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T-homotopy and refinement of observation. IV.
Invariance of the underlying homotopy type

Philippe Gaucher

Abstract. This series explores a new notion of T-homotopy equivalence of
flows. The new definition involves embeddings of finite bounded posets pre-
serving the bottom and the top elements and the associated cofibrations of
flows. In this fourth part, it is proved that the generalized T-homotopy equiv-
alences preserve the underlying homotopy type of a flow. The proof is based
on Reedy model category techniques.
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1. Outline of the paper

The main feature of the two algebraic topological models of higher-dimensional
automata (or HDA) introduced in [GG03] and in [Gau03] is to provide a framework
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for modelling continuous deformations of HDA corresponding to subdivision or re-
finement of observation. Globular complexes and flows are introduced in [GG03]
and [Gau03] respectively for modelling a notion of dihomotopy equivalence between
higher-dimensional automata [Pra91] [Gla05]. This equivalence relation preserves
geometric properties like the initial or final states, and therefore computer-scientific
properties like the presence or not of deadlocks or of unreachable states [Gou03].
More generally, dihomotopy is designed to preserve all computer-scientific proper-
ties invariant under refinement of observation (see Figure 2). The two settings are
compared in [Gau05a] and are proved to be equivalent.

In the framework of flows, there are two kinds of dihomotopy equivalences
[Gau00]: the weak S-homotopy equivalences (the spatial deformations of [Gau00])
which can be interpreted as the weak equivalences of a model structure [Gau03]
and the T-homotopy equivalences (the temporal deformations of [Gau00]). The
latter are considerably more difficult to model and to understand. The geometric
explanations underlying the intuition of S-homotopy and T-homotopy are given in
the first part of this series [Gau05b], but the reference [GG03] may be preferred.

The purpose of this paper is to prove that the notion of T-homotopy equivalence
studied in this series preserves the underlying homotopy type of a flow. The un-
derlying homotopy type of a flow is the topological space which is obtained after
removing the temporal ordering. This underlying topological space is unique only
up to weak homotopy equivalence. For example, the underlying homotopy type of
the two flows of Figure 2 is a point. The main theorem of this paper is:

Theorem. Let f : X −→ Y be a generalized T-homotopy equivalence. Then the
morphism of Ho(Top) |f | : |X| −→ |Y |, where |−| is the underlying homotopy type
functor, is an isomorphism.

Section 4 recalls the notions of full directed ball and of generalized T-homotopy
equivalence. Section 5 recalls the notion of globular complex. It is necessary for the
definition of the underlying homotopy type of a flow. Section 6 gives the rigorous
definition of the underlying homotopy type of a flow. Section 7 constructs a useful
Reedy structure which will be crucial in the main proofs of the paper. Section 7 also
establishes related lemmas. Section 8 proves that the underlying homotopy type of
the full directed ball is contractible (Theorem 8.6). The latter result is important
since a T-homotopy equivalence consists in replacing in a flow a full directed ball
by a more refined full directed ball (see Figure 3), and in iterating this process
transfinitely. Then Section 9 proves the theorem above.

Warning. This paper is the fourth part of a series of papers devoted to the study of
T-homotopy. Several other papers explain the geometrical content of T-homotopy.
The best reference is probably [GG03] (it does not belong to the series). However,
the knowledge of the other parts is not required. In particular, this means that there
are repetitions between the papers of this series. They are all of them collected in
the appendices A, B and C which are already in the third part of this series. The
proofs of these appendices are independent from the technical core of this part. The
left properness of the weak S-homotopy model structure of Flow is not duplicated
in this paper. It is available in [Gau05c]. This fact is used twice in the proof of
Theorem 9.1.
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2. Prerequisites and notations

The initial object (resp. the terminal object) of a category C, if it exists, is
denoted by ∅ (resp. 1).

Let C be a cocomplete category. If K is a set of morphisms of C, then the class
of morphisms of C that satisfy the RLP (right lifting property) with respect to
any morphism of K is denoted by inj(K) and the class of morphisms of C that are
transfinite compositions of pushouts of elements ofK is denoted by cell(K). Denote
by cof(K) the class of morphisms of C that satisfy the LLP (left lifting property)
with respect to the morphisms of inj(K). This is a purely categorical fact that
cell(K) ⊂ cof(K). Moreover, every morphism of cof(K) is a retract of a morphism
of cell(K) as soon as the domains of K are small relative to cell(K) ([Hov99]
Corollary 2.1.15). An element of cell(K) is called a relative K-cell complex. If X is
an object of C, and if the canonical morphism ∅ −→ X is a relative K-cell complex,
then the object X is called a K-cell complex.

