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A motivic Chebotarev density theorem

Ajneet Dhillon and Ján Mináč

Abstract. We define motivic Artin L-functions and show that they specialize
to the usual Artin L-functions under the trace of Frobenius. In the last section
we use our L-functions to prove a motivic analogue of the Chebotarev density
theorem.
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1. Introduction

Our goal is to prove a motivic analogue of the Chebotarev density theorem.
Recall that this theorem classically gives estimates on the growth of the number of
points with prescribed Artin symbols; see [7, Section 6.3]. The theorem we obtain,
Theorem 6.3, is valid over all fields, however it is only over finite fields that we
can use it to construct points with prescribed Artin symbols. Along the way we
define non-Abelian motivic L-functions and prove their basic properties. A motivic
Chebotarev density theorem without motives can be found in [8] and [7, Chapter
32]. In place of motives, Galois stratification is used in this work. The motivic
approach to L-functions is by constructing certain idempotents associated to group
actions. It is interesting to note that this use of idempotents was also present in
[8] and [7, Chapter 3.1].

This work was first extended to a motivic setting in [6]. In this paper a motivic
Igusa zeta function is attached to a Galois formula and used to prove invariance
properties of the usual Igusa zeta function. Let us recall that the Igusa zeta function
counts solutions in Z/pnZ. Denef and Loeser are able to use their motivic function
to study the zeta function as p varies.

Our work is in a different direction. We formulate a version of the geometric
Chebotarev density theorem. This theorem counts points with prescribed Artin
symbol in Fqn .

The Chebotarev density theorem carries key arithmetical information about the
splitting of divisors in Galois extensions and is now a basic tool in current arith-
metic. For a delightful and informative article about the theorem and its history
see [23].

Grothendieck’s idea of motives as “a systematic theory of the arithmetic prop-
erties of varieties as embodied in their groups of cycles” has proved inspiring and
useful in spite of the fact that some of the key conjectures and constructions are
not yet established. When one succeeds in lifting some deep arithmetical proper-
ties to motives one usually obtains a clear transparent picture and one can try to
apply the properties to other situations. The project of transferring arithmetic to
algebraic varieties is a long one and can be traced back to Kronecker. For a very
good exposition of the basic theory of motives see [1].

The motivic zeta function was first introduced in [11]. The definition was cast
in a slightly different light by the elegant constructions of [4]. The rationality of
the motivic zeta function is tied to some deep conjectures in the theory of algebraic
cycles, [12] and [1]. These are the key facts on which we build our theory of
motivic L-functions. Our L-functions clarify some of the properties of usual Artin
L-functions. The motivic L-function is just the zeta function of a special motive.
The proofs of most of the basic properties are quite elementary. Furthermore, our
definition does not need to treat the ramification locus separately because it is built
into the definition.

Section 2 is devoted to basic definitions. We explain what a pseudo-Abelian
rigid tensor category C is and, following [4, 12, 16], how to carry out the standard
constructions of linear algebra in such a category. Given an object X of such a
category with finite group G acting on it and a representation of G we define an
L-function. The L-function takes values in the ring Ko(C). The last part of the
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section is devoted to proving the usual basic properties, direct sums, restriction and
induction formulas, of this L-function.

Section 3 specialises to the case where C is the category Mk(E) of Chow motives
over k with coefficients in E. The L-function behaves just like the L-function of a
scheme over a finite field. We prove in Section 5 that it is rational and that when
the representation is irreducible and nontrivial it is in fact a polynomial.

When k is a finite field, we prove in Section 5 that our L-function specialises to
the usual Artin L-function under the trace of Frobenius.

In Section 6 we define the motive of Artin symbols. Under the trace of Frobenius
it just counts points with prescribed Artin symbol. We use the results of the
previous sections to derive an expression for it. This expression can be viewed as a
Chebotarev density theorem, along the lines of [18].

Notations and conventions. We assume all group actions to be left actions.
k is the ground field, and E a field of characteristic 0 containing all roots of

unity.
(X ⊗ V )G is the image of the projection 1

|G|
∑

g∈G g; see Section 2.
Mk(E) is the category of Chow motives over k with coefficients in E.
L(M, ρ, t) is the L-function of the motive M with respect to the representation

ρ; see Section 3.
Ar(C, n) is the motive of Artin symbols in the conjugacy class C and of degree

n; see Section 5.

Acknowledgements. This work would not have been possible without the in-
sights of Professor Michael Fried. We thank him for helpful discussions and corre-
spondence. We would like to thank the referee for numerous suggestions which led
to an improvement in the exposition. We are also grateful to Professor Loeser for
some comments.

2. The relevant category theory

2.1. Basic definitions. We fix a field E of characteristic 0 that contains all roots
of unity. We denote by C an E-linear additive pseudo-Abelian rigid tensor cate-
gory. We recall what this means along with the basic properties of C .

By an E-linear additive category we mean a category with a terminal object
and direct sums such that for all objects the set HomC(A, B) has the structure of
an E-vector space. The composition law is required to be E-linear. The condition
that C is pseudo-Abelian means that every idempotent endomorphism has a kernel
and hence an image. If p is such an endomorphism of the object X we will often
denote Im(p) = Ker(1 − p) by (X, p). The fact that C is a tensor category means
that there is a bilinear functor

⊗ : C × C → C

that has an identity and satisfies compatible associativity and commutativity con-
straints. An identity is an object U of C together with the functorial isomorphism

lX : U ⊗ X
∼→ X and rX : X ⊗ U

∼→ X.
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The identity is unique up to isomorphism and we usually denote it by 1. The
associativity constraint is a natural isomorphism

a(X, Y, Z) : X ⊗ (Y ⊗ Z) → (X ⊗ Y ) ⊗ Z.

