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Vertex tensor category structure on a
category of Kazhdan–Lusztig

Lin Zhang

Abstract. We incorporate a category considered by Kazhdan and Lusz-
tig of certain modules (of a fixed level �, not a positive integer) for an
affine Lie algebra, into the representation theory of vertex operator al-
gebras. We do this using the logarithmic tensor product theory for
generalized modules for a vertex operator algebra developed by Huang,
Lepowsky and the author; we prove that the conditions for applying this
general logarithmic tensor product theory hold. As a consequence, we
prove that this category has a natural vertex tensor category structure,
and in particular we obtain a new, vertex-algebraic, construction of the
natural associativity isomorphisms and proof of their properties.
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1. Introduction

In a series of papers [KL2]–[KL5] (see also [KL1]), Kazhdan and Lusztig
constructed a braided tensor category structure on a category Oκ of certain
modules for an affine Lie algebra of a fixed level κ − h, h the dual Cox-
eter number of the Lie algebra and κ a complex number not in Q≥0, the
set of nonnegative rational numbers, and showed that this braided tensor
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category is equivalent to a tensor category of modules for a quantum group
constructed from the same Lie algebra. The most interesting cases are those
of the allowable negative levels. Their construction of the tensor product
uses ideas in the important work [MS] by Moore and Seiberg. While the
category in [MS] consists essentially of the integrable highest weight modules
for an affine Lie algebra of a fixed positive integral level rather than modules
of a fixed negative level, for example, it was first discovered by Moore and
Seiberg in that paper that this positive-level category has a braided tensor
category structure; however, this was based on the strong assumption of the
axioms for conformal field theory and in particular, the assumption of the
existence of the “operator product expansion” for “intertwining operators.”

Suitable modules for affine Lie algebras give rise to an important family of
vertex operator algebras and their modules. In [HL1]–[HL4] and [H2], Huang
and Lepowsky developed a substantial tensor product theory for modules
for a “rational” vertex operator algebra, under certain conditions. As one
of the applications of this theory, they proved in [HL5] that the conditions
required for this theory are satisfied for the module category of the vertex
operator algebra constructed from the category of integrable highest weight
modules for an affine Lie algebra of a fixed positive integral level. As a result
they directly constructed a braided tensor category structure, and further,
a “vertex tensor category” structure, on this category.

It has been expected that the category Oκ considered by Kazhdan and
Lusztig should also be covered by a suitable generalization of the tensor
product theory developed by Huang and Lepowsky, even though κ− h can-
not be positive integral. However, this category is very different from the
one associated with the positive integral level case. For example, the objects
of this category in general are only direct sums of generalized eigenspaces,
rather than eigenspaces, for the operator L0 that defines the conformal
weights. Therefore, such a generalization, if it exists, should include cat-
egories of these more general modules. Recently, such a generalization has
been achieved in [HLZ1] and [HLZ2] by Huang, Lepowsky and the author. A
fundamental subtlety in this generalization is that the corresponding inter-
twining operators involve logarithms of the variables. The questions are now
whether the category of Kazhdan and Lusztig satisfies the required condi-
tions for the generalized tensor product theory of [HLZ1] and [HLZ2], and if
the answer is affirmative, whether the resulting tensor product construction
is equivalent to the original construction given by Kazhdan and Lusztig.

In this paper, we prove that category Oκ indeed satisfies all necessary con-
ditions in [HLZ1] and [HLZ2]. We establish an equivalent condition for the
subtle “compatibility condition” in the construction of the tensor product
and use it to prove that the two constructions of the tensor product functor
are identical. We then use the methods in [H2] and [H3] and their general-
izations in [HLZ1] and [HLZ2] to obtain a new construction, very different
from the original one by Kazhdan and Lusztig, of the natural associativity
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isomorphisms. As a result, we incorporate the tensor category theory of Oκ

into the theory of vertex operator algebras and more importantly, prove that
Oκ has a natural vertex tensor category structure.

The contents of this paper are as follows: In Section 2 we recall the
construction of the tensor product by Kazhdan and Lusztig and some of
their results on the category Oκ. In Section 3 we recall from [HLZ1] and
[HLZ2] the construction of tensor product of generalized modules for a vertex
operator algebra. In Section 4 we prove an equivalent condition for the
“compatibility condition.” Then in Section 5 we first apply the general
theory to the case of Oκ and prove the equivalence of the two constructions
of the tensor product functor; then we show that the objects of the category
Oκ are C1-cofinite and quasi-finite-dimensional. These results imply that
the conditions for applying the results in [HLZ1] to the category Oκ are
satisfied, and thus Oκ has a vertex tensor category structure. This paper is
heavily based on the generalized tensor product theory developed in [HLZ1]
and [HLZ2].

In this paper, C, N and Z+ are the complex numbers, the nonnegative
integers and the positive integers, respectively.

Acknowledgments. This paper is a revised version of part of the author’s
Ph.D. thesis [Z]. The author would like to thank Professor James Lep-
owsky and Professor Yi-Zhi Huang for their long time encouragement and
support, both spiritually and financially, and for numerous discussions and
suggestions on this and related works; he would also like to thank Professor
Haisheng Li for his encouragement and discussions from the very beginning.
Part of the contents of this paper was presented in seminar talks given at
Stony Brook and at Rutgers by the author in April and November, 2003.
The author would like to thank Bin Zhang for inviting him to present this
work at Stony Brook.

2. Kazhdan–Lusztig’s tensor product and the
category Oκ

In this section we recall the “double dual” construction of tensor product
of certain modules for an affine Lie algebra of a fixed level, given by Kazhdan
and Lusztig in [KL2] (see also [KL1]). We also recall from their papers the
category Oκ for a complex number κ /∈ Q≥0 and the result on closedness of
tensor product on this category (see also [Y]).

Let g be a complex semisimple finite-dimensional Lie algebra equipped
with a nondegenerate invariant symmetric bilinear form (·, ·). The (un-
twisted) affine Lie algebra associated with g is the vector space

ĝ = g ⊗ C[t, t−1] ⊕ Ck,
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equipped with the bilinear bracket operations

[a⊗ tm, b⊗ tn] = [a, b] ⊗ tm+n +m(a, b)δm+n,0k,(2.1)

[·,k] = 0 = [k, ·](2.2)

for a, b ∈ g and m,n ∈ Z. We will also need its algebraic completion
g ⊗ C((t)) ⊕ Ck, which satisfies the same bracket relations (2.1) and (2.2),
and more generally, for a, b ∈ g and g1, g2 ∈ C((t)),

(2.3) [a⊗ g1, b⊗ g2] = [a, b] ⊗ g1g2 + {g1, g2}(a, b)k
where {g1, g2} = Res g2 ddtg1, the coefficient of t−1 in the formal Laurent
series g2 ddtg1.

Equipped with the Z-grading

ĝ =
∐
n∈Z

ĝ(n),

where
ĝ(0) = g ⊕ Ck and ĝ(n) = g ⊗ t−n for n �= 0,

ĝ becomes a Z-graded Lie algebra. We have the following graded subalgebras
of ĝ:

ĝ(±) =
∐
n>0

g ⊗ t∓n,

ĝ(≤0) = ĝ(−) ⊕ g ⊕ Ck.