Let C be a cocomplete category with a distinguished set of morphisms I. Then
let cell(C, I) be the full subcategory of C consisting of the objects X of C such
that the canonical morphism ∅ −→ X is an object of cell(I). In other terms,
cell(C, I) = (∅↓C) ∩ cell(I).

It is obviously impossible to read this paper without a strong familiarity with
model categories. Possible references for model categories are [Hov99], [Hir03]
and [DS95]. The original reference is [Qui67] but Quillen’s axiomatization is not
used in this paper. The axiomatization from Hovey’s book is preferred. If M is
a cofibrantly generated model category with set of generating cofibrations I, let
cell(M) := cell(M, I): this is the full subcategory of cell complexes of the model
category M. A cofibrantly generated model structure M comes with a cofibrant
replacement functor Q : M −→ cell(M). For any morphism f of M, the mor-
phism Q(f) is a cofibration, and even an inclusion of subcomplexes ([Hir03] Defini-
tion 10.6.7) because the cofibrant replacement functor Q is obtained by the small
object argument.

A partially ordered set (P,�) (or poset) is a set equipped with a reflexive an-
tisymmetric and transitive binary relation �. A poset is locally finite if for any
(x, y) ∈ P × P , the set [x, y] = {z ∈ P, x � z � y} is finite. A poset (P,�) is
bounded if there exist 0̂ ∈ P and 1̂ ∈ P such that P = [0̂, 1̂] and such that 0̂ �= 1̂.
Let 0̂ = minP (the bottom element) and 1̂ = maxP (the top element). In a poset
P , the interval ]α,−] (the sub-poset of elements of P strictly bigger than α) can
also be denoted by P>α.

A poset P , and in particular an ordinal, can be viewed as a small category
denoted in the same way: the objects are the elements of P and there exists a
morphism from x to y if and only if x � y. If λ is an ordinal, a λ-sequence in a
cocomplete category C is a colimit-preserving functor X from λ to C. We denote
by Xλ the colimit lim−→X and the morphism X0 −→ Xλ is called the transfinite
composition of the Xμ −→ Xμ+1.

Let C be a category. Let α be an object of C. The latching category ∂(C ↓α) at α
is the full subcategory of C ↓α containing all the objects except the identity map of
α. The matching category ∂(α ↓C) at α is the full subcategory of α↓C containing
all the objects except the identity map of α.
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Let B be a small category. A Reedy structure on B consists of two subcategories
B− and B+, a functor d : B −→ λ called the degree function for some ordinal λ,
such that every nonidentity map in B+ raises the degree, every nonidentity map in
B− lowers the degree, and every map f ∈ B can be factored uniquely as f = g ◦ h
with h ∈ B− and g ∈ B+. A small category together with a Reedy structure is
called a Reedy category.

Let C be a complete and cocomplete category. Let B be a Reedy category. Let
i be an object of B. The latching space functor is the composite Li : CB −→
C∂(B+↓i) −→ C where the latter functor is the colimit functor. The matching space
functor is the composite Mi : CB −→ C∂(i↓B−) −→ C where the latter functor is the
limit functor.

If C is a small category and of M is a model category, the notation MC is the
category of functors from C to M, i.e., the category of diagrams of objects of M
over the small category C.

The category Top of compactly generated topological spaces (i.e., of weak Haus-
dorff k-spaces) is complete, cocomplete and cartesian closed (more details for this
kind of topological spaces in [Bro88, May99], the appendix of [Lew78] and also the
preliminaries of [Gau03]). For the sequel, all topological spaces will be supposed to
be compactly generated. A compact space is always Hausdorff.

A model category is left proper if the pushout of a weak equivalence along a
cofibration is a weak equivalence. The model categories Top and Flow (see below)
are both left proper.

In this paper, the notation � � �� means cofibration, the notation �� �� means
fibration, the notation 	 means weak equivalence, and the notation ∼= means iso-
morphism.

