corollary 2.22. Let τ ∈ T
2, G be a neighborhood of τ and f ∈ Hol(G) with

f(τ) = 0. Suppose τ is not a singular point of Zf . If W is a neighborhood
of τ in G and Zf ∩ W ∩ (T × C) ⊆ T

2, then f is locally toral at τ . If W is
a neighborhood of τ in G and Zf ∩W ∩ (C×T) ⊆ T2, then f is locally toral
at τ .

We now turn to the geometry of toral points. Recall from [2] that if p
is a toral polynomial of degree (m,n), then each of the following equivalent
statements is true.

(2.23) Zp is symmetric,
(
i.e., (z,w) ∈ Zp ∩ (C∗)2 ⇒ (1/z, 1/w) ∈ Zp

)
.

(2.24)
p is essentially symmetric,(

i.e., zmwnp
(

1
z , 1

w

)
= σp(z,w) for some nonzero constant σ

)
.

We localize the notions in (2.23) and (2.24) to a point on the torus in the
following definition.

Definition 2.25. Let us agree to say a set S ⊆ C
2 is symmetric if S ⊆

(C\{0})2 and 1/ζ ∈ S whenever ζ ∈ S. Here, if ζ = (z,w), then 1/ζ =
(1/z, 1/w). If U ⊆ C

2 is an open symmetric set and f ∈ Hol(U), we say
f is essentially symmetric if there exists a nonvanishing σ ∈ Hol(U) such
that f

(
1/ζ

)
= σ(ζ)f(ζ) for all ζ ∈ U . If τ ∈ T

2, G is a neighborhood
of τ and f ∈ Hol(G), we say Zf is locally symmetric at τ if there exists
a neighborhood U of τ in G such that Zf ∩ U is symmetric. In addition,
we say f is locally essentially symmetric at τ if there exists a symmetric
neighborhood U of τ in G such that f |U is essentially symmetric.

Proposition 2.26. Let τ ∈ T
2, G a neighborhood of τ , and f ∈ Hol(G). If

f is locally toral at τ , then f is locally essentially symmetric at τ .
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Proof. By Theorem 1.9, it suffices to show that if f is locally toral at τ
and f is locally irreducible at τ , then f is locally essentially symmetric at
τ . Suppose f is locally toral at τ and f is locally irreducible at τ . By
Proposition 2.12, τ is not an isolated point of Zf ∩ T

2. Thus, the proof of
Proposition 2.12 shows that for sufficiently small neighborhood G0 and D0,

P (z,w) = σ(z,w)P (1/z, 1/w) for (z,w) ∈ G0 × D0

for a nonvanishing σ ∈ Hol(G0 × D0). Thus, P , and therefore f , is locally
essentially symmetric at τ . �

Now recall that atoral points necessarily are sidal. This is not the case
for toral points. Indeed, toral points come in 3 types: sidal, asidal, and
neither sidal nor asidal. However, toral points that are neither sidal nor
asidal arise from sidal toral points and asidal toral points in a particularly
simple manner, as the following proposition asserts.

Proposition 2.27. Let τ ∈ T
2, G a neighborhood of τ , and f ∈ Hol(G). If

f is locally toral at τ , then one of the following holds:
(i) f is locally sidal at τ .
(ii) f is locally asidal at τ .
(iii) There exists a neighborhood U of τ in G and essentially unique f1 and

f2 ∈ Hol(U) such that f1 is locally toral and sidal at τ , f2 is locally
toral and asidal at τ , and f |U = f1f2.

As the following examples show, all three cases mentioned in Proposi-
tion 2.27 can occur.

Example 2.28. If β ∈ T, p(z,w) = w − βz or p(z,w) = zw − β, then p is
both locally toral and locally asidal at each point in Zp ∩ T

2.

Example 2.29. Let α ∈ D\{0}, qα(z,w) = (1 − αz)zw − (z − α) and
rα(z) = z−α

z(1−αz) . Clearly, qα is irreducible,

Zqα = {(z, rα(z)) : z ∈ C\{0, 1/α}} ,

and Zqα does not have any singular points. Since rα(z) ∈ T whenever z ∈ T,
Theorem 2.8 implies qα is locally toral at each point in Zqα ∩ T

2. Now

if aα = 1
α

[
|α|2 + i|α|√1 − |α2|

]
and bα = 1

α

[
|α|2 − i|α|√1 − |α2|

]
, then

aα, bα ∈ T and for τ1 ∈ T, r′α(τ1) = 0 if and only if τ1 = aα or τ1 = bα.
In these cases, rα is not one-to-one on any neighborhood of τ1 and so p is
locally toral and locally sidal at (aα, rα(aα)) and at (bα, rα(bα)).