A ĝ-module W is said to be of level � ∈ C if k acts on W as scalar �. A
module W for ĝ or ĝ(≤0) is said to be restricted if for any a ∈ g and w ∈W ,
(a⊗ tn)w = 0 for n sufficiently large. Note that a restricted module W for
ĝ is naturally a module for g⊗C((t))⊕Ck by letting a⊗∑

n∈Z
cnt

n, a ∈ g,
cn ∈ C, act on w ∈W as

∑
n∈Z

cn(a⊗ tn)w.
A ĝ-module W is said to be smooth if for any w ∈W , there is N ∈ N such

that for any a1, . . . , aN ∈ g, (a1 ⊗ t) · · · (aN ⊗ t)w = 0. By (2.1) and the fact
that g = [g, g] it is clear that a smooth ĝ-module must be restricted.

Let m be a positive integer. First recall that the direct sum g⊕m of m
copies of g is a semisimple Lie algebra with nondegenerate invariant sym-
metric bilinear form (·, ·) given by

((a1, · · · , am), (b1, · · · , bm)) = (a1, b1) + · · · + (am, bm)

for a1, . . . , am, b1, . . . , bm ∈ g.
Given m restricted ĝ-modules of a fixed level � ∈ C, the goal is to produce

a “tensor product” of these modules that is also a ĝ-module of the same level.
(Note that the usual tensor product for Lie algebra modules is a module of
level m�.) As we recall from [KL1] and [KL2] below, this can be defined in
terms of a Riemann sphere with m+ 1 distinct points and local coordinates
at these points.

Let p0, p1, . . . , pm be distinct points, or punctures (see [H1]), on the Rie-
mann sphere C = CP 1 and let ϕs : C → CP 1 be isomorphisms such that
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ϕs(ps) = 0 for each of s = 0, 1, . . . ,m, that is, ϕs is the local coordinate
around ps for each s. We will still use C for the Riemann sphere equipped
with these punctures and local coordinates.

Let R denote the algebra of regular functions on C\{p0, p1, . . . , pm}. De-
fine {f1, f2} = Resp0f2df1, i.e., the residue of the meromorphic 1-form f2df1

on C at the point p0. Then {·, ·} : R×R→ C is a bilinear form satisfying

{f1, f2} + {f2, f1} = 0, {f1f2, f3} + {f2f3, f1} + {f3f1, f2} = 0

for all f1, f2, f3 ∈ R. As a result the Lie algebra g⊗R has a natural central
extension ΓR = (g ⊗R) ⊕ Ck with central element k and bracket relations

(2.4) [a⊗ f1, b⊗ f2] = [a, b] ⊗ f1f2 + {f1, f2}(a, b)k,
for a, b ∈ g and f1, f2 ∈ R.

Remark 2.1. In [KL2], C is allowed to be a smooth curve with k connected
components each of which is isomorphic to CP 1, and the construction would
give a ĝ⊕k-module as the tensor product. For the purpose of this paper,
however, we need only the k = 1 case.

For each s = 0, 1, . . . ,m, denote by ιps : R→ C((t)) the linear map which
sends f ∈ R to the power series expansion of f ◦ ϕ−1

s around 0. Then we
have Lie algebra homomorphisms

ΓR → g ⊗ C((t)) ⊕ Ck,(2.5)
a⊗ f �→ a⊗ ιp0f, k �→ k

for a ∈ g, f ∈ R, and

ΓR → (g ⊗ C((t)))⊕m ⊕ Ck,(2.6)

a⊗ f �→ (a⊗ ιp1f, · · · , a⊗ ιpmf), k �→ −k

for a ∈ g and f ∈ R (cf. Remark 2.2 below). Here we see

(g ⊗ C((t)))⊕m ⊕ Ck = g⊕m ⊗ C((t)) ⊕ Ck

as the algebraic completion of the affine Lie algebra

ĝ⊕m = g⊕m ⊗ C[t, t−1] ⊕ Ck

associated with the semisimple Lie algebra g⊕m; so in particular,

(2.7) [(a1 ⊗ g1, · · · , am ⊗ gm), (a′1 ⊗ g′1, · · · , a′m ⊗ g′m)]

= ([a1, a
′
1] ⊗ g1g

′
1, · · · , [am, a′m] ⊗ gmg

′
m) +

m∑
i=1

(ai, a′i){gi, g′i}k

for a1, . . . , am, a
′
1, . . . , a

′
m ∈ g and g1, . . . , gm, g′1, . . . , g

′
m ∈ C((t)).

Remark 2.2. That (2.5) is a Lie algebra homomorphism is straightforward
by (2.4) and (2.3). Formula (2.6) gives a Lie algebra homomorphism due to
(2.4), (2.7) and the fact that for any f1, f2 ∈ R,

{ιp1f1, ιp1f2} + · · · + {ιpmf1, ιpmf2} = −{ιp0f1, ιp0f2},
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by the residue theorem.

Now let W1, W2, . . . , Wm be ĝ-modules of level �. The vector space
tensor product W1⊗· · ·⊗Wm is naturally a module for the affine Lie algebra
ĝ⊕m = g⊕m ⊗ C[t, t−1] ⊕ Ck = (g ⊗ C[t, t−1])⊕m ⊕ Ck by k acting as scalar
� and

(a1 ⊗ tn1, · · · , am ⊗ tnm)(w(1) ⊗ · · · ⊗ w(m))(2.8)

= (a1 ⊗ tn1)w(1) ⊗w(2) ⊗ · · · ⊗ w(m) + · · ·
+ w(1) ⊗ w(2) ⊗ · · · ⊗ (am ⊗ tnm)w(m)

for a1, . . . , am ∈ g, n1, . . . , nm ∈ Z and w(i) ∈Wi, i = 1, . . . ,m. This follows
from the bracket relations (2.7) where gi and g′i’s are in C[t, t−1].

If each ĝ-module Wi is restricted, i = 1, . . . ,m, then it is clear from (2.8)
thatW1⊗· · ·⊗Wm is a restricted ĝ⊕m-module, and hence naturally a module
for g⊕m ⊗ C((t)) ⊕ Ck, satisfying

(a1 ⊗ g1, · · · , am ⊗ gm)(w(1) ⊗ · · · ⊗ w(m))(2.9)

= (a1 ⊗ g1)w(1) ⊗ w(2) ⊗ · · · ⊗ w(m) + · · ·
+ w(1) ⊗ w(2) ⊗ · · · ⊗ (am ⊗ gm)w(m).

for a1, . . . , am ∈ g, g1, . . . , gm ∈ C((t)) and w(i) ∈Wi, i = 1, . . . ,m. Thus by
(2.6) we have a ΓR-module structure on W1 ⊗ · · · ⊗Wm where k acts as the
scalar −�. The dual vector space (W1⊗· · ·⊗Wm)∗ = Hom(W1⊗· · ·⊗Wm,C)
has an induced natural ΓR-module structure by

(2.10) 〈ξ(λ), w〉 = −〈λ, ξ(w)〉
for all ξ ∈ ΓR, λ ∈ (W1 ⊗ · · · ⊗Wm)∗ and w ∈ W1 ⊗ · · · ⊗Wm. Here and
below we use 〈·, ·〉 to denote the natural pairing between a vector space and
its dual.