A categorical adjunction L : M � N : R between two model categories is a
Quillen adjunction if one of the following equivalent conditions is satisfied:

(1) L preserves cofibrations and trivial cofibrations.
(2) R preserves fibrations and trivial fibrations.

In that case, L (resp. R) preserves weak equivalences between cofibrant (resp. fi-
brant) objects.

If P is a poset, let us denote by Δ(P ) the order complex associated with
P . Recall that the order complex is a simplicial complex having P as under-
lying set and having the subsets {x0, x1, . . . , xn} with x0 < x1 < · · · < xn as
n-simplices [Qui78]. Such a simplex will be denoted by (x0, x1, . . . , xn). The or-
der complex Δ(P ) can be viewed as a poset ordered by the inclusion, and there-
fore as a small category. The corresponding category will be denoted in the
same way. The opposite category Δ(P )op is freely generated by the morphisms
∂i : (x0, . . . , xn) −→ (x0, . . . , x̂i, . . . , xn) for 0 � i � n and by the simplicial rela-
tions ∂i∂j = ∂j−1∂i for any i < j, where the notation x̂i means that xi is removed.

If C is a small category, then the classifying space of C is denoted by BC [Seg68]
[Qui73].
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3. Reminder about the category of flows

The category Top is equipped with the unique model structure having the weak
homotopy equivalences as weak equivalences and having the Serre fibrations1 as
fibrations.

The time flow of a higher-dimensional automaton is encoded in an object called
a flow [Gau03]. A flow X consists of a set X0 called the 0-skeleton and whose
elements correspond to the states (or constant execution paths) of the higher-
dimensional automaton. For each pair of states (α, β) ∈ X0 × X0, there is a
topological space Pα,βX whose elements correspond to the (nonconstant) execution
paths of the higher-dimensional automaton beginning at α and ending at β. For
x ∈ Pα,βX, let α = s(x) and β = t(x). For each triple (α, β, γ) ∈ X0 ×X0 ×X0,
there exists a continuous map ∗ : Pα,βX×Pβ,γX −→ Pα,γX called the composition
law which is supposed to be associative in an obvious sense. The topological space
PX =

⊔
(α,β)∈X0×X0 Pα,βX is called the path space of X. The category of flows is

denoted by Flow. A point α of X0 such that there are no nonconstant execution
paths ending at α (resp. starting from α) is called an initial state (resp. a final
state). A morphism of flows f from X to Y consists of a set map f0 : X0 −→ Y 0

and a continuous map Pf : PX −→ PY preserving the structure. A flow is therefore
“almost” a small category enriched in Top.

An important example is the flow Glob(Z) defined by the equations

Glob(Z)0 = {0̂, 1̂}
PGlob(Z) = Z

s = 0̂
t = 1̂

and a trivial composition law (cf. Figure 1).
The category Flow is equipped with the unique model structure such that

[Gau03]:
• The weak equivalences are the weak S-homotopy equivalences, i.e., the mor-

phisms of flows f : X −→ Y such that f0 : X0 −→ Y 0 is a bijection and
such that Pf : PX −→ PY is a weak homotopy equivalence.

• The fibrations are the morphisms of flows f : X −→ Y such that Pf :
PX −→ PY is a Serre fibration.

This model structure is cofibrantly generated. The set of generating cofibrations is
the set Igl

+ = Igl ∪ {R : {0, 1} −→ {0}, C : ∅ −→ {0}} with

Igl =
{
Glob(Sn−1) ⊂ Glob(Dn), n � 0

}
where Dn is the n-dimensional disk and Sn−1 the (n− 1)-dimensional sphere. The
set of generating trivial cofibrations is

Jgl = {Glob(Dn × {0}) ⊂ Glob(Dn × [0, 1]), n � 0} .
If X is an object of cell(Flow), then a presentation of the morphism ∅ −→ X

as a transfinite composition of pushouts of morphisms of Igl
+ is called a globular

decomposition of X.

1That is a continuous map having the RLP with respect to the inclusion Dn×{0} ⊂ Dn×[0, 1]
for any n � 0 where Dn is the n-dimensional disk.
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TIME

Z

Figure 1. Symbolic representation of Glob(Z) for some topolog-
ical space Z

4. Generalized T-homotopy equivalences

Definition 4.1. A flow X is loopless if for any α ∈ X0, the space Pα,αX is empty.