Example 2.30. Let α ∈ D\{0} and qα, rα and aα be as in Example 2.29.
For an appropriate choice at β ∈ T, (aα, rα(aα)) is a zero of w − βz. It is
easy to see that if ζ = (aα, rα(aα)), then w− τ1z is locally asidal at ζ and qα

is locally sidal at ζ and (w − βz)qα(z,w) is neither locally sidal nor locally
asidal at ζ.
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It would appear that the local geometry of sidal toral points can be quite
complex. However, much can be said about the geometry of asidal points.
If f is locally asidal at τ , then Proposition 2.19 implies that there exists a
neighborhood U of τ in G such that Zf ∩ U ∩ S = ∅, i.e.,

(2.31) Zf ∩ U ⊆ (D × D) ∪ (D × E) ∪ (E × D) ∪ (E × E) ∪ T
2.

Two special cases of (2.31) would be:

(2.32) Zf ∩ U ⊆ (D × D) ∪ (E × E) ∪ T
2

and

(2.33) Zf ∩ U ⊆ (D × E) ∪ (E × D) ∪ T
2.

In light of these two special possibilities we make the following definition.

Definition 2.34. Let τ ∈ T
2, G a neighborhood of τ and f ∈ Hol(G) with

f(τ) = 0. We say f is locally inner (respectively, locally outer) at τ if there
exists a neighborhood U of τ in G such that (2.32) (respectively, (2.33))
holds.

The following theorem together with Theorems 1.2 and 1.11 show that
if f is locally toral at τ , f is nondegenerate at τ and τ is not a singular
point of Zf , then either f is locally inner at τ , f is locally outer at τ or f is
locally sidal at τ . Moreover, we can determine which it is using the angular
derivative, the definition of which we now recall. Let τ = (τ1, τ2) ∈ T

2,
G0 a neighborhood of τ1 and r ∈ Hol(G0) be such that r(z) ∈ T whenever
z ∈ G0 ∩ T. Since

i
d

dθ
Arg(r(eiθ)) =

d

dθ
log(r(eiθ)) =

1
r(eiθ)

d

dθ
r(eiθ) =

r′(eiθ)eiθi

r(eiθ)
,

the angular derivative of r at τ is

Ar(τ) =
τ1r

′(τ1)
r(τ1)

.

Now, if f is a holomorphic function, f is locally toral at τ , and τ is not a
singular point of Zf , then using Theorems 1.2 and 1.11 and the following
lemma can be used to determine if f is locally inner at τ , is locally outer at
τ or is locally sidal at τ .

Lemma 2.35. Let τ1 ∈ T, G0 a neighborhood of τ1, and r ∈ Hol(G0) be
such that r(z) ∈ T whenever z ∈ T ∩ G0 and P (z,w) = (z,w) = w − r(z).
Then the following hold.

(i) If Ar(τ1) > 0, then P is locally inner at (τ1, r(τ1)).
(ii) If Ar(τ1) < 0, then P is locally outer at (τ1, r(τ1)).
(iii) If Ar(τ1) = 0, then r is not one-to-one on any neighborhood of τ1 and

so P is locally sidal at (τ1, r(τ1)).

Example 2.36. If p(z,w) = w − z, then p is locally inner at each point of
Zp ∩T

2. If q(z,w) = zw− 1, then q is locally outer at each ponit of Zq ∩T
2.
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Example 2.37. Let α ∈ D\{0} and qα, rα, aα and bα be as in Example 2.29.
If z0 ∈ C\{0, 1/α} and G0 is a connected neighborhood of z0 in C\{0, 1/α},
then Q(z,w) = w− rα(z) is the Weierstrass polynomial of qα at (z0, rα(z0))
over G0. Since Arα

( |α|
α

)
> 0, Arα

(
− |α|

α

)
< 0, Arα(aα) = Arα(bα) = 0

and Arα(τ1) 	= 0 whenever τ ∈ T\{aα, bα}, Lemma 2.35 implies qα is locally
inner at each point in the arc of T\{aα, bα} which contains |α|

α and qα is
locally outer at each point in the arc of T\{aα, bα} which contains |α|

α .

Proposition 2.38. Let τ ∈ T
2, G a neighborhood of τ and f ∈ Hol(G) with

f(τ) = 0. If f is locally inner at τ or f is locally outer at τ , then f is locally
toral at τ .