It is subject to the requirement that the following diagram commutes:

X ⊗ (Y ⊗ (Z ⊗ W )) ��

��

X ⊗ ((Y ⊗ Z) ⊗ W )

��

(X ⊗ Y ) ⊗ (Z ⊗ W )

��
((X ⊗ Y ) ⊗ Z) ⊗ W (X ⊗ (Y ⊗ Z)) ⊗ W .��

There is a compatibility between the associativity and the identity which is encoded
in the following commutative diagram:

X ⊗ (1 ⊗ Y ) ��

��

(X ⊗ 1) ⊗ Y

��
X ⊗ Y X ⊗ Y .

Proposition 2.1. If F and G are functors Cn → C obtained from combining ⊗
in various orders then it follows that there is a unique isomorphism of functors
F ∼= G obtained from iterates of a and a−1.

Proof. See [13] for the proof and precise meaning of iterate. �

The commutativity constraint is a natural isomorphism

c(X, Y ) : X ⊗ Y → Y ⊗ X.

We require the following diagram to commute:

X ⊗ (Y ⊗ Z) a ��

1⊗c

��

(X ⊗ Y ) ⊗ Z
c �� Z ⊗ (X ⊗ Y )

a

��
X ⊗ (Z ⊗ Y ) a �� (X ⊗ Z) ⊗ Y

c⊗1 �� (Z ⊗ X) ⊗ Y .

Using 2.1, we have a unique, up to canonical isomorphism functor

⊗n : Cn → C

defined by

(X1, X2, . . . , Xn) �→ X1 ⊗ X2 ⊗ · · · ⊗ Xn.

Denote by Sn the symmetric group on n letters. For σ ∈ Sn, we define a new
functor

⊗σ,n : Cn → C

by

(X1, X2, . . . , Xn) �→ Xσ(1) ⊗ Xσ(2) ⊗ · · · ⊗ Xσ(n).
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Proposition 2.2. There is a unique isomorphism of functors obtained from vari-
ous iterates of a, a−1and c:

⊗σ,n ∼→ ⊗n.

Proof. See [13]. �

Corollary 2.3. For each object X of C there is a canonical action of Sn on X⊗n.

The fact that C is rigid means that for every object X of C there is an object
X∗ and natural morphisms ηX : 1 → X∗⊗X and εX : X ⊗X∗ → 1 such that both
of the compositions below are the identity

X → X ⊗ X∗ ⊗ X → X X∗ → X∗ ⊗ X ⊗ X∗ → X∗.

Proposition 2.4. The functor

⊗X : C → C

has a right adjoint denoted Hom(X,−). In other words there are natural isomor-
phisms

Hom(Y ⊗ X, Z) ∼→ Hom(Y, Hom(X, Z)).

Proof. See [5, page 111 to 113]. �

Corollary 2.5. The functor ⊗X preserves direct sums.

2.2. Idempotents associated to group actions. We recall some facts from [4].
See also [9]. Given a finite-dimensional E vector space V we may form objects V ⊗X
and Hom(V, X). They are characterized by

Hom(V ⊗ X, Y ) ∼= Hom(V, Hom(X, Y ))(2.1)

Hom(Y, Hom(V, X)) ∼= Hom(V ⊗ Y, X).(2.2)

Note that Hom(V, X) ∼= V ∗ ⊗X, canonically. Suppose that the finite group G acts
on X. The endomorphism

i =
1
|G|

∑
g∈G

g

of X is idempotent. We shall denote its image by XG. If we also have a represen-
tation

ρ : G → GL(V )

in a finite-dimensional vector space then there is a G-action on V ⊗ X and on
Hom(V, X). We shall denote the images of the respective idempotents by (V ⊗X)G

and HomG(V, X). If G acts on T and S has a trivial action then Hom(TG, S) =
HomG(T, S). The following formulas then follow:

Hom((V ⊗ X)G, Y ) = HomG(V, Hom(X, Y ))(2.3)

Hom(Y, HomG(V, X)) = HomG(V, Hom(Y, X)).(2.4)

Note that if X and the action by G are defined over Z then so is the motive
(X ⊗ V )G. This is because the coefficents of our Chow motives are in E.
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The symmetric group Sn acts on X⊗n. We define the nth symmetric power of
X by

SymnX = (X⊗n)Sn .

More generally, given a partition λ of n, there is a corresponding irreducible repre-
sentation Vλ of Sn. We can define Schur functors Sλ : C → C by

Sλ(X) = HomSn
(Vλ, X⊗n).

2.3. Zeta and L-functions. We will assume from now on that the category C is
small. We denote by Z(C) the free Abelian group on isomorphism classes of objects
of C. The Abelian group K0(C) is the quotient of Z(C) by the subgroup generated
by

[M ⊕ N ] − [M ] − [N ].

This group becomes a ring under the multiplication induced by the tensor product
of C. Let X be an object of C. The zeta function of X is the formal power series
in K0(C)[[t]] defined by

1 + [X]t + [Sym2X]t2 + · · · .

We denote it by Z(X, t). Now consider an object X on which there is an action of
the finite group G. Consider a representation

ρ : G → GL(V ).

We define the corresponding L-function to be

L(t, X, ρ) = Z((V ⊗ X)G, t).

(Recall that (V ⊗X)G is the image of (V ⊗X) under the idempotent 1
|G|
∑

ρ(g)⊗g.)
We will see later that this definition of L-function specializes to the usual Artin L-
function under the trace of Frobenius.

2.4. Direct sums.

Proposition 2.6. In K0(C) we have the equality

[Symn(X ⊕ Y )] =
n∑

i=0

[SymiX][Symn−iY ].