Recall that a flow is a small category without identity morphisms enriched over
a category of topological spaces. So the preceding definition is meaningful.

Lemma 4.2. A flow X is loopless if and only if the transitive closure of the set
{(α, β) ∈ X0 ×X0 such that Pα,βX �= ∅} induces a partial ordering on X0.

Proof. If (α, β) and (β, α) with α �= β belong to the transitive closure, then there
exists a finite sequence (x1, . . . , x�) of elements of X0 with x1 = α, x� = α, � > 1
and for any m, Pxm,xm+1X is nonempty. So the space Pα,αX is nonempty because
of the existence of the composition law of X: contradiction. �

Definition 4.3. A full directed ball is a flow −→
D such that:

• The 0-skeleton −→
D 0 is finite.

• −→
D has exactly one initial state 0̂ and one final state 1̂ with 0̂ �= 1̂.

• Each state α of −→
D 0 is between 0̂ and 1̂, that is there exists an execution

path from 0̂ to α, and another execution path from α to 1̂.
• −→
D is loopless.

• For any (α, β) ∈ −→
D 0 ×−→

D 0, the topological space Pα,β
−→
D is empty if α � β

and weakly contractible if α < β.

Let −→D be a full directed ball. Then by Lemma 4.2, the set −→D 0 can be viewed as a
finite bounded poset. Conversely, if P is a finite bounded poset, let us consider the
flow F (P ) associated with P : it is of course defined as the unique flow F (P ) such
that F (P )0 = P and Pα,βF (P ) = {uα,β} if α < β and Pα,βF (P ) = ∅ otherwise.
Then F (P ) is a full directed ball and for any full directed ball −→D , the two flows −→D
and F (−→D 0) are weakly S-homotopy equivalent.

Let −→
E be another full directed ball. Let f : −→D −→ −→

E be a morphism of flows
preserving the initial and final states. Then f induces a morphism of posets from−→
D 0 to −→

E 0 such that f(min−→
D 0) = min−→

E 0 and f(max−→D 0) = max−→E 0. Hence the
following definition:

Definition 4.4. Let T be the class of morphisms of posets f : P1 −→ P2 such
that:
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0̂
U �� 1̂

0̂
U ′

�� A
U ′′

�� 1̂

Figure 2. The simplest example of refinement of observation

(1) The posets P1 and P2 are finite and bounded.
(2) The morphism of posets f : P1 −→ P2 is one-to-one; in particular, if x and

y are two elements of P1 with x < y, then f(x) < f(y).
(3) One has f(minP1) = minP2 and f(maxP1) = maxP2.

Then a generalized T-homotopy equivalence is a morphism of

cof({Q(F (f)), f ∈ T })

where Q is the cofibrant replacement functor of Flow.

One can choose a set of representatives for each isomorphism class of finite
bounded posets. One obtains a set of morphisms T ⊂ T such that there is the
equality of classes cof({Q(F (f)), f ∈ T }) = cof({Q(F (f)), f ∈ T }). By [Gau03]
Proposition 11.5, the set of morphisms {Q(F (f)), f ∈ T } permits the small object
argument. Thus, the class of morphisms cof({Q(F (f)), f ∈ T }) contains exactly
the retracts of the morphisms of

cell({Q(F (f)), f ∈ T })

by [Hov99] Corollary 2.1.15.
The inclusion of posets {0̂ < 1̂} ⊂ {0̂ < 2 < 1̂} corresponds to the case of

Figure 2.
A T-homotopy consists in locally replacing in a flow a full directed ball by a

more refined one (cf. Figure 3), and in iterating the process transfinitely.

5. Globular complex

The technical reference is [Gau05a]. A globular complex is a topological space to-
gether with a structure describing the sequential process of attaching globular cells.
A general globular complex may require an arbitrary long transfinite construction.
We restrict our attention in this paper to globular complexes whose globular cells
are morphisms of the form Globtop(Sn−1) −→ Globtop(Dn).

Definition 5.1. A multipointed topological space (X,X0) is a pair of topological
spaces such that X0 is a discrete subspace of X. A morphism of multipointed
topological spaces f : (X,X0) −→ (Y, Y 0) is a continuous map f : X −→ Y such
that f(X0) ⊂ Y 0. The corresponding category is denoted by Topm. The set X0 is
called the 0-skeleton of (X,X0). The space X is called the underlying topological
space of (X,X0).