Proof. If f is either locally inner or locally outer at τ , then f is locally
asidal at τ and, therefore, f is locally toral at τ . �

Theorem 2.39. Let τ ∈ T
2, G a neighborhood of τ and f ∈ Hol(G). If

f is locally asidal at τ , then there exist a neighborhood U of τ in G and
f1, f2 ∈ Hol(U) such that f |U = f1f2, f1 is locally inner at τ and f2 is
locally outer at τ . The factorization is unique in the following sense: if
g1, g2 ∈ Hol(U), f |U = g1g2, g1 is locally inner at τ and g2 is locally outer
at τ , then there exists u ∈ Hol(U) such that g1 = uf and Zu = ∅.

Proof. The uniqueness assertion follows from Definition 2.34 and Theo-
rem 1.5.

It suffices to show that if f is locally asidal at τ and locally irreducible
at τ , then f is either locally inner at τ or locally outer at τ . Suppose f
is locally asidal at τ and locally irreducible at τ . By Proposition 2.2, the
definition of locally irreducible, the comments preceding (1.13) and the fact
that each singular point of Zf is isolated in Zf , there exists a connected
neighborhood G0 of τ1, a neighborhood D0 of τ2, and P ∈ P(G0) such
that G0 × D0 ⊆ G and P is the Weierstrass polynomial of f at τ over
G0, ZP ∩ (G0 × D0) = ZP ∩ (G0 × C), SP (G0,D0) ⊂ {τ}, and P |U is
irreducible whenever U is a connected neighborhood of τ in G0. Thus, by
Proposition 1.12, ZP \{τ} is connected.

Since SP (G0,D0) ⊂ {τ}, �P (z) 	= 0 whenever z ∈ G0\{τ1}. Since �P ∈
Hol(G0) and G0 ⊆ C, Z�P

is finite and there exists a neighborhood G1 of
τ1 in G0 such that Z�P |G1

⊆ {τ1}.
To show that P is either locally inner or locally outer at τ , fix z0 ∈

G1\{τ1} and let w0 be such that P (z0, w0) = 0. By Theorem 1.11, there
exists a neighborhood V of τ1 in G1 and r ∈ Hol(V ) such that r(z0) = w0

and P (z, r(z)) = 0 for z ∈ V . Since f is locally asidal at τ , r(z) ∈ T for
z ∈ V ∩T. Furthermore, if r′(z1) = 0 for some z1 ∈ V ∩T, then there would
necessarily exist a point z2 near z1 in V \T such that |r(z2)| = 1. Since f
is locally asidal at τ , no such z1 exists and we see that r′ 	= 0 on V ∩ T.
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Accordingly, either

(2.40) r(V ∩ D) ⊆ D and r(V ∩ E) ⊆ E

or

(2.41) r(V ∩ D) ⊆ E and r(V ∩ E) ⊆ D.

Noting that (2.40) implies that

{(z, r(z)) : z ∈ V } ⊆ (D × D) ∪ (E × E) ∪ T
2

and that (2.41) implies that

{(z, r(z)) : z ∈ V } ⊆ (D × E) ∪ (E × D) ∪ T
2

we have shown that if (z0, w0) ∈ (ZP ∩T
2)\{τ}, then there exists a relatively

open neighborhood U(z0,w0) of (z0, w0) in ZP\{τ} such that exactly one of
the following inclusions is obtained:

(2.42) U(z0,w0) ⊆ (D × D) ∪ (E × E) ∪ T
2,

(2.43) U(z0,w0) ⊆ (D × E) ∪ (E × D) ∪ T
2.

Now, since the asidality of P at τ implies that if (z0, w0) ∈ ZP \T2, then
(z0, w0) is an element of one of the open sets (D×D)∪ (E×E) or (D×E)∪
(E × D), we see that in fact for every point (z0, w0) in ZP\{τ}, there exists
a relatively open neighborhood of (z0, w0) in ZP \{τ} such that either (2.42)
or (2.43) holds, but not both. Consequently, since ZP \{τ} is connected,
either ZP \{τ} ⊆ (D × D) ∪ (E × E) ∪ T

2 and P is locally inner at τ or
ZP\{τ} ⊆ (D × E) ∪ (E × D) ∪ T

2 and P is locally outer at τ . �

Before we consider the global properties of zero sets of globally defined
polynomials, we summarize our classification of points τ in the 0-sets of lo-
cally irreducible holomorphic functions. Indeed, if τ ∈ T

2, f is holomorphic
on a neighborhood G of τ , and f is locally irreducible at τ , then one of the
following occurs.