Proof. This follows from the identity [4, 1.8] and the fact that the Littlewood–
Richardson coefficients are 1 in this case. �
And hence:

Proposition 2.7. We have Z(X ⊕ Y, t) = Z(X, t)Z(Y, t).

Proof. This is a restatement of the above proposition. �
Suppose that G acts on X and that the representation ρ = ρ1 ⊕ ρ2 decomposes.
There is a corresponding decomposition

X ⊗ V ∼= (X ⊗ V1) ⊕ (X ⊗ V2).

The G-action respects this decomposition so that

(X ⊗ V )G ∼= (X ⊗ V1)G ⊕ (X ⊗ V2)G.

So we have:
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Proposition 2.8. In the above situation

L(X, ρ, t) = L(X, ρ1, t)L(X, ρ2, t).

2.5. Restriction. Let H be a normal subgroup of G and suppose now that G/H
acts on X and we are given a representation τ : G/H → GL(V ). We have a repre-
sentation ρ of G obtained by composing with the quotient map. Let g1, g2, . . . , gk

be a collection of coset representatives for G/H. We have the following equality of
idempotent endomorphisms of X:

1
|G|

∑
g∈G

ρ(g)g =
|H|
|G|

k∑
i=1

ρ(gi)gi =
|H|
|G|

∑
h∈G/H

τ(h)h.

It follows that (X ⊗ V )G = (X ⊗ V )G/H and therefore we have established the
following proposition.

Proposition 2.9. We have L(X, ρ, t) = L(X, τ, t).

2.6. Induction. Let H be a subgroup of G. Suppose that ρ : H → GL(V ) is a
representation. There is an induced representation

IndG
Hρ : G → GL(W ).

It follows from formula (2.3) that

(W ⊗ X)G ∼= (V ⊗ X)H .

Proposition 2.10. We have

L(X, H, ρ, t) = L(X, G, IndG
Hρ, t).

3. Chow motives and motivic L-functions

Let Vk be the category of smooth projective varieties over a ground field k. We
denote by Mk(E) (resp. M+

k (E)) the category of (resp. effective) cohomological
Chow motives with coefficients in E. The fact that they are cohomological amounts
to the fact that there is a contravariant functor

h : Vop
k → Mk(E).

For a precise definition of these categories see [14], [20] or [1].
The category Mk(E) is a rigid tensor category. Let X be a motive with a group

action. Given a representation ρ : G → GLm(E) we obtain an L-function L(X, ρ, t)
using the procedure in the previous section.

Given a smooth projective variety X with a group action, then the opposite
group Gop acts on the motive h(X). A representation ρ : G → GLm(E) produces
an opposite representation

ρop(gop) = ρ(g−1).

We define

L(X, ρ, t) defn= L(h(X), ρop, t).
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4. Rationality of L-functions

We will settle questions regarding the rationality of the L-series using some
results of André and Kimura; see [1] and [12]. The symmetric group Sn acts on the
motive X⊗n. We consider the signature representation

sgn : Sn → GL1(E).

If p = 1
n!

∑
(sgn σ)σ is the associated idempotent we call the image of p the nth

exterior power of X and denote it by
∧n

X.
Following Kimura we say that a motive X is oddly finite-dimensional if there is

an integer n so that SymnX = 0. It follows that SymmX = 0 for all m > n, [12,
5.9].

A motive X is said to be evenly finite-dimensional if there is an integer n so that∧n
X = 0. Similarly by Kimura, we have

∧m
X = 0 for all bigger m.

A motive is said to be finite-dimensional if there is a decomposition

X = X+ ⊕ X−

with X+ evenly finite-dimensional and X− oddly finite-dimensional.

Theorem 4.1. Let X be a smooth projective curve over k. The motives h0(X) and
h2(X) are evenly finite-dimensional. The motive h1(X) is oddly finite-dimensional.

Proof. See [12]. �

Let us record the following:

Lemma 4.2. We have the following identity in K0(Mk(E))[[t]]:( ∞∑
k=0

[∧kX](−t)k

)( ∞∑
k=0

[SymkX]tk
)

= 1.

Proof. One may deduce this from [4, Section 1.] or see [1, Section 13.3]. �

Corollary 4.3 (André). (1) If M+ is an evenly finite-dimensional motive then
Z(M+, t)−1 is a polynomial.

(2) If M− is an oddly finite-dimensional motive then Z(M−, t) is a polynomial.
(3) If M is finite-dimensional then Z(M, t) is rational.

Proof. The proof is by the above lemma definitions and 2.7. �

Corollary 4.4 (Kapranov). The Zeta function of a curve is rational.

Proposition 4.5. Let X be a smooth projective curve with an action of the finite
group G. Let

ρ : G → GL(V )

be an irreducible nontrivial representation. Then the power series L(X, ρ, t) is a
polynomial.

Proof. There is an induced action of G on each of the pieces hi(X). If a motive
is evenly (resp. oddly) finite-dimensional then every direct summand of it is evenly
(resp. oddly) finite-dimensional. So it suffices to show that

Z((h0(X) ⊗ V )G, t) = Z((h2(X) ⊗ V )G, t) = 1.



A motivic Chebotarev density theorem 131

In other words both the motives (h0(X)⊗ V )G and (h2(X)⊗ V )G vanish. We will
prove this for h0 and leave the other case to the reader.

We first need to observe that the action of G on h0(X) is trivial. To see this,
first assume that X has a rational point x ∈ X(k). Then the inclusion

h(spec(k)) = h0(X) ↪→ h(X)

is given by the cycle [X] ∈ CH0(X). The inclusion is split by the cycle

[x] ∈ CH1(X).