The category of multipointed spaces is cocomplete.
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T−HOMOTOPY

MORE REFINED

FULL DIRECTED BALL

FULL DIRECTED BALL

Figure 3. Replacement of a full directed ball by a more refined one

Definition 5.2. Let Z be a topological space. The globe of Z, which is denoted
by Globtop(Z), is the multipointed space(

|Globtop(Z)|, {0̂, 1̂}
)

where the topological space |Globtop(Z)| is the quotient of {0̂, 1̂}(Z×[0, 1]) by the
relations (z, 0) = (z′, 0) = 0̂ and (z, 1) = (z′, 1) = 1̂ for any z, z′ ∈ Z. In particular,
Globtop(∅) is the multipointed space ({0̂, 1̂}, {0̂, 1̂}).

If Z is not empty, then the space |Globtop(Z)| is the unpointed suspension of Z.
If Z is the empty space, then the space |Globtop(Z)| is the discrete two-point space.

Notation 5.3. Let Z be a singleton. The globe of Z is denoted by −→
I top.

Definition 5.4. Let Igl,top := {Globtop(Sn−1) −→ Globtop(Dn), n � 0}. A rela-
tive globular precomplex is a relative Igl,top-cell complex in the category of multi-
pointed topological spaces.

Definition 5.5. A globular precomplex is a λ-sequence of multipointed topological
spaces X : λ −→ Topm such that X is a relative globular precomplex and such
that X0 = (X0, X0) with X0 a discrete space. This λ-sequence is characterized by
a presentation ordinal λ, and for any β < λ, an integer nβ � 0 and an attaching
map φβ : Globtop(Snβ−1) −→ Xβ . The family (nβ , φβ)β<λ is called the globular
decomposition of X.

Let X be a globular precomplex. The 0-skeleton of lim−→X is equal to X0.

Definition 5.6. A morphim of globular precomplexes f : X −→ Y is a morphism
of multipointed spaces still denoted by f from lim−→X to lim−→Y .
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Notation 5.7. IfX is a globular precomplex, then the underlying topological space
of the multipointed space lim−→X is denoted by |X| and the 0-skeleton of the multi-
pointed space lim−→X is denoted by X0.

Definition 5.8. Let X be a globular precomplex. The space |X| is called the
underlying topological space of X. The set X0 is called the 0-skeleton of X.

Definition 5.9. Let X be a globular precomplex. A morphism of globular pre-
complexes γ : −→I top −→ X is a nonconstant execution path of X if there exists
t0 = 0 < t1 < · · · < tn = 1 such that:

(1) γ(ti) ∈ X0 for any 0 � i � n.
(2) γ(]ti, ti+1[) ⊂ Globtop(Dnβi\Snβi

−1) for some (nβi , φβi) of the globular de-
composition of X.

(3) for 0 � i < n, there exists ziγ ∈ Dnβi\Snβi
−1 and a strictly increasing

continuous map ψiγ : [ti, ti+1] −→ [0, 1] such that ψiγ(ti) = 0 and ψiγ(ti+1) = 1
and for any t ∈ [ti, ti+1], γ(t) = (ziγ , ψ

i
γ(t)).

In particular, the restriction γ �]ti,ti+1[ of γ to ]ti, ti+1[ is one-to-one. The set of
nonconstant execution paths of X is denoted by Ptop(X).

Definition 5.10. A morphism of globular precomplexes f : X −→ Y is nonde-
creasing if the canonical set map Top([0, 1], |X|) −→ Top([0, 1], |Y |) induced by
composition by f yields a set map Ptop(X) −→ Ptop(Y ). In other terms, one has
the commutative diagram of sets

Ptop(X) ��

⊂
��

Ptop(Y )

⊂
��

Top([0, 1], |X|) �� Top([0, 1], |Y |).

Definition 5.11. A globular complex (resp. a relative globular complex) X is a
globular precomplex (resp. a relative globular precomplex) such that the attaching
maps φβ are nondecreasing. A morphism of globular complexes is a morphism of
globular precomplexes which is nondecreasing. The category of globular complexes
together with the morphisms of globular complexes as defined above is denoted by
glTop.