Let N be a positive integer. Let GN be the subspace of U(ΓR) spanned by
all products (a1 ⊗ f1) · · · (aN ⊗ fN ) with a1, . . . , aN ∈ g and f1, . . . , fN ∈ R
satisfying ιp0fi ∈ tC[[t]] for i = 1, . . . , N . Here and below we use notation
U(L) for the univeral enveloping algebra of a Lie algebra L. Define ZN ⊂
(W1 ⊗ · · · ⊗Wm)∗ to be the annihilator of GN (W1 ⊗ · · · ⊗Wm). Then

ZN = {λ ∈ (W1 ⊗ · · · ⊗Wm)∗ |GNλ = 0},
and we have an increasing sequence Z1 ⊂ Z2 ⊂ · · · . Let Z∞ = ∪N∈Z+Z

N .
It is clear that Z∞ is a ΓR-submodule of (W1 ⊗ · · · ⊗Wm)∗.

Define a g ⊗ C((t)) ⊕ Ck-module structure on Z∞ as follows: k acts as
scalar �; and for λ ∈ Z∞, a ∈ g and g ∈ C((t)), choose N ∈ N such that
λ ∈ ZN , choose f ∈ R such that ιp0f − g ∈ tNC[[t]], and define

(2.11) (a⊗ g)λ = (a⊗ f)λ.

It is easy to verify that this is independent of the choice of f and gives a
g⊗C((t))⊕Ck-module structure on Z∞ with k acting as scalar �. Restricted
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to Lie subalgebra ĝ of g ⊗ C((t)) ⊕ Ck, we have on Z∞ a structure of ĝ-
module of level �. We will denote this ĝ-module by ◦C(W1,W2, · · · ,Wm),
and when m = 2, simply by W1 ◦C W2.

Finally we need:

Definition 2.3. Given a ĝ-module W , consider Hom(W,C) as a ĝ-module
with the actions given by

(2.12) ((a⊗ tn)λ)(w) = −λ((a⊗ (−t)−n)w), (k · λ)(w) = λ(kw)

for v ∈ a, λ ∈ W ∗ and w ∈ W . The contragredient module D(W ) of W is
defined by

D(W ) = {λ ∈ Hom(W,C) | there is N ∈ N such that for any

a1, . . . , aN ∈ g, (a1 ⊗ t) · · · (aN ⊗ t)λ = 0},
a ĝ-submodule of Hom(W,C).

The ĝ-module D(◦C(W1,W2, · · · ,Wm)) is defined to be the desired tensor
product of W1, . . . ,Wm.

Now we recall the category Oκ for a complex number κ /∈ Q≥0 from [KL2].
Let M be a module for ĝ(≤0) satisfying the condition that k acts as a

scalar �. Then the induced ĝ-module

(2.13) U(ĝ) ⊗U(ĝ(≤0)) M

is a ĝ-module of level �. In case M is finite-dimensional, restricted, and the
subalgebra g(−) acts nilpotently, the corresponding induced module is called
a generalized Weyl module.

Definition 2.4. Given complex number κ /∈ Q≥0, the category Oκ is defined
to be the full subcategory of the category of ĝ-modules whose objects are
quotients of some generalized Weyl module of level � = κ−h, where h is the
dual Coxeter number of g.

For an object W of Oκ, define the Segal–Sugawara operator Lk : W →W
by

Lk(w) =
1
2κ

∑
j≥−k/2

∑
p

(cp ⊗ t−j)(cp ⊗ tj+k)w(2.14)

+
1
2κ

∑
j<−k/2

∑
p

(cp ⊗ tj+k)(cp ⊗ t−j)w

where {cp} is an orthonormal basis of g. For any n ∈ C denote by W[n] the
generalized eigenspace for L0 with respect to the eigenvalue n. Then it is
shown in [KL2] that W =

∐
n∈C

W[n] and dimW[n] <∞.
The following result is proved in [KL2]
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Theorem 2.5. For W1 and W2 in Oκ, W1 ◦C W2 is again an object of Oκ;
the functor D(·) is closed in Oκ, and furthermore, as a vector space

D(W ) =
∐
n∈C

(W[n])
∗.

Let z be a nonzero complex number. Consider the Riemann sphere C
with punctures p0 = z, p1 = ∞ and p2 = 0 and local coordinates given by
ϕ0(ε) = ε − z, ϕ1(ε) = 1/ε and ϕ2(ε) = ε at p0, p1 and p2, respectively.
A Riemann sphere equipped with these punctures and local coordinates is
denoted by Q(z) as in [HL2].

By (2.6) and (2.9), the action of ΓR on W1 ⊗W2 associated with Q(z) is
given by k acting as −� and

(a⊗ f)(w(1) ⊗ w(2)) = (a⊗ ι∞f)(w(1)) ⊗ w(2)(2.15)

+ w(1) ⊗ (a⊗ ι0f)(w(2))

for a ∈ g, f ∈ R, w(1) ∈ W1 and w(2) ∈ W2. Hence by (2.10) the action of
ΓR on (W1 ⊗W2)∗ is given by k acting as � and

〈(a⊗ f)(λ), w(1) ⊗ w(2)〉 = −〈λ, (a⊗ f)(w(1) ⊗ w(2))〉
= −〈λ, (a⊗ ι∞f)(w(1)) ⊗ w(2) + w(1) ⊗ (a⊗ ι0f)(w(2))〉

for a ∈ g, f ∈ R, λ ∈ (W1 ⊗ W2)∗, w(1) ∈ W1 and w(2) ∈ W2. This
gives an action of the Lie algebra g ⊗ C[t, t−1, (z + t)−1] ⊕ Ck. (Note that
C[t, t−1, (z + t)−1] = ιzR.) In particular, for f = tn, n ∈ Z, we have
ιzt

n = (z + t)n, and

〈(a⊗ (z + t)n)(λ), w(1) ⊗ w(2)〉(2.16)

= −〈λ, (a⊗ ι∞tn)(w(1)) ⊗ w(2) + w(1) ⊗ (a⊗ ι0t
n)(w(2))〉

= −〈λ, (a⊗ t−n)(w(1)) ⊗ w(2) + w(1) ⊗ (a⊗ tn)(w(2))〉
for any a ∈ g, λ ∈ (W1 ⊗ W2)∗, w(1) ∈ W1 and w(2) ∈ W2; and in case
f = (t− z)n, n ∈ Z, we have ιz(t− z)n = tn, and

〈(a⊗ tn)(λ), w(1)⊗w(2)〉(2.17)

= −〈λ, (a⊗ ι∞(t− z)n)(w(1)) ⊗ w(2)

+ w(1) ⊗ (a⊗ ι0(t− z)n)(w(2))〉
= −〈λ, (a⊗ ι+(t−1 − z)n)(w(1)) ⊗w(2)

+ w(1) ⊗ (a⊗ ι+(t− z)n)(w(2))〉

= −
〈
λ,

∑
i∈N

(
n

i

)
(−z)i(a⊗ ti−n)(w(1)) ⊗ w(2)+

+ w(1) ⊗
∑
i∈N

(
n

i

)
(−z)n−i(a⊗ ti)(w(2))

〉
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for any a ∈ g, λ ∈ (W1 ⊗W2)∗, w(1) ∈W1 and w(2) ∈W2.
By the general construction we now have

W1 ◦Q(z) W2(2.18)

= {λ ∈ (W1 ⊗W2)∗ | for some N ∈ N, ξ1ξ2 · · · ξNλ = 0

for any ξ1, ξ2, . . . , ξN ∈ g ⊗ tC[t, (z + t)−1]}.
The tensor product is then defined as

D(W1 ◦Q(z) W2).