As the G-action is defined over k the composition

h(spec(k)) → h(X)
g∗
→ h(X) → h(spec(k))

is the identity. When X has no rational points we may find a Galois extension k′/k
with Galois group Γ such that X ′ = X ⊗ k′ has a k′ rational point. The result
follows from the observation that h(X ′)Γ = h(X) and the projection is compatible
with the decomposition h(X) = h0(X) ⊕ h1(X) ⊕ h2(X).

For an arbitrary smooth projective variety Y there is a canonical isomorphism

CH∗(V ⊗ h0(X) ⊗ Y ) ∼= CH∗(h0(X) ⊗ Y ) ⊗ V

compatible with G-actions. The G-action on the last term is entirely on V . As
V is irreducible as a G-module, we have V G = 0 and hence the fixed part of the
above module is trivial for every smooth projective variety Y . The Manin identity
principle; see [20], shows that our motive vanishes. �

5. Relationship with the usual Artin L-function

We assume in this section that the ground field k is in fact a finite field. Then
there is a ring homomorphism, given by taking the trace of the Frobenius:

Tr : K0(Mk(E)) → Z.

Here we mean the alternating sum of the traces on the graded pieces of the coho-
mology groups. In this section we want to prove:

Theorem 5.1. Suppose that X is a smooth projective curve with an action of the
finite group G. Let ρ : G → GL(V ) be a representation of G. Then

Tr(L(X, ρ, t)) = LAr(X, ρ, t).

The function on the right-hand side is the usual Artin L-function.

5.1. Extensions of fields. Let us do a warm up exercise to illustrate the proof.
We will also use this exercise in the next section. Given an extension of finite fields
Fqn/Fq with Galois group G and a representation of the Galois group ρ : G →
GL(V ) we define the Artin L-function by

LAr(Fqn , ρ, t) = det(1 − tρ(f))−1.

Here f is the Frobenius element in G. We have an associated motivic L-function

L(h(Fqn), ρ, t) = 1 + [(h(Fqn) ⊗ V )G]t + [Sym2(h(Fqn) ⊗ V )G]t2 + · · · ,

so let us see if the two coincide under the trace of Frobenius. We start by assuming
dim V = 1 and the general case will reduce to this below. We have

LAr(Fqn , ρ, t) = (1 − tρ(f))−1 = 1 + ρ(f)t + ρ(Ff)t2 + · · · .
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The main tool for showing that the two formulas are the same is the Lefschetz
trace formula:

Theorem 5.2. Let Y be a smooth projective variety over an algebraically closed
field and let φ be an endomorphism of Y . Then

(Γφ.Δ) =
∑

(−1)iTr(φ|Hi(Y , Ql)),

where Γφ is the graph of φ and Δ is the diagonal in Y × Y .

Proof. See [17, 12.3]. �

Next observe the following trivial fact:

Lemma 5.3. Let V be a vector space and p an idempotent endomorphism of V . If
f is another endomorphism then

Tr(fp) = Tr(f | pV ).

In our context this means that we have to study the trace of the endomorphism

fp = pf

where f is the Frobenius and p = 1
|G|
∑

g∈G ρ(g−1)g is an idempotent correspon-
dence. By the Lefschetz fixed point formula we are left to count fixed points of
Fqn ⊗Fq

Fq under the endomorphisms gf where f is the Frobenius element of Fq/Fq.
The scheme Spec(Fqn ⊗Fq

Fq) is a disjoint union of n points permuted by f . It fol-
lows that gf has a fixed point if and only if g = f−1, in which case it has n = |G|
fixed points. This shows that the first terms agree under the trace of Frobenius.

Let us look at the second terms. Unwinding the definitions we wish to understand
the trace of Frobenius on the image of the projection

1
2|G|2

∑
(g1,g2)

ρ(g−1
1 g−1

2 )(1 + σ)(g1, g2) : H∗(Fqn ⊗ Fqn , Q�)

→ H∗(Fqn ⊗ Fqn , Q�).

In the above formula σ is the transposition in S2. Arguing as before we are reduced
to counting fixed points. The scheme Spec(Fqn ⊗Fq

Fqn) has n2 geometric points.
The endomorphism (g1, g2)f has fixed points if and only if g1 = f−1 = g2. There
are n2 = |G|2 of them. If the point (p1,p2)is fixed by (g1, g2)σf then a calculation
shows

p1 = g1fp2 p2 = g2fp1.

One sees that g−1
1 g−1

2 = f2 if there is a fixed point. Note that the G-action
commutes with f as it is defined over the base field. The point (p, g−1f−1p) is then
a fixed point, fixed by (g, g−1f−2). There are again |G|2 possibilities.

The proof for the higher-order terms is similar. We do not provide it here, but
we will spell things out carefully in the next section for covers of curves, which is
more general.

Proposition 5.4. Tr(L(h(Fqn) ⊗ V, ρ, t)) = LAr(Fqn , ρ, t).
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Proof. We have proved the result for degree 1 representations. One can prove
restriction, induction and direct sum formulas for Artin L-functions, see [15]. By
[21, 10.7], every representation is a direct sum of representations that are induced
from degree 1 representations of subgroups. The corresponding direct sum and
induction formulas prove the result in general. �

5.2. Extensions of curves. The curve X, the action of the group G, and the
representation ρ : G → GLm(E) will remain fixed throughout. We will break the
proof into parts. We begin by assuming that m = 1, the general case will be reduced
to this case. Under this assumption, let us unwind definitions a bit. The nth term
of the zeta function is

((XG)⊗n)Sn .

The G-action is twisted by the representation in the above. There is a representation

ρn : Gn → GL1(E)

given by taking products. On h(X)⊗n we have two commuting idempotents

p2 =
1

|G|n
∑

g∈Gn

ρn(g−1)g and p1 =
1
n!