Definition 5.12. Let X be a globular complex. A point α of X0 such that there
are no nonconstant execution paths ending at α (resp. starting from α) is called
initial state (resp. final state). More generally, a point of X0 will be sometime
called a state as well.

Theorem 5.13 ([Gau05a] Theorem III.3.1). There exists a unique functor

cat : glTop −→ Flow

such that:
(1) If X = X0 is a discrete globular complex, then cat(X) is the achronal flow

X0 (“achronal” meaning with an empty path space).
(2) If Z = Sn−1 or Z = Dn for some integer n � 0, then cat(Globtop(Z)) =

Glob(Z).
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(3) For any globular complex X with globular decomposition (nβ , φβ)β<λ, for
any limit ordinal β � λ, the canonical morphism of flows

lim−→ α<βcat(Xα) −→ cat(Xβ)

is an isomorphism of flows.
(4) For any globular complex X with globular decomposition (nβ , φβ)β<λ, for

any β < λ, one has the pushout of flows

Glob(Snβ−1)
cat(φβ) ��

��

cat(Xβ)

��
Glob(Dnβ ) �� cat(Xβ+1).

6. The underlying homotopy type of a flow

Theorem 6.1. The functor cat induces a functor, still denoted by cat from glTop
to cell(Flow). For any flow X of cell(Flow), there exists a globular complex Y
such that cat(Y ) = X. It is constructed by using the globular decomposition of X.
If two globular complexes Y1 and Y2 satisfy cat(Y1) = cat(Y2) = X, then the two
topological spaces |Y1| and |Y2| are homotopy equivalent.

Proof. The construction of Y is made in the proof of [Gau05a] Theorem V.4.1.
If two globular complexes Y1 and Y2 satisfy cat(Y1) = cat(Y2) = X, then they
are S-homotopy equivalent by [Gau05a] Theorem IV.4.9. And the S-homotopy
equivalence between the globular complexes Y1 and Y2 yields an homotopy equiv-
alence between the underlying topological spaces |Y1| and |Y2| by [Gau05a] Propo-
sition VII.2.2. �

The recipe to obtain the underlying homotopy type of a flow X is as follows
[Gau05a]:

(1) Take a flow X.
(2) Take its cofibrant replacement Q(X) ∈ cell(Flow).
(3) By Theorem 6.1, there exists a globular complex Xtop such that

cat(Xtop) = Q(X).

(4) The cofibrant topological space |Xtop| is unique up to homotopy and is the
underlying homotopy type |X| of X.

This yields a well-defined functor |−| : Flow −→ Ho(Top) from the category of
flows to the homotopy category of topological spaces ([Gau05a] Part VII.2).

Roughly speaking, the underlying homotopy type of a flowX consists in factoring
the morphism of flows X0 −→ Q(X) as a transfinite composition of pushouts of
elements of Igl; and then replacing this transfinite composition by a transfinite
composition of pushouts of the continuous maps{

|Globtop(Sn−1)| ⊂ |Globtop(Dn)|, n � 0
}

;

and then calculating this transfinite composition in Top: the result is a cofibrant
topological space which is unique up to homotopy.
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A
� �� B
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0̂
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�
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1̂

C

�
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Figure 4. Example of finite bounded poset

7. A useful Reedy category and related lemmas

Let P be a finite bounded poset with bottom element 0̂ and with top element 1̂.
Let us denote by Δext(P ) the full subcategory of Δ(P ) consisting of the simplices
(α0, . . . , αp) such that 0̂ = α0 and 1̂ = αp. If P = {0̂ < A < B < 1̂, 0̂ < C < 1̂} is
the poset of Figure 4, then the small category Δext(P )op looks as follows:

(0̂, A,B, 1̂)

�� ������������
(0̂, C, 1̂).

��

(0̂, A, 1̂)

������������
(0̂, B, 1̂)

��
(0̂, 1̂)

The simplex (0̂, 1̂) is always a terminal object of Δext(P )op.

Notation 7.1. Let X be a loopless flow such that (X0,�) is locally finite. Let
(α, β) be a 1-simplex of Δ(X0). We denote by �(α, β) the maximum of the set of
integers {

p � 1,∃(α0, . . . , αp) p-simplex of Δ(X0) s.t. (α0, αp) = (α, β)
}

One always has 1 � �(α, β) � card(]α, β]).