(i) f could be locally toral and locally sidal at τ .
(ii) f could be locally inner at τ .
(iii) f could be locally outer at τ .
(iv) f could be locally atoral and locally sidal at τ .

If τ is not a singular point of Zf and f is locally toral at τ , then we can
determine whether (i), (ii) or (iii) above occur via Lemma 2.35.

Example 2.36 gives examples of (ii) and (iii) above.
Example 2.29 gives an example of (i) above.
Proposition 2.21 states that (iv) occurs if f is locally atoral at τ . The

polynomial 2 − τ1z − τ2w is locally atoral at τ and therefore is an example
of (iv) above.



534 Jim Agler, John E. McCarthy and Mark Stankus

For α ∈ D, let Bα(z) = z−α
1−αz . If τ1 ∈ T, then Bα(τ1) ∈ T and

(2.44) ABα(τ1) =
1 − |α|2
|1 − αz|2 .

Example 2.45. Let r(z) =
zB1/3(z)
B1/2(z)

,

U = {z ∈ C : |z| < 3/2 and z 	= 1/2},
and f(z,w) = w − r(z) for (z,w) ∈ U × C. For τ1 = cos(t) + i sin(t), t ∈ R,

Ar(τ1) =
12(5 − 2 cos(t)) sin2

(
t
2

)
(5 − 3 cos(t))(5 − 4 cos(t))

.

Thus, Ar(1) = 0 and Ar(τ1) > 0 whenever τ1 ∈ T\{1}. Thus, f is locally
sidal at (1, 1) and f is locally inner at each point of (Zf ∩ T

2)\{(1, 1)}.

Example 2.46. Let r(z) =
zB1/4(z)
B1/2(z)

,

U = {z ∈ C : |z| < 3/2 and z 	= 1/2},
and f(z,w) = w − r(z) for (z,w) ∈ U × C. For τ1 = cos(t) + i sin(t), t ∈ R,

Ar(τ1) =
32 cos2(t) − 144 cos(t) + 109
(5 − 4 cos(t))(17 − 8 cos(t))

.

Thus, if we set a = arccos
(

18−√
106

8

)
, then f is locally outer at each point

in the set {(eit, r(eit)) : −a < t < a}, f is locally inner at each point in the
set {(eit, r(eit)) : a < t < 2π − a}, and f is locally sidal at (eia, r(eia)) and
(e−ia, r(e−ia)).

3. The global geometry of algebraic sets

In this section we shall discuss the various connections between the con-
cepts of torality and atorality for polynomials in C

2 introduced in [2] and
the concepts of local torality and local atorality for holomorphic functions
introduced in the previous section. We then shall extend the local concepts
of sidality, asidality, inner and outer from the previous section to the context
of globally defined algebraic sets in C

2.

Theorem 3.1. Let p be an irreducible polynomial. The following are equiv-
alent.

(i) p is toral.
(ii) There exists τ ∈ T

2 such that p is locally toral at τ .
(iii) There exists τ ∈ Zp ∩ T

2 such that �p(τ) 	= 0 and Zp is locally sym-
metric at τ .
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Proof. We shall show that (i)→(iii)→(ii)→(i). First assume that (i) holds.
Since p is toral, Theorem 2.4 of [2] implies that Zp ∩ T

2 is infinite. Since
p is irreducible, Z�p is finite. Hence there exists τ ∈ Zp ∩ T

2 such that
�p(τ) 	= 0. Now, by Proposition 1.5 of [2], Zp is symmetric. Hence Zp is
locally symmetric at τ and (iii) holds.

Now assume that (iii) holds. Since �p(τ) 	= 0, τ is not a singular point of
Zp and, by Theorems 1.11 and 1.2, there exists a neighborhood G0 of τ1, a
neighborhood D0 of τ2 and r ∈ Hol(G0) such that

Zf ∩ (G0 × D0) = {(z, r(z)) : z ∈ G0}.
Thus, since Zf is locally symmetric, r(z) ∈ T whenever z ∈ T. By Theo-
rem 2.8, f is locally toral at τ and (ii) holds.