3. Tensor product for modules for a conformal
vertex algebra

In this section we recall the construction and some results in the tensor
product theory for suitable module categories for a conformal vertex algebra
from [HL2]–[HL4], [H2] and [HLZ1], [HLZ2].

We assume the reader is familiar with the material in [FLM] and [FHL],
such as the language of formal calculus, the notion of vertex operator algebra
and their modules, etc. Results from [HL2]–[HL4], [H2] and [HLZ1], [HLZ2]
will be recalled without proof. We refer the reader to these papers for details.

We will focus on the “Q(z)-tensor product” in this section, due to the
fact that tensor product constructed in [KL1] corresponds to Q(1).

In [HLZ1] and [HLZ2], for an abelian group A and an abelian group Ã
containing A as a subgroup, the notions of strongly A-graded conformal
vertex algebra and strongly Ã-graded generalized modules were introduced.
The vertex operator algebras and their (ordinary) modules are exactly the
conformal vertex algebras and their (ordinary) modules that are strongly
graded with respect to the trivial group (see Remark 2.4 in [HLZ1] and
Remarks 2.24 and 2.27 in [HLZ2]). In the present paper, we shall work in
the special case of [HLZ1] and [HLZ2] in which A and Ã are trivial.

Let V be a vertex operator algebra, that is, as a special case of the general
theory developed in [HLZ1] and [HLZ2], a strongly A-graded conformal ver-
tex algebra with trivial A. A generalized V -module is a strongly Ã-graded
generalized module in the sense of [HLZ1] and [HLZ2] with trivial Ã. It can
also be defined directly in the same way as a V -module except that instead
of being the direct sum of eigenspaces for the operator L(0), it is assumed
to be the direct sum of generalized eigenspaces for L(0).

Recall from Definition 2.5 in [HLZ1] or Definition 3.32 in [HLZ2] that
given a generalized V -module (W,YW ) with

W =
∐
n∈C

W[n]
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where W[n] is the generalized eigenspace for L(0) with respect to the eigen-
value n, its contragredient module is the vector space

W ′ =
∐
n∈C

(W[n])
∗

equipped with the vertex operator map Y ′ defined by

〈Y ′(v, x)w′, w〉 = 〈w′, Y o
W (v, x)w〉,

for any v ∈ V , w′ ∈W ′ and w ∈W , where

Y o
W (v, x) = YW (exL(1)(−x−2)L(0)v, x−1),

for any v ∈ V , is the opposite vertex operator (cf. [FHL]). We will use the
standard notation

W =
∏
n∈C

W[n],

the formal completion of W with respect to the C-grading.
Fix a nonzero complex number z. The concept of Q(z)-intertwining map

is defined as follows (see Definition 4.17 of [HLZ1] or Definition 4.32 of
[HLZ2]):

Definition 3.1. Let W1, W2 and W3 be generalized modules for a vertex
operator algebra V . A Q(z)-intertwining map of type

(
W3

W1W2

)
is a linear

map I : W1⊗W2 → W 3 such that the following conditions are satisfied: the
lower truncation condition: for any elements w(1) ∈W1, w(2) ∈W2, and any
n ∈ C,

(3.1) πn−mI(w(1) ⊗ w(2)) = 0 for m ∈ N sufficiently large;

and the Jacobi identity:

z−1δ

(
x1 − x0

z

)
Y o

3 (v, x0)I(w(1) ⊗w(2))(3.2)

= x−1
0 δ

(
x1 − z

x0

)
I(Y o

1 (v, x1)w(1) ⊗ w(2))

− x−1
0 δ

(
z − x1

−x0

)
I(w(1) ⊗ Y2(v, x1)w(2))

for v ∈ V , w(1) ∈ W1 and w(2) ∈ W2 (note that the left-hand side of
(3.2) is meaningful because any infinite linear combination of vn of the form∑

n<N anvn (an ∈ C) acts on any I(w(1) ⊗ w(2)), due to (3.1)).

Given generalized V -modules W1 and W2, we first have the notion of a
Q(z)-product, as follows (see Definition 4.39 of [HLZ2]):

Definition 3.2. Let W1 and W2 be generalized V -modules. A Q(z)-product
of W1 and W2 is a generalized V -module (W3, Y3) together with a Q(z)-
intertwining map I3 of type

( W3

W1W2

)
, We denote it by (W3, Y3; I3) or simply

by (W3, I3). Let (W4, Y4; I4) be another Q(z)-product of W1 and W2. A
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morphism from (W3, Y3; I3) to (W4, Y4; I4) is a module map η from W3 to
W4 such that

I4 = η ◦ I3.
where η is the natural map from W 3 to W 4 uniquely extending η.

Let C be a full subcategory of the category of generalized V -modules. The
notion of Q(z)-tensor product of W1 and W2 in C is defined in term of a
universal property as follows (see Definition 4.40 of [HLZ2]):

Definition 3.3. For W1,W2 ∈ ob C, a Q(z)-tensor product of W1 and
W2 in C is a Q(z)-product (W0, Y0; I0) with W0 ∈ ob C such that for any
Q(z)-product (W,Y ; I) with W ∈ ob C, there is a unique morphism from
(W0, Y0; I0) to (W,Y ; I). Clearly, a Q(z)-tensor product of W1 and W2 in C,
if it exists, is unique up to a unique isomorphism. In this case we will denote
it as (W1 �Q(z) W2, YQ(z);�Q(z)) and call the object (W1 �Q(z) W2, YQ(z))
the Q(z)-tensor product module of W1 and W2 in C. We will skip the term
“in C” if the category C under consideration is clear in context.

Now we recall the construction of the Q(z)-tensor product from Sec-
tion 5.3 of [HLZ2], which generalizes that in [HL2]–[HL4]. Let W1 and W2

be generalized V -modules. We first have the following linear action τQ(z) of
the space

V ⊗ ι+C[t, t−1, (z + t)−1]
on (W1 ⊗W2)∗:(

τQ(z)

(
z−1δ

(
x1 − x0

z

)
Yt(v, x0)

)
λ

)
(w(1) ⊗w(2))(3.3)

= x−1
0 δ

(
x1 − z

x0

)
λ(Y o

1 (v, x1)w(1) ⊗ w(2))

− x−1
0 δ

(
z − x1

−x0

)
λ(w(1) ⊗ Y2(v, x1)w(2)).

for v ∈ V , λ ∈ (W1 ⊗W2)∗, w(1) ∈W1, w(2) ∈W2, where

(3.4) Yt(v, x) = v ⊗ t−1δ

(
t

x

)
.