Lemma 7.2. Let X be a loopless flow such that (X0,�) is locally finite. Let
(α, β, γ) be a 2-simplex of Δ(X0). Then one has

�(α, β) + �(β, γ) � �(α, γ).

Proof. Let α = α0 < · · · < α�(α,β) = β. Let β = β0 < · · · < β�(β,γ) = γ. Then

(α0, . . . , α�(α,β), β1, . . . , β�(β,γ))

is a simplex of Δ(X0) with α = α0 and β�(β,γ) = γ. So �(α, β) + �(β, γ) � �(α, γ).
�

Proposition 7.3. Let P be a finite bounded poset. Let

d(α0, . . . , αp) = �(α0, α1)2 + · · · + �(αp−1, αp)2
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where � is the function of Notation 7.1. Then d yields a functor Δext(P )op −→ N
making Δext(P )op a direct category, that is a Reedy category with

Δext(P )op+ := Δext(P )op and Δext(P )op− = ∅.

Proof. Let ∂i : (α0, . . . , αp) −→ (α0, . . . , α̂i, . . . , αp) be a morphism of Δext(P )op

with p � 2 and 0 < i < p . Then

d(α0, . . . , αp) = �(α0, α1)2 + · · · + �(αp−1, αp)2

d(α0, . . . , α̂i, . . . , αp) = �(α0, α1)2 + · · · + �(αi−1, αi+1)2 + · · · + �(αp−1, αp)2.

So one obtains

d(α0, . . . , αp) − d(α0, . . . , α̂i, . . . , αp) = �(αi−1, αi)2 + �(αi, αi+1)2 − �(αi−1, αi+1)2.

By Lemma 7.2, one has

(�(αi−1, αi) + �(αi, αi+1))2 � �(αi−1, αi+1)2.

Therefore, one obtains

�(αi−1, αi)2 + �(αi, αi+1)2 < �(αi−1, αi+1)2

since 2�(αi−1, αi)�(αi, αi+1) � 2. Thus, every morphism of Δext(P )op raises the
degree. �

Corollary 7.4. Let P be a finite bounded poset. Then the colimit functor

lim−→ : TopΔext(P )op\{(0̂,1̂)} −→ Top

is a left Quillen functor if the category of diagrams TopΔext(P )op\{(0̂,1̂)} is equipped
with the Reedy model structure.

Indeed, the fact that the colimit functor is a left Quillen functor will be actually
applied for Δext(P )op\{(0̂, 1̂)}. Recall that the pair (0̂, 1̂) is a terminal object of
Δext(P )op. Therefore, it is not particularly interesting to calculate the colimit of a
diagram of spaces over the whole category Δext(P )op. Note also that there is an
isomorphism of small categories

Δext(P )op\{(0̂, 1̂)} ∼= ∂(Δext(−→D 0)op+ ↓(0̂, 1̂)) .

Proof. The Reedy structure on Δext(P )op\{(0̂, 1̂)} provides a model structure on
the category TopΔext(P )op\{(0̂,1̂)} of diagrams of topological spaces over the small
category Δext(P )op\{(0̂, 1̂)} such that a morphism of diagrams f : D −→ E is:

(1) a weak equivalence if and only if for every object α of Δext(P )op\{(0̂, 1̂)},
the morphism Dα −→ Eα is a weak equivalence of Top (we will use the term
objectwise weak equivalence to describe this situation);

(2) a cofibration if and only if for every object α of Δext(P )op\{(0̂, 1̂)}, the
morphism Dα LαD LαE −→ Eα is a cofibration of Top;

(3) a fibration if and only if for every object α of Δext(P )op\{(0̂, 1̂)}, the mor-
phism Dα −→ Eα ×MαE MαD is a fibration of Top.
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For every object α of Δext(P )op\{(0̂, 1̂)}, the matching category ∂(α↓Δext(P )op− ) is
empty. So for every object A of the diagram category TopΔext(P )op and every object
α of the small category Δext(P )op\{(0̂, 1̂)}, there is an isomorphism MαA ∼= 1.
So a Reedy fibration is an objectwise fibration. Therefore, the diagonal functor
Diag of the adjunction lim−→ : TopΔext(P )op\{(0̂,1̂)} � Top : Diag is a right Quillen
functor. �
Proposition 7.5. Let −→

D be a full directed ball. There exists one and only one
functor

F−→
D : Δext(−→D 0)op −→ Top

satisfying the following conditions:
(1) F−→

D (α0,...,αp) = Pα0,α1

−→
D × . . . × Pαp−1,αp

−→
D (recall that necessarily, one

has the equalities α0 = 0̂ and αp = 1̂ by definition of the small category
Δext(−→D 0)op).