∑
σ∈Sn

σ.

Recall from the previous section that the functor from varieties to motives is con-
travariant, hence the appearance of the inverse in the definition of p2. As the
idempotents commute we may think of ((XG)⊗n)Sn as the image of p1p2 = p.

We use again our Lemma 5.3. In our context this means that we have to study
the trace of the endomorphism

fp = pf

where f is the Frobenius and p is an idempotent correspondence. As the trace is
additive with respect to addition of correspondences this implies that we will end
up studying the trace of the endomorphisms fg where f is the Frobenius and g is
an element of a group, or more generally an endomorphism of the n-fold fibered
product Xn. Both Sn and the group Gn act on Xn.

Let Y = X/G be the quotient. We will write Yk for the set of degree k points
of Y that are unramified in X. We will write Y −

k for the set of degree k points
that are ramified and the restriction of ρ to the inertia subgroup is nontrivial.
Finally we write Y +

k for the degree k points that are ramified but ρ gives a trivial
representation of the inertia. The key lemma for the comparison theorem is:

Lemma 5.5. Let σ = (123 . . . n) and write g = (g1, g2, . . . , gn) ∈ Gn. Let f be the
Frobenius endomorphism acting on X

n
= Xn ⊗ k. If #(gσf) denotes the number

of fixed points of this endomorphism then

1
|G|n

∑
g∈Gn

ρn(g−1)#(gσf) =
∑
α|n

α

⎛
⎝ ∑

y∈Yα∪Y +
α

ρ(fn/α
y )

⎞
⎠ .

In this formula fy is the Artin symbol at y. By the Lefschetz fixed point theorem,
this is the same as the trace of the induced endomorphism on the cohomology of
Xn.
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Proof. Consider the projection π : X
n → Y

n
. If y∗ = (y1, y2, . . . , yn) ∈ Y

n
is

fixed by σf then it is of the form

(y1, fy1, . . . , f
n−1

y1)

and furthermore we need deg y = α|n where y is the image of y1 in Y . Note that
there are α different points of Y projecting to y.

The projection π : X
n → Y

n
is a Gn quotient. If y is unramified then for each

x∗ = (x1, x2, . . . , xn) ∈ π−1(y∗)

there is a unique g ∈ Gn so that gσf fixes x∗. An easy calculation shows that

ρn(g−1) = ρ(fn) = ρ(fn/α
y ).

If the point y is ramified then either the restriction of ρ to the inertia group Iy

is trivial or the following sum vanishes:∑
g∈Iy

ρ(g).

From this observation the result follows. �

The number appearing in this lemma is important so we will give it a name. Define

A(n) =
∑
α|n

α

⎛
⎝ ∑

y∈Yα∪Y +
α

ρ(fn/α
y )

⎞
⎠ .

Proposition 5.6. Let n = (n1, n2, . . . , nk) be a partition of n. Let σ ∈ Sn be a
cycle of type n. The the trace of

1
|G|n

∑
g∈Gn

ρn(g−1)(gσf)

on the cohomology of X is equal to

A(n1)A(n2) . . . A(nk).

Proof. By the Künneth formula we have that

Tr(M ⊗ N) = Tr(M)Tr(N)

for motives M and N . The Gn action preserves the product Xn. Furthermore the
action of σ preserves the product

Xn1 × Xn2 × · · · × Xnk ∼= Xn.

The result follows from the previous lemma and the above observation. �

Theorem 5.7. In the above situation of a degree one representation the L-function
specializes to the Artin L-function under the trace of the Frobenius.

Proof. We begin by recalling the definition of the local factor in the Artin L-
function corresponding to y ∈ Y . The local factor is given by the formula:

det(I − ρ(fy)|V I)

where I is the inertia at y. It follows that in our 1-dimensional case that the
elements of Y −

α give no contribution to the L-function.
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Set Ŷα = Yα ∪ Y +
α . We define

Hα =
∏

y∈Ŷα

(1 + ρ(fy)t + ρ(f2
y )t2 + · · · ),

so that the Artin L-function is the product of the H’s. We also write∑
y∈Ŷα

ρ(f l
y) = Cα(l).

So that

A(k) =
∑
α|k

αCα(k/α).

A calculation shows that

Hα = exp

⎛
⎝∑

α|s
αCα(s/α)

ts

s

⎞
⎠ .

Hence

LAr(X, ρ, t) =
∏
α

Hα

= exp

⎛
⎝∑

s

⎛
⎝∑

α|s
αCα(s/α)

ts

s

⎞
⎠
⎞
⎠

=
∏
s

exp

⎛
⎝∑

α|s
αCα(s/α)

ts

s

⎞
⎠

=
∏
s

∞∑
ms=0

(
∑

α|s αCα(s/α)ts)ms

smsms!

=
∑
n≥0

tn

⎛
⎝ ∏
∑

sms=n

smsms!

⎞
⎠

−1⎛
⎝ ∑
∑

si=n

A(s1)A(s2) . . . A(sk)

⎞
⎠ .

This last term is the required trace using the above proposition. �

Finally we can prove the main result:

Proof of 5.1. By [21, 10.5] every character of G is a linear combination of char-
acters induced from degree 1 characters of subgroups. One implies the induction
and direct sum formulas to deduce the result. �

6. The motivic Chebotarev density theorem

We preserve the following setup throughout this section. We fix an inclusion

Q� ↪→ C,

where � is any prime. Let G be a finite group acting on the smooth projective curve
X. We denote Y = X/G. The set of conjugacy classes of G is written conj(G). Let
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C ∈ conj(G). The class function that is 1 on C and 0 otherwise will be denoted
IC . Denote by χ0,χ1, . . . , χk the irreducible characters of G, with χ0 being the
character of the trivial representation. There are rational numbers mC,0, . . . , mC,k

so that

IC = mC,0χ0 + mC,1χ1 + · · · + mC,kχk.