This includes an action Y ′
Q(z) of V ⊗ C[t, t−1] defined by

(3.5) Y ′
Q(z)(v, x) = τQ(z)

(
v ⊗ t−1δ

(
t

x

))
,

that is, by taking Resx1 in (3.3),

(Y ′
Q(z)(v, x0)λ)(w(1) ⊗ w(2))(3.6)

= λ(Y o
1 (v, x0 + z)w(1) ⊗ w(2))

− Resx1x
−1
0 δ

(
z − x1

−x0

)
λ(w(1) ⊗ Y2(v, x1)w(2)).
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We also have the operators L′
Q(z)(n), n ∈ Z defined by

Y ′
Q(z)(ω, x) =

∑
n∈Z

L′
Q(z)(n)x−n−2.

We have the following construction of W1 Q(z)W2, a subspace of (W1 ⊗
W2)∗ (see Definition 5.60 and Theorem 5.74 of [HLZ2]):

Definition 3.4. Given W1 and W2 as above, the vector space W1 Q(z)W2

consists of all the elements λ ∈ (W1 ⊗ W2)∗ satisfying the following two
conditions:

(1) (Q(z)-compatibility condition)
(a) (Lower truncation condition) For all v ∈ V , the formal Laurent

series Y ′
Q(z)(v, x)λ involves only finitely many negative powers of

x.
(b) The following formula holds:

τQ(z)

(
z−1δ

(
x1 − x0

z

)
Yt(v, x0)

)
λ(3.7)

= z−1δ

(
x1 − x0

z

)
Y ′
Q(z)(v, x0)λ for all v ∈ V.

(2) (Q(z)-local grading restriction condition)
(a) (Grading condition) λ is a (finite) sum of generalized eigenvectors

of (W1 ⊗W2)∗ for the operator L′
Q(z)(0).

(b) The smallest subspace Wλ of (W1 ⊗W2)∗ containing λ and stable
under the component operators τQ(z)(v ⊗ tn) of the operators
Y ′
Q(z)(v, x) for v ∈ V , n ∈ Z, have the properties:

dim(Wλ)[n] <∞(3.8)
(Wλ)[n+k] = 0 for k ∈ Z sufficiently negative;(3.9)

for any n ∈ C, where the subscripts denote the C-grading by
L′
Q(z)(0)-eigenvalues.

The importance of the space W1 Q(z)W2 is given by the following theorem
from [HL2] and its generalization in [HLZ2] (see Theorems 5.70, 5.71, 5.72,
5.73 and 5.74 of [HLZ2]):

Theorem 3.5. The vector space W1 Q(z)W2 is closed under the action Y ′
Q(z)

of V and the Jacobi identity holds on W1 Q(z)W2. Furthermore, the Q(z)-
tensor product of W1 and W2 in C exists if and only if W1 Q(z)W2 equipped
with Y ′

Q(z) is an object of C, and in this case, this Q(z)-tensor product is the
contragredient module of (W1 Q(z)W2, Y

′
Q(z)).
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4. Strong lower truncation condition

In this section we define what we shall call the strong lower truncation
condition and prove its equivalence to the compatibility condition.

By using (3.4), (3.5) and the delta function identity

z−1δ

(
x1 − x0

z

)
= x−1

1 δ

(
z + x0

x1

)
,

formula (3.7) in the compatibility condition can be written as

τQ(z)

(
x−1

1 δ

(
z + x0

x1

)
Yt(v, x0)

)
λ = x−1

1 δ

(
z + x0

x1

)
τQ(z)(Yt(v, x0))λ.

Taking the coefficient of xn1 for n ∈ Z of both sides we get

τQ(z)((z + x0)−n−1Yt(v, x0))λ = (z + x0)−n−1Y ′
Q(z)(v, x0)λ.

or, by using (3.4) and the property of the δ-function

t−1δ

(
t

x0

)
f(x0) = t−1δ

(
t

x0

)
f(t)

for formal series f(x0) we have

(4.1) τQ(z)((z + t)−n−1Yt(v, x0))λ = (z + x0)−n−1Y ′
Q(z)(v, x0)λ.

Further taking the coefficient of x−m−1
0 for m ∈ Z this becomes

(4.2) τQ(z)(v ⊗ (z + t)−n−1tm)λ =
∑
i∈N

(−n− 1
i

)
z−n−1−iτQ(z)(v ⊗ tm+i)λ.

We have:

Proposition 4.1. Let W1 and W2 be modules for V as a vertex algebra,
λ ∈ (W1 ⊗W2)∗, v ∈ V and n ∈ N. Then

τQ(z)((z + t)−n−1Yt(v, x0))λ

is lower truncated in x0 if and only if Y ′
Q(z)(v, x0)λ is lower truncated in x0

and (4.1) holds.

Proof. The “if” part is obvious. For the “only if” part, suppose that

τQ(z)((z + t)−n−1Yt(v, x0))λ = τQ(z)((z + x0)−n−1Yt(v, x0))λ

is lower truncated in x0, then so is

(z + x0)n+1τQ(z)((z + x0)−n−1Yt(v, x0))λ(4.3)

= τQ(z)((z + x0)n+1(z + x0)−n−1Yt(v, x0))λ

= τQ(z)(Yt(v, x0))λ

= Y ′
Q(z)(v, x0)λ.
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(Note that here we need the existence of the triple product

(z + x0)n+1(z + x0)−n−1Yt(v, x0)

which can be seen by, for example, observing that the coefficient of each
power of t exists.) That is, Y ′

Q(z)(v, x0)λ is lower truncated in x0.
By (4.3) we also have

(z + x0)n+1(4.4)

· (τQ(z)((z + x0)−n−1Yt(v, x0))λ− (z + x0)−n−1Y ′
Q(z)(v, x0)λ

)
= (z + x0)n+1τQ(z)((z + x0)−n−1Yt(v, x0))λ− Y ′

Q(z)(v, x0)λ

= Y ′
Q(z)(v, x0)λ− Y ′

Q(z)(v, x0)λ

= 0.

Since both terms of

(4.5) τQ(z)((z + x0)−n−1Yt(v, x0))λ− (z + x0)−n−1Y ′
Q(z)(v, x0)λ

are lower truncated in x0, (4.4) implies that (4.5) is equal to 0, as desired. �

Now we define the strong lower truncation condition:

Definition 4.2. Let v ∈ V . An element λ in (W1 ⊗W2)∗ is said to satisfy
the strong lower truncation condition with respect to v ∈ V if there exists
N ∈ N depending on v and λ such that

(4.6) (τQ(z)(v ⊗ tm(z + t)−n−1))λ = 0

for all m ≥ N and n ∈ Z. We say that λ satisfies the strong lower truncation
condition if it satisfies the strong lower truncation condition with respect to
every vector in V .

As a consequence of Proposition 4.1 we have the following equivalent
condition for the Q(x)-compatibility condition:

Proposition 4.3. Let λ ∈ (W1⊗W2)∗. Then λ satisfies the Q(z)-compatibil-
ity condition if and only if λ satisfies the strong lower truncation condition.