(2) The unique morphism ∂i : F−→
D (α0,...,αp) −→ F−→

D (α0,...,α̂i,...,αp) for 0 < i < p

is induced by the composition law Pαi−1,αi

−→
D × Pαi,αi+1

−→
D −→ Pαi−1,αi+1

−→
D .

Proof. The uniqueness on objects is exactly the first assertion. The uniqueness on
morphisms comes from the fact that any morphism of Δext(−→D 0)op is a composite
of ∂i. We have to prove the existence. The diagram of topological spaces

F−→
D (α0,...,αp)

∂i ��

∂j

��

F−→
D (α0,...,α̂i,...,αp)

∂j−1

��
F−→
D (α0,...,α̂j ,...,αp)

∂i �� F−→
D (α0,...,α̂i,...,α̂j ,...,αp)

is commutative for any 0 < i < j < p and any p � 2. Indeed, if i < j − 1, then one
has

∂i∂j(γ1, . . . , γp) = ∂j−1∂i(γ1, . . . , γp) = (γ1, . . . , γiγi+1, . . . , γjγj+1, . . . , γp)

and if i = j − 1, then one has

∂i∂j(γ1, . . . , γp) = ∂j−1∂i(γ1, . . . , γp) = (γ1, . . . , γj−1γjγj+1, . . . , γp)

because of the associativity of the composition law of X. In other terms, the ∂i
maps satisfy the simplicial identities. Hence the result. �

Take again the poset P of Figure 4, and the corresponding full directed ball−→
D = F (P ). The diagram F−→

D looks as follows:

P0̂,A

−→
D × PA,B

−→
D × PB,1̂

−→
D

�� 		���������������
P0̂,C

−→
D × PC,1̂

−→
D.





P0̂,A

−→
D × PA,1̂

−→
D

		�����������������
P0̂,B

−→
D × PB,1̂

−→
D

��
P0̂,1̂

−→
D
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Definition 7.6. Let X be a flow. Let A be a subset of X0. Then the restriction
X �A of X over A is the unique flow such that (X �A)0 = A, such that Pα,β(X �A) =
Pα,βX for (α, β) ∈ A×A and such that the inclusions A ⊂ X0 and P(X �A) ⊂ PX
induce a morphism of flows X �A−→ X.

The following proposition is immediate:

Proposition 7.7. Let −→D be a full directed ball. Let (α, β) be a simplex of Δ(−→D 0).
Then −→

D �[α,β] is a full directed ball with initial state α and with final state β.

Proposition 7.8. Let −→D and
−→
D′ be two full directed balls. Then the flow −→

D ∗ −→D′

obtained by identifying the final state 1̂ of −→D with the initial state 0̂ of
−→
D′ is a full

directed ball.

Proof. The condition which is less easy to verify than the other ones is: for any
(α, β) ∈ (−→D ∗ −→

D′)0 × (−→D ∗ −→
D′)0, the topological space Pα,β(

−→
D ∗ −→

D′) is weakly
contractible if α < β. Let m be the point of −→D ∗−→D′ corresponding to the final state
of −→D and the initial state of

−→
D′. If α < β � m, then one has the isomorphism of

spaces Pα,β(
−→
D ∗ −→

D′) ∼= Pα,β
−→
D . If m � α < β, then one has the isomorphism of

spaces Pα,β(
−→
D ∗−→D′) ∼= Pα,β

−→
D′. At last, if α < m < β, then one has the isomorphism

of spaces Pα,β(
−→
D ∗−→D′) ∼= Pα,m

−→
D ×Pm,β

−→
D′. So in each case, the space Pα,β(

−→
D ∗−→D′)

is weakly contractible. �

Proposition 7.9. Let −