Note that mC,0 = |C|
|G| .

6.1. The power set. In this section we make use of the basic properties of Möbius
functions associated to a poset; see [22, 3.7].

If C is a conjugacy class then define

Pn(C) = {C ′ ∈ conj(G)|if x ∈ C ′ then xn ∈ C} .

We define a relation ≤ on the set N × conj(G) by

(d, C ′) ≤ (n, C) if and only if d|n and C ′ ∈ Pn/d(C).

This gives N × conj(G) the structure of a poset. We wish to bound the associated
Möbius function μ. Recall that

μ((d, C ′), (n, C)) = c0 − c1 + c2 − · · ·
where ci is the number of complete chains of length i in [(d, C ′), (n, C)]; see [22,
3.8.5].

Lemma 6.1. μ((1, C ′), (n, C)) ≤ |conj(G)|n2.

Proof. This bound is classical. If we let H(n) be the number of ordered factoriza-
tions of the number n then E. Hille was the first to find a precise bound for H(n)
up to a constant; see [10]. Later the constant was found to be one; see [3] and [2].
From these works we have

c0 + c1 + c2 + · · · ≤ |conj(G)|nρ ≤ |conj(G)|n2 where ρ = ζ(2)−1. �

6.2. Local factors. Let ρ : G → GL(V ) be a representation. Let p ∈ Y and
denote by D (resp. I) the decomposition (resp. inertia) group at p. The fiber
X×Y p is a disjoint union of points. Let q be one of them. The extension k(q)/k(p)
is Galois with Galois group D/I. There is a restricted representation, also denoted
ρ,

ρ : D/I → GL(V I).

We define the local factor at p to be

Lp(X, ρ, t) = L(spec(k(q)), ρ, t).

By Subsection 5.1, it specializes to the usual local factor under the trace of Frobe-
nius. We define the unramified L-function by

L∗(X, ρ, t) = L(X, ρ, t)
∏

Lp(X, ρ, t)−1

where the product is over the ramified points.
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6.3. The motive of Artin symbols. We wish to define the motive of Artin
symbols of degree n

Ar(X, G, C, n) = Ar(C, n) ∈ K0(Mk(E)) ⊗ Q.

The elements of this last ring will be referred to as virtual motives. In order to
define the motives of Artin symbols we form the generating functions

L(X, C, t) = exp

⎛
⎝∑

n>0

tn

n

⎛
⎝ ∑

d|n, C′∈Pn/d(C)

Ar(C ′, d)

⎞
⎠
⎞
⎠ .

We define the motives of Artin symbols by the formula

L(X, C, t) = L∗(X, χ0, t)m0L∗(X, χ1, t)m1 . . . L∗(X, χk, t)mk .(6.1)

Some remarks are in order. Note that by the results of the first section an L-function
is completely determined by its character. So L(X, χi, t) is the L-function coming
from the irreducible representation corresponding to χi. Raising to a fractional
power is only a formal operation here, as the purpose of the above formula is to
define Ar(C, n) only and one needs to take logarithms in the above to write down
a formula for Ar(C, n). Note that the formula is recursive. As P1(C) = {C} the
coefficient of tn involves Ar(C, n) and Ar(C ′, d). We may assume by induction that
the Ar(C ′, d) have already been defined. (This is essentially Mobius inversion.)

Aside. Let us calculate the first few terms in the case when X → Y = X/G
is unramified. The ramified case is similar but more complicated as one needs
to take care of the local factors coming from the ramification. Let V0, . . . , Vk be
the irreducible G-modules corresponding to the characters χi. Note that (h(X) ⊗
V0)G = h(Y ). Taking logarithms we find that the first two terms of log L(X, C, t)
are

t(Ar(C, 1)) +
t2

2

⎛
⎝Ar(C, 2) +

∑
C′∈P2(C)

Ar(C ′, 1)

⎞
⎠+ · · · .

Equating with the other side and noting that mC,0 = |C|/|G| we find that

Ar(C, 1) =
|C|
|G| [h(Y )] + mC,1[(h(X) ⊗ V1)G] + · · · + mC,k[(h(X) ⊗ Vk)G]

and

1
2

⎛
⎝Ar(C, 2) +

∑
C′∈P2(C)

Ar(C ′, 1)

⎞
⎠

=
|C|
|G| ([Sym2(h(Y ))] − 1/2[h(Y )]2)

+ · · · + mC,k([Sym2((h(X) ⊗ Vk)G)] − 1/2[(h(X) ⊗ Vk)G]2).

Now assume k is a global field. Let Gk be its absolute Galois group. For every
prime p in k we let fp be the Frobenius element at p. It is determined up to
conjugacy. We say that a motive M is pure of weight i if for all but finitely many
p the eigenvalues of fp on the �-adic realisation of M have absolute value qi/2. We
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will denote Xp the base change of our curve to the residue field of p. Note that we
have an �-adic realisation homomorphism

K0(Mk(E)) ⊗ Q → K0(Gk-modules) ⊗ Q.

For every prime p we have ring homomorphisms

Trp : K0(Mk(E)) ⊗ Q → Q

obtained by taking the alternating sum of the traces of fp on cohomology. Here �
is a prime different from the characteristic of the residue field.

Proposition 6.2. For all but finitely many p we have

Trp(Ar(C, n)) = n.# {p ∈ Y ∗ | deg p = n, (p|X/Y ) ∈ C} .