Proof. Suppose that λ satisfies the Q(z)-compatibility condition. Then
(4.2) holds for any v ∈ V and m,n ∈ Z. But then by part (a) of the
compatibility condition we see that the right-hand side of (4.2) is 0 when m
is large enough, independent of n. This proves half of the statement. The
other half follows directly from Proposition 4.1. �

We will need:

Lemma 4.4. Let N ∈ N. For v ∈ V and λ ∈ (W1 ⊗W2)∗, (4.6) holds for
any m ≥ N and n ∈ Z if and only if for any w(1) ∈W1 and w(2) ∈W2,

(x1 − z)Nλ(Y o
1 (v, x1)w(1) ⊗w(2) − w(1) ⊗ Y2(v, x1)w(2)) = 0.
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Proof. By definition, (4.6) holds for any m ≥ N and n ∈ Z if and only if
all powers of x0 with nonzero coefficients in

τQ(z)

(
z−1δ

(
x1 − x0

z

)
Yt(v, x0)

)
λ

are at least −N . By definition of the action τQ(z) in (3.3) this in turn is
equivalent to the condition that Resx0x

m
0 of the right-hand side of (3.3) is 0

for any m ≥ N , w(1) ∈W1 and w(2) ∈W2. The statement now follows from
this. �

The following result in formal calculus will be handy for us:

Lemma 4.5. Let x and y be formal variables, ξ be either a formal variable
or a complex number. Let K ∈ N and let fk(x, ξ), k ∈ Z be a sequence of
formal series with coefficients in some vector space satisfying the condition
that fk(x, ξ) = 0 for any k ≥ K. Suppose that for N1, N2 ∈ N we have

(4.7) (x+ ξ)N1(x+ y + ξ)N2
∑
n∈Z

fn(x, ξ)y−n−1 = 0.

Then

(4.8) (x+ ξ)N1+N2+sfK−1−s(x, ξ) = 0

for any s ∈ N.

Proof. By taking coefficient of powers y, we see that (4.7) is equivalent to

(4.9)
N2∑
i=0

(
N2

i

)
(x+ ξ)N1+N2−ifi+k(x, ξ) = 0

for any k ∈ Z. Since fk(x, ξ) = 0 for any k ≥ K, setting k = K−1 in (4.9) we
obtain (x+ ξ)N1+N2fK−1(x, ξ) = 0. Now (4.8) follows by induction on s, as
follows: If the case 0, 1, . . . , s−1 holds, then by setting k = K−1−s in (4.9)
and multiplying both sides by (x+ξ)s we see that only the i = 0 term remains
and must equal the right-hand side 0, that is, (x+ξ)N1+N2+sfK−1−s(x, ξ) = 0
also holds. �

We now have:

Proposition 4.6. Let u, v ∈ V and λ ∈ (W1 ⊗ W2)∗. Suppose that λ
satisfies the strong lower truncation condition with respect to both u and
v. Then for any k ∈ Z, λ satisfies the strong lower truncation condition
with respect to ukv. More precisely, let N1 be the integer such that (4.6)
holds with v replaced by u for any m ≥ N1 and n ∈ Z and let N2 be the
corresponding number for v, then (4.6) holds with v replaced by ukv for any
m ≥ N1 +N2 +K − 1− k and n ∈ Z, where K ∈ N is such that unv = 0 for
any n ≥ K.
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Proof. By assumption and Lemma 4.4 we have

(x1 − z)N1λ(Y o
1 (u, x1)w(1) ⊗ w(2) − w(1) ⊗ Y2(u, x1)w(2)) = 0.

and

(x1 − z)N2λ(Y o
1 (v, x1)w(1) ⊗ w(2) − w(1) ⊗ Y2(v, x1)w(2)) = 0.

for any w(1) ∈ W1 and w(2) ∈ W2. For k ∈ Z, we need a formula similar to
either of these, with u or v replaced by ukv. We derive as follows: First, for
formal variables x− 1, y0 and y1, using the above identities we have:

(x1 − z)N2(x1 + y0 − z)N1λ

(
y−1
0 δ

(
y1 − x1

y0

)
Y o

1 (v, x1)Y o
1 (u, y1)w(1) ⊗ w(2)

)
= y−1

0 δ

(
y1 − x1

y0

)
(x1 − z)N2(x1 + y0 − z)N1

· λ(
Y o

1 (v, x1)Y o
1 (u, y1)w(1) ⊗ w(2)

)
= y−1

0 δ

(
y1 − x1

y0

)
(x1 − z)N2(x1 + y0 − z)N1

· λ(
Y o

1 (u, y1)w(1) ⊗ Y2(v, x1)w(2)

)
= y−1

0 δ

(
y1 − x1

y0

)
(x1 − z)N2(y1 − z)N1λ

(
Y o

1 (u, y1)w(1) ⊗ Y2(v, x1)w(2)

)
= y−1

0 δ

(
y1 − x1

y0

)
(x1 − z)N2(y1 − z)N1λ

(
w(1) ⊗ Y2(u, y1)Y2(v, x1)w(2)

)
= y−1

0 δ

(
y1 − x1

y0

)
(x1 − z)N2(x1 + y0 − z)N1

· λ(
w(1) ⊗ Y2(u, y1)Y2(v, x1)w(2)

)
= (x1 − z)N2(x1 + y0 − z)N1

· λ
(
w(1) ⊗ y−1

0 δ

(
y1 − x1

y0

)
Y2(u, y1)Y2(v, x1)w(2)

)
.

On the other hand,

(x1 − z)N2(x1 + y0 − z)N1λ

(
y−1
0 δ

(
x1 − y1

−y0

)
Y o

1 (u, y1)Y o
1 (v, x1)w(1) ⊗ w(2)

)
= y−1

0 δ

(
x1 − y1

−y0

)
(x1 − z)N2(x1 + y0 − z)N1

· λ(
Y o

1 (u, y1)Y o
1 (v, x1)w(1) ⊗ w(2)

)
= y−1

0 δ

(
x1 − y1

−y0

)
(x1 − z)N2(y1 − z)N1λ

(
Y o

1 (u, y1)Y o
1 (v, x1)w(1) ⊗ w(2)

)
= y−1

0 δ

(
x1 − y1

−y0

)
(x1 − z)N2(y1 − z)N1λ

(
Y o

1 (v, x1)w(1) ⊗ Y2(u, y1)w(2)

)
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= y−1
0 δ

(
x1 − y1

−y0

)
(x1 − z)N2(x1 + y0 − z)N1

· λ(
Y o

1 (v, x1)w(1) ⊗ Y2(u, y1)w(2)

)
= y−1

0 δ

(
x1 − y1

−y0

)
(x1 − z)N2(x1 + y0 − z)N1

· λ(
w(1) ⊗ Y2(v, x1)Y2(u, y1)w(2)

)
= (x1 − z)N2(x1 + y0 − z)N1

· λ
(
w(1) ⊗ y−1

0 δ

(
x1 − y1

−y0

)
Y2(v, x1)Y2(u, y1)w(2)

)
.

Taking difference of these two equalities, using the Jacobi identity and the
opposite Jacobi identity we have

(x1 − z)N2(x1 + y0 − z)N1λ(x−1
1 δ

(
y1 − y0

x1

)
Y o

1 (Y (u, y0)v, x1)w(1) ⊗w(2)) =

(x1 − z)N2(x1 + y0 − z)N1λ(w(1) ⊗ x−1
1 δ

(
y1 − y0

x1

)
Y2(Y (u, y0)v, x1)w(2)).