Finally assume that (ii) holds. By Proposition 2.12, Zp ∩T
2 is an infinite

set. By Theorem 2.4 of [2], p is not atoral and therefore, since p is irreducible,
p is toral. �

Theorem 3.1 cannot be much improved since the following examples il-
lustrate the facts that the zeros of toral polynomials on the torus need not
be locally toral (i.e., (i) does not imply (ii) for every τ) and that local sym-
metry at a singular point need not imply local torality (i.e., (iii) does not
imply (ii) without the assumption that �p(τ) 	= 0). To work efficiently with
pseudopolynomials of degree 2 in w, we state the following lemma.

Lemma 3.2. Let s, p, r1, r2 ∈ C. If P (w) = w2−sw+p = (w−r1)(w−r2),
then the following hold.

(i) P is a symmetric polynomial if and only if |p| = 1 and sp = s.
(ii) If |p| = 1 and |s| < 2, then P has two distinct unimodular roots.
(iii) If |p| = 1 and |s| = 2, then P has a double unimodular root.
(iv) If |p| = 1 and |s| > 2, then P has two roots r1 and r2 neither of which

is unimodular and |r1||r2| = 1.

Example 3.3. Let h(x) =
2∑

n=0
aneinx be a trigonometric polynomial of

degree 2 such that h(x) > 0 for all real numbers x and there exist numbers
a, b, c and d such that 0 < a < b < c < d, h > 4 on [0, a), h < 4 on
(b, c), h > 4 on (c, d), h(d) = 4 and h > 4 on (d, 2π]. Let τ1 = eid. By
Fejer’s Theorem, there exists a polynomial s(z) of degree two such that
s(eix) = h(x). Let p(z) = s(z)/s(1/z) and P (z,w) = w2 − s(z)w + p(z).
Now |s(τ1)| = 2 and |s(z)| > 2 whenever z ∈ T, z is near τ1 and z 	= τ1.
Thus, by Lemma 3.2, there exists τ2 ∈ T such that P (τ1, τ2) = 0 and for a
sufficiently small neighborhood G0 of τ1, ZP ∩T

2∩ (G0×C) = {τ}. Thus, P
is locally atoral at τ . By clearing denominators, we obtain a polynomial of
degree (4,2) which is irreducible, toral and is locally atoral at a single point.

Example 3.4. Let q(z,w) = (3z + 1)w2 − (z + 3)(3z + 1)w + z(z + 3),
s(z) = z + 3 and p(z) = z(z+3)

3z+1 . It is easy to show that q is irreducible, q is
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essentially symmetric (see (2.24)) and

Zq = {(z,w) ∈ C
2 | z 	= −1/3 and w2 − s(z)w + p(z) = 0}.

If z ∈ T\{−1}, then |s(z)| > 2. Thus, by Lemma 3.2, Zq∩T
2 = {(−1, 1)}. In

summary, q is irreducible, q is locally atoral at (−1, 1) and Zq is locally sym-
metric at (−1, 1). Also �q(−1, 1) = 0. Thus, condition (iii) of Theorem 3.1.
without the ‘�p(τ) 	= 0” does not imply condition (i) of Theorem 3.1.

Corollary 3.5. If p ∈ C[z,w], then p is atoral if and only if p is locally
atoral at each point in Zp ∩ T

2.

We now globalize Definition 2.18.

Definition 3.6. Let us agree to say that a polynomial p = p(z,w) ∈ C[z,w]
is sidal if S is determining for Zp and that p is asidal if no nonconstant
divisor of p is sidal.

Noting that the logic of Definition 3.6 is parallel to that of Definition 1.2
of [2] (with T

2 replaced by S, we see that the following analogs of Corollaries
2.1 and 2.2 from [2] are obtained.

Proposition 3.7. Let p be a nonzero polynomial in C[z,w]. The following
are equivalent.

(i) p is sidal (respectively, asidal).
(ii) Each irreducible factor of p is sidal (respectively, asidal).
(iii) Every divisor of p is sidal (respectively, asidal).

Proposition 3.8. Let p be a nonzero polynomial in C[z,w]. There exist an
essentially unique factorization p = qr with q sidal and r asidal.

Notice that Proposition 3.8 is a global analog of Corollary 2.20 from the
previous section.

Now, while it is true that one can prove Propositions 3.7 and 3.8 above
by following the arguments from [2], it is also true that the propositions can
be deduced from the following simple geometric characterizations on sidal
and asidal polynomials.

Theorem 3.9 (cf. Proposition 2.19). If p ∈ C[z,w], then p is asidal if and
only if Zp ∩ S = ∅.
Theorem 3.10. If p ∈ C[z,w] and p is irreducible, then p is sidal if and
only if Zp ∩ S 	= ∅.