In the above (p|X/Y )is the Artin symbol for the cover X → Y with Y = X/G. Here
Y ∗ denotes the set of unramified points of the cover. Note that the multiplication
by n amounts to counting geometric points over p.

Proof. The set of primes mentioned in the statement of the proposition is the set
where X has good reduction and such that the G-action is defined over them. On
the one hand, using Theorem 5.1 and standard facts about Artin L-functions (see
[19, Lemma 9.14]) we have

t
d

dt
Tr(fP | log L(X, C, t)) =

∑
y∈Y ∗

∞∑
l=1

k∑
i=1

miχi((y|X/Y )l)tl deg y

=
∑

y∈Y ∗

∞∑
l=1

IC((y|X/Y )l)tl deg y

=
∞∑

l=1

∑
y∈Y ∗,(y|X/Y )l∈C

tl deg y

=
∞∑

n=1

tn

⎛
⎝ ∑

y∈Y ∗,l deg y=n,(y|X/Y )∈Pl(C)

1

⎞
⎠ .

Note that the other side of this equation is just

∑
n>0

tn

⎛
⎝ ∑

d|n,C′∈Pn/d(C)

Trp(Ar(C ′, d))

⎞
⎠ .

We compare coefficents and use an induction, to obtain the result. �
Let M be a motive. We define virtual motives Wn(M) by the formula

∞∑
n=1

Wn(M)tn =
tZ ′(M, t)
Z(M, t)

.

The prime denotes the formal derivative in the above formula.
For each of our characters χi there is an irreducible representation

ρi : G → GL(Vi).

We define motives by

Mi = (h1(X) ⊗ Vi)G.



A motivic Chebotarev density theorem 139

Using the results of Section 4, in particular 4.5 and its proof, we have

Li(X, χi, t) = Z(Mi, t) i > 0

are polynomials and

L0(X, χ0, t) =
Z(M0, t)

(1 − t)(1 − Lt)
= Z(Y, t).

Here L is the Lefschetz motive. It is isomorphic to h2(X); see [20]. Let p1, p2, . . . , pl

be the ramification points of the cover X → Y . We choose preimages q1, q2, . . . , ql.
Let Ii (resp. Di) denote the corresponding inertia (resp. decomposition) groups.
We let

Nij = (h0(spec(k(qj))) ⊗ V
Ij

i )Dj/Ij ,ρi ,

where ρi indicates that Dj/Ij acts via ρi on V
Ij

i . So that the local factors are given
by

Lpj
(X, ρi, t) = Z(Nij , t).

Theorem 6.3. In the above situation we have

Ar(C, n) =
∑

d|n, C′∈Pn/d(C)

μ((d, C ′), (n, C))

(
|C ′|
|G| Ld

+
k∑

i=0

mC′,iWd(Mi) −
k∑

i=0

l∑
j=1

mC′,iWd(Nij)

)
.

Proof. We take logarithmic derivatives of (6.1) and equate coefficients to obtain:

∑
d|n, C′∈Pn/d(C)

Ar(C ′, d) = mC,0Ln + mC,0 +
k∑

i=0

mC,iWn(Mi)

−
k∑

i=0

l∑
j=1

mC,iWn(Nij).

Observe that mC,0 = |C|
|G| . Applying Möbius inversion we obtain the desired result.

�

We may deduce the usual geometric Chebotarev density theorem from this theorem.

Corollary 6.4. For all but finitely many p we have

Trp(Ar(C, n)) =
|C|
|G|q

n + O(n2qn/2)

where q is the cardinality of the residue field at p.

Proof. It follows from 6.1 that μ((d, C ′), (n, C)) ≤ n2|conj(G)|. Next observe that
L specializes to q under the trace of Frobenius.

Next we study the terms Wn(Mi) under the trace of Frobenius. It is a theorem
of A. Weil that

LAr(X, χi, t) =
ei∏

j=1

(1 − αijt)
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with |αij | = q1/2 when χi is nontrivial. This follows from the fact that h1(X) is
pure of weight one; see [17]. A calculation shows that

t
d

dt
log LAr(X, χi, t) =

∑
n>0

tn
(∑

αn
ij

)
.

It follows that

|Trp(Wn(Mi))| = O(qn/2).

A similar result is true for i = 0 as the higher degree terms come from the Lefschetz
motive.

Finally it remains to study the terms coming from the ramification. But us-
ing the argument above, they are easily bounded in terms of the degree of the
representation. This completes the proof. �

Note that the error term O(n2qn/2) is not as sharp as the error term O(qn/2)
in [18]. It should be possible to improve this estimate by bounding the Möbius
function more carefully.
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MR2115000 (2005k:14041), Zbl 1060.14001.

[2] Chor, Benny; Lemke, Paul; Mador, Ziv. On the number of ordered factorizations of natural
numbers. Discrete Math. 214 (2000), 123–133. MR1743631 (2000m:11093), Zbl 0970.11036.

[3] Coppersmith, Don; Lewenstein, Moshe. Constructive bounds on ordered factorizations. SIAM
J. Discrete Math. 19 (2005), no. 2, 301–303 (electronic). MR2178104 (2006f:11122).

[4] Deligne, Pierre. Catégories tensorielles. Dedicated to Yuri I. Manin on the occasion of
his 65th birthday. Mosc. Math. J., 2 (2002), no. 2, 227–248. MR1944506 (2003k:18010),
Zbl 1005.18009.

[5] Deligne, Pierre; Milne, James S. Tannakian categories. Hodge cycles, motives, and Shimura
varieties. Lecture Notes in Mathematics, 900, 101–228. Philosophical Studies Series in Philos-
ophy, 20. Springer-Verlag, Berlin-New York, 1982. MR0654325 (84m:14046), Zbl 0477.14004.