Applying Resy1 we have

(x1 − z)N2(x1 + y0 − z)N1 ·
λ(Y o

1 (Y (u, y0)v, x1)w(1) ⊗w(2) − w(1) ⊗ Y2(Y (u, y0)v, x1)w(2)) = 0.

Let K be a number such that ukv = 0 for all k ≥ K. Then Lemma 4.5
applies with ξ being −z and fk(x, ξ) being

λ(Y o
1 (ukv, x1)w(1) ⊗w(2) − w(1) ⊗ Y2(ukv, x1)w(2)).

As a result we have

(x1−z)N2+N2+sλ(Y o
1 (uK−1−sv, x1)w(1)⊗w(2)−w(1)⊗Y2(uK−1−sv, x1)w(2))

= 0,

for any s ∈ N. This is exactly what we need. �

Combining Proposition 4.3 and Proposition 4.6 we obtain:

Theorem 4.7. Let V be a vertex algebra and S a generating set for V in
the sense that

V =

span{a(k)
nk

· · · a(2)
n2
a(1)
n1
a(0) | a(0), a(1), . . . , a(k) ∈ S, n1, n1, . . . , nk ∈ Z, k ∈ N}.

Let W1 and W2 be generalized V -modules. Then λ ∈ (W1 ⊗W2)∗ satisfies
the Q(z)-compatibility condition if and only if λ satisfies the strong lower
truncation condition with respect to all elements of S.
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5. Generalized modules for vertex operator
algebras associated to ĝ

In this section we recall the vertex operator algebra constructed from suit-
able modules for the affine Lie algebra ĝ. Then we show that the construction
of the tensor products in Section 2 and Section 3 are equivalent, for mod-
ules in Oκ. In particular, this shows that the tensor product constructed by
Kazhdan and Lusztig satisfies the universal property in Definition 3.3. Then
we show that the objects of the category Oκ are C1-cofinite and quasi-finite-
dimensional. These results together with a result in [H3] imply that the
conditions needed for applying the results obtained in [HLZ1] and [HLZ2]
are satisfied. Hence we prove the existence of the associativity isomorphisms
and we obtain the braided tensor category structure.

Recall the complex semisimple Lie algebra g, the nondegenerate invariant
bilinear form (·, ·) on g and the affine Lie algebra ĝ in Section 2.

Given any g-module U and any complex number �, consider U as a ĝ(≤)-
module with ĝ(−) acting trivially and k acting as the scalar �. Then the
induced ĝ-module

Indĝ
g(U) = U(ĝ) ⊗U(ĝ(≤)) U

is restricted and is of level �. When U = C is the trivial g-module, we will
write

Vĝ(�, 0) = Indĝ
g(C).

In particular, fix a Cartan subalgebra h ⊂ g and a set of positive roots,
let g = n+⊕h⊕n− be the corresponding triangular decomposition. Let U =
L(λ) be the irreducible highest weight g-module with highest weight λ ∈ h∗.
That is, L(λ) is the quotient of V (λ) by its maximal proper submodule,
where V (λ) is the g-module induced by the (h ⊕ n+)-module Cvλ with

hvλ = λ(h)vλ for h ∈ h

and n+ acts on vλ as 0. L(λ) is finite dimensional if and only if λ is dominant
integral in the sense that

λ(hα) =
2(λ, α)
(α,α)

∈ N, for α ∈ Δ+.

In this case,

L(λ) = U(n−)/U(n−)αλ(hαi )+1
i

and we will denote the induced ĝ-module by M(�, λ), called the Weyl module
for ĝ with respect to λ. Let J(�, λ) be the maximal proper ĝ-submodule of
M(�, λ). Then L(�, λ) = M(�, λ)/J(�, λ) is an irreducible ĝ-module of level
�.

We have (see [KL2]):

Proposition 5.1. (1) The operator L(0) acts semisimply on M(�, λ).
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(2) The category Oκ consists of all the ĝ-modules of level � having a finite
composition series all of whose irreducible subquotients are of the form
L(�, λ) for various λ.

Note that Vĝ(�, 0) is spanned by the elements of the form

a(1)(−n1) · · · a(r)(−nr)1,
where a(1), . . . , a(r) ∈ g and n1, . . . , nr ∈ Z+; here and below we use a(−n)
to denote the representation image of a⊗ t−n for a ∈ g and n ∈ Z.

The following theorem is well-known:

Theorem 5.2 ([FZ]; cf. [LL]). There is a unique vertex algebra structure
(Vĝ(�, 0), Y,1) on Vĝ(�, 0) such that 1 = 1 ∈ C is the vacuum vector and
such that

Y (a(−1)1, x) =
∑
n∈Z

a(n)x−n−1

for a ∈ g. We have

Y (a(0)(−n0)a(1)(−n1) · · · a(r)(−nr)1, x)
= Resx1(x1 − x)−n0Y (a(0)(−1)1, x1)Y (a(1)(−n1) · · · a(r)(−nr)1, x)

− Resx1(−x+ x1)−n0Y (a(1)(−n1) · · · a(r)(−nr)1, x)Y (a(0)(−1)1, x1).

Any restricted ĝ-module W of level � has a unique Vĝ(�, 0)-module structure
with the same action as above. Furthermore, in case � �= −h,

ω =
1

2(�+ h)

dimg∑
i=1

gi(−1)21

is a conformal element, where {gi}i=1,...,dimg is an orthonormal basis of g
with respect to the form (·, ·), and the quadruple (Vĝ(�, 0), Y,1, ω) is a vertex
operator algebra.

Since every object of Oκ is a restricted ĝ-module of level κ − h, it is a
module for the vertex algebra Vĝ(κ−h, 0), and when κ �= 0, it is a generalized
module for Vĝ(κ− h, 0) viewed as a vertex operator algebra.

For any element λ ∈W1 ◦Q(z)W2 (recall (2.18)), by Corollary 4.3 and the
fact that g ⊗ tNC[t, (z + t)−1] ⊂ (g ⊗ tC[t, (z + t)−1])N in U(g ⊗ C((t))) we
see that λ satisfies the Q(z)-compatibility condition. On the other hand,
the closedness of tensor product in Oκ in Theorem 2.5 shows that (W1 ◦Q(z)

W2)′, and hence W1 ◦Q(z) W2 itself, is an object of Oκ. So all elements of
W1 ◦Q(z)W2 also satisfy the Q(z)-local grading restriction condition. Hence
W1 ◦Q(z) W2 ⊆W1 Q(z)W2.

Conversely, if λ ∈ W1 Q(z)W2, then from the Q(z)-local grading restric-
tion condition we see that λ generates a generalized V -module. But since for
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any a ∈ g, a⊗ t = (a(−1)1)1 as an operator on W1 Q(z)W2 reduces general-
ized weights by 1, we see that when N is large enough we have ξ1 · · · ξNλ = 0
for all ξ1, . . . , ξN ∈ g ⊗ tC[t, (z + t)−1]. Hence W1 Q(z)W2 ⊆W1 ◦Q(z) W2.

We have proved:

Theorem 5.3. For W1 and W2 in Oκ, the two subspaces W1 ◦Q(z) W2 and
W1 Q(z)W2 of (W1 ⊗W2)∗ are equal to each other. In particular, the tensor
product of two modules constructed in [KL2] with respect to Q(z) satisfies
the universal property in Definition 3.3.