The reason that Theorems 3.9 and 3.10 are so much simpler than Theo-
rems 2.4 and 2.7 from [2] is due to the fact that if p ∈ C[z,w], then Zp ∩ S

does not have isolated points. This fact also yields immediate proofs of the
theorems.

Now recall Theorem 2.39 which asserted that if f is locally asidal at
τ ∈ T

2, then f has an essentially unique factorization f = f1f2 with f1

locally inner at τ and f2 locally outer at τ . Following Definition 2.34, we
introduce the following definition.



Local geometry of zero sets 537

Definition 3.11. If p ∈ C[z,w], we say p is inner if Zp ⊂ (D×D)∩(E×E)∩T
2

and we say p is outer if Zp ⊂ (D × E) ∩ (E × D) ∩ T
2.

Every polynomial p ∈ C[z,w] which is inner or outer is toral as can be
seen by the following proposition.

Proposition 3.12. If p ∈ C[z,w] and p is asidal, then p is toral.

Notice that the product of an inner polynomial and outer polynomial is
asidal. The converse is true and is shown in the following theorem.

Theorem 3.13. Let p(z,w) ∈ C[z,w]. If Zp ∩ S = ∅, then there exists
p1, p2 ∈ C[z,w] such that p = p1p2, p1 is inner and p2 is outer.

Proof. We need only show that if p is irreducible and Zp ∩ S = ∅, then p
is either inner or outer. By Corollary 2.1 in [2], it suffices to show that if
p is irreducible and Zp ∩ S = ∅, then p is toral. Suppose p is irreducible
and Zp ∩ S = ∅. Since p is irreducible, �p is not identically zero. Since
�p ∈ C[z], Z�p is finite and Zp\Sp(C, C) is connected. Let U1 and U2 be
the sets

U1 = {(z,w) ∈ Zp : there exists a neighborhood V of (z,w)
such that Zp ∩ V ⊆ (D × D) ∪ (E × E) ∪ T

2}
and

U2 = {(z,w) ∈ Zp : there exists a neighborhood V of (z,w)
such that Zp ∩ V ⊆ (D × E) ∪ (E × D) ∪ T

2}.
By Theorem 2.39, Zp ∩ T

2 ⊆ U1 ∪ U2. Clearly,

Zp ∩ (D × D) ⊆ U1, Zp ∩ (D × E) ⊆ U2,

Zp ∩ (E × D) ⊆ U2 Zp ∩ (E × E) ⊆ U1.

Since Zp ∩ S = ∅,
Zp = (Zp∩(D×D))∪(Zp∩(D×E))∪(Zp∩(E×D))∪(Zp∩(E×E))∪(Zp∩T

2).

Thus Zp = U1 ∪U2, U1∩U2 = ∅ and both U1 and U2 are open. Thus U1 = ∅
and p is outer or U2 = ∅ and p is inner. �

We close this section by remarking that every polynomial in C[z,w] is
a product of irreducible polynomials in C[z,w]. Here is a summary of the
types of irreducible polynomials which we have encountered.

Example 3.14. Example 3.3 gives an example of a toral polynomial which
is locally atoral at some point.

Example 3.15. Let q(z,w) = (az + 1)w2 − (z + a)(az + 1)w + z(z + a). In
the case that a = 3, Example 3.4 shows that Zq ∩ T

2 is a singleton set, q is
atoral and q is symmetric.

Example 3.16. If a > 3 and q(z,w) = (az+1)w2−(z+a)(az+1)w+z(z+a),
then Zq ∩ T

2 = ∅, q is atoral and q is symmetric.
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Example 3.17. Recall that for α ∈ D, we set Bα(z) = z−α
1−αz . Let

r(z) =
zB2/5(z)
B1/2(z)

,

U = {z ∈ C : |z| < 3/2 and z 	= 1/2}, and f(z,w) = w − r(z) for (z,w) ∈
U × C. For t ∈ R and τ1 = cos(t) + i sin(t),

Ar(τ1) =
80 cos2(t) − 240 cos(t) + 163
(5 − 4 cos(t))(29 − 20 cos(t))

.

Thus, Ar(τ1) > 0 for all τ1 ∈ T and, by Lemma 2.35, f is locally inner
and locally asidal at each point in Zf ∩ T

2. For z near 1/2, r(z) > 1 and
therefore, f is not inner since f is sidal. Hence, locally inner does not imply
inner and locally asidal does not imply asidal.
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