[6] Denef, Jan; Loeser, François. Definable sets, motives and p-adic integrals. J. Amer. Math.
Soc., 14 (2001), no. 2, 429–469 (electronic). MR1815218 (2002k:14033), Zbl 1040.14010.

[7] Fried, Michael D.; Jarden, Moshe. Field arithmetic. Second edition. Ergebnisse der Math-
ematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics, 11.
Springer-Verlag, Berlin, 2005. MR2102046 (2005k:12003), Zbl 1055.12003.

[8] Fried, M.; Sacerdote, G. Solving Diophantine problems over all residue class fields of a number
field and all finite fields. Ann. of Math. (2) 104 (1976), no. 2, 203–233. MR0491477 (58
#10722), Zbl 0376.02042.

[9] Heinloth, Franziska. A note on functional equations for zeta functions with values in Chow
motives. math.AG/0512237.

[10] Hille, Einar. A problem in “Factorisatio Numerorum”. Acta Arith. 2 (1936), 134–144.
Zbl 0015.10002.

[11] Kapranov, Mikhail. The elliptic curve in the S-duality conjecture and Eisenstein series of
Kac–Moody groups. math.AG/0001005, 2000.

[12] Kimura, Shun-Ichi. Chow groups are finite-dimensional, in some sense. Math. Ann. 331
(2005), no. 1, 173–201. MR2107443 (2005j:14007), Zbl 1067.14006.

[13] Mac Lane, Saunders. Natural associativity and commutativity. Rice Univ. Studies 49 (1963),
no. 4 28–46. MR0170925 (30 #1160), Zbl 0244.18008.

[14] Manin, Yuri. Correspondences, motifs and monoidal transformations. Mat. Sbornik 77 (1968),
475–507. MR0258836 (41 #3482), Zbl 0199.24803.

http://www.emis.de/cgi-bin/MATH-item?0199.24803
http://www.ams.org/mathscinet-getitem?mr=0258836
http://www.emis.de/cgi-bin/MATH-item?0244.18008
http://www.ams.org/mathscinet-getitem?mr=0170925
http://www.emis.de/cgi-bin/MATH-item?1067.14006
http://www.ams.org/mathscinet-getitem?mr=2107443
http://arXiv.org/abs/math.AG/0001005
http://www.emis.de/cgi-bin/MATH-item?0015.10002
http://arXiv.org/abs/math.AG/0512237
http://www.emis.de/cgi-bin/MATH-item?0376.02042
http://www.ams.org/mathscinet-getitem?mr=0491477
http://www.emis.de/cgi-bin/MATH-item?1055.12003
http://www.ams.org/mathscinet-getitem?mr=2102046
http://www.emis.de/cgi-bin/MATH-item?1040.14010
http://www.ams.org/mathscinet-getitem?mr=1815218
http://www.emis.de/cgi-bin/MATH-item?0477.14004
http://www.ams.org/mathscinet-getitem?mr=0654325
http://www.emis.de/cgi-bin/MATH-item?1005.18009
http://www.ams.org/mathscinet-getitem?mr=1944506
http://www.ams.org/mathscinet-getitem?mr=2178104
http://www.emis.de/cgi-bin/MATH-item?0970.11036
http://www.ams.org/mathscinet-getitem?mr=1743631
http://www.emis.de/cgi-bin/MATH-item?1060.14001
http://www.ams.org/mathscinet-getitem?mr=2115000


A motivic Chebotarev density theorem 141

[15] Martinet, J. Character theory and Artin L-functions. Algebraic number fields: L-functions
and Galois properties (Proc. Sympos., Univ. Durham, Durham, 1975), 1–87. Academic Press,
London, 1977. MR0447187 (56 #5502), Zbl 0359.12015.

[16] Mazza, Carlo. Schur functors and motives. K-Theory, 33 (2004), no. 2, 89–106. MR2131746
(2006a:14007), Zbl 1071.14026.

[17] Milne, James S. Étale cohomology. Princeton Mathematical Series, 33. Princeton University
Press, Princeton, N.J., 1980. MR0559531 (81j:14002), Zbl 0433.14012.

[18] Murty, Vijaya Kumar; Scherk, John. Effective versions of the Chebotarev density theorem for
function fields. C. R. Acad. Sci. Paris Sér. I Math. 319 (1994), no. 6, 523–528. MR1298275
(95j:11104), Zbl 0822.11077.

[19] Rosen, Michael. Number theory in function fields. Graduate Texts in Mathematics, 210.
Springer-Verlag, New York, 2002. MR1876657 (2003d:11171), Zbl 1043.11079.

[20] Scholl, A. J. Classical motives. Motives (Seattle, WA, 1991), 163–187, Proc. Sympos. Pure
Math., 55, Part 1, Amer. Math. Soc., Providence, RI, 1994. MR1265529 (95b:11060),
Zbl 0814.14001.

[21] Serre, Jean-Pierre. Linear representations of finite groups. Translated from the second French
edition by Leonard L. Scott. Graduate Texts in Mathematics, 42. Springer-Verlag, New York-
Heidelberg, 1977. MR0450380 (56 #8675), Zbl 0355.20006.

[22] Stanley, Richard P. Enumerative combinatorics. Vol. 1, With a foreword by Gian-Carlo Rota.
Corrected reprint of the 1986 original. Cambridge Studies in Advanced Mathematics, 49.
Cambridge University Press, Cambridge, 1997. MR1442260 (98a:05001), Zbl 0889.05001.

[23] Stevenhagen, P.; Lenstra, H. W., Jr. Chebotarëv and his density theorem. Math. Intelligencer,
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