Now we proceed to the existence and construction of the associativity
isomorphism for this tensor product. For this, we now work in the setting
of tensor product associated with another type of Riemann spheres with
punctures and local coordinates, namely, the spheres with punctures and
local coordinates of type P (z); recall from [H1] that for a nonzero complex
number z, P (z) denotes the Riemann sphere with ordered punctures ∞, z,
0 and local coordinates 1/w, w − z, w around these punctures.

Remark 5.4. The reason that we use P (z) here is because it is most conve-
nient for the formulation of the associativity isomorphisms, due to the fact
that spheres with punctures and local coordinates of type P (z) are closed
under sewing and subsequently decomposing. The corresponding associa-
tivity isomorphisms for other types of tensor products can be constructed
from those for the type P (z) by natural transformations associated to cer-
tain parallel transport over the moduli space of spheres with punctures and
local coordinates. The P (z)-tensor product of W1 and W2 in Oκ exists if
and only if their Q(z)-tensor product exists; the details are given in [HLZ2].

We need the following notions from [HLZ1] and [HLZ2], which generalize
the corresponding notions in [H2] to the logarithmic case:

Definition 5.5. Let V be a vertex operator algebra and C be a category of
generalized V -modules. We say that products of intertwining operators in
C satisfy the convergence and extension property if for any objects W1, W2,
W3, W4 and M1 of C, and intertwining operator Y1 and Y2 of types

( W4

W1M1

)
and

( M1

W2W3

)
, respectively, there exists an integer N depending only on Y1

and Y2, and for any w(1) ∈ W1, w(2) ∈ W2, w(3) ∈ W3, w′
(4) ∈ W ′

4, there
exist M ∈ N, rk, sk ∈ R, ik, jk ∈ N, k = 1, . . . ,M and analytic functions
fikjk(z) on |z| < 1, k = 1, . . . ,M , satisfying

wt w(1) + wt w(2) + sk > N, k = 1, . . . ,M,

such that

〈w′
(4),Y1(w(1), x2)Y2(w(2), x2)w(3)〉W4

∣∣∣∣
x1=z1, x2=z2
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is convergent when |z1| > |z2| > 0 and can be analytically extended to the
multi-valued analytic function

M∑
k=1

zrk2 (z1 − z2)sk(log z2)ik(log(z1 − z2))jkfikjk

(
z1 − z2
z2

)
in the region |z2| > |z1 − z2| > 0.

Definition 5.6. Let V be a vertex operator algebra and C be a category of
generalized V -modules. If for any n ∈ Z+, any generalized V -modules Wi,
i = 0, . . . , n + 1 and W̃i, i = 1, . . . , n − 1 in C, and intertwining operators

Y1,Y2, . . . ,Yn−1,Yn, of types
( W ′

0

W1
fW1

)
,

(
fW1

W2
fW2

)
, . . . ,

(
fWn−2

Wn−1
fWn−1

)
,

(
fWn−1

WnWn+1

)
,

respectively, the series

(5.1) 〈w0,Y1(w1, z1) · · · Yn(wn, zn)wn+1〉
is absolutely convergent in the region |z1| > · · · > |zn| > 0, then we say that
products of arbitrary number of intertwining operators among objects of C
are convergent.

The following theorem was proved in [HLZ1] and [HLZ2]:

Theorem 5.7. Let V be a vertex operator algebra of central charge c ∈ C

and C a category of generalized V -modules closed under the contragredient
functor (·)′ and under taking direct sums and quotients. Assume that the
convergence and extension property for products of intertwining operators
holds in C and that products of arbitrary number of intertwining operators
among objects of C are convergent. Further assume that every finitely gen-
erated lower truncated generalized V -module is an object of C and, for any
generalized V -modules W1 and W2, W1 P (z)W2 is an object of C. Then the
category C has a natural structure of vertex tensor category (see [HL1]) of
central charge equal to the central charge c of V such that for each z ∈ C×,
the tensor product bifunctor �ψ(P (z)) associated to ψ(P (z)) ∈ K̃c(2) is equal
to �P (z). In particular, the category C has a braided tensor category struc-
ture.

By definition it is clear that Oκ is closed under taking direct sums and
quotients. By Theorems 2.5 and 5.3 and Remark 5.4, we have that Oκ

is closed under the contragredient functor and the Q(z)- and P (z)-tensor
product functors. We now prove:

Proposition 5.8. A lower truncated, finitely generated generalized Vĝ(�, 0)-
module is an object of Oκ.

Proof. Let W be a lower truncated generalized V -module generated by a
finite set S of elements. That is, we have

W = U(ĝ)S = U(ĝ(>))U(ĝ(≤))S.
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Let N = U(g(≤))S, the U(g(≤))-submodule of W generated by S. Then
since W is lower truncated and S is finite, N is finite-dimensional. Let Nκ

be the ĝ-module induced by N as in (2.13). Then Nκ is a generalized Weyl
module and there is a unique ĝ-homomorphism from Nκ to W fixing N . It is
clear that this is a surjection and thus W is a quotient module of generalized
Weyl module Nκ. Hence W is in Oκ. �
Remark 5.9. Note that in general a generalized Weyl module may not be
generated by its lowest weight subspace, even if it is indecomposable.

Let V be a vertex operator algebra. A generalized V -module W is C1-
cofinite if W/C1(W ) is finite-dimensional, where C1(W ) is the subspace of
W spanned by elements of the form u−1w for u ∈ V+ =

∐
n∈N

V(n) and
w ∈W .

Proposition 5.10. The objects of Oκ are C1-cofinite as generalized Vĝ(�, 0)-
modules.

Proof. Let W be an object of Oκ. Then W is a quotient of a generalized
Weyl module U(ĝ)⊗U(ĝ(≤0))M . Let M̃ be the image of M under projection
from the generalized Weyl module to W . Then W is spanned by elements
of M̃ together with elements of the form a(−n)w for w ∈ W and n ∈ Z+.
By the L(−1)-derivative property, we have

a(−n) = (a(−1)1)−n

=
(L(−1)a(−1)1)−n+1

n− 1

when n �= 1. Thus we see that W is spanned by elements of M̃ together
with elements of the form u−1w for u ∈ (Vĝ(�, 0))+ and w ∈W . Since M̃ is
finite-dimensional, we see that W/C1(W ) is also finite-dimensional. �

Let V be a vertex operator algebra. A generalized V -module W is
quasi-finite-dimensional if for any real number N ,

∐

(n)<N W[n] is finite-

dimensional.
We have the following:

Proposition 5.11. The objects of Oκ are quasi-finite-dimensional as gen-
eralized Vĝ(�, 0)-modules.

Proof. Since generalized Weyl modules are obviously quasi-finite-dimen-
sional, the objects of Oκ, as quotients of generalized Weyl modules, are
quasi-finite-dimensional. �

By Theorems 2.5 and 5.3, Remark 5.4, Corollary 5.10, Proposition 5.11
and Theorem 7.2 in [HLZ1], we obtain the main conclusion of the present
paper:

Theorem 5.12. The category Oκ has a natural structure of vertex tensor
category and in particular, a natural structure of braided tensor category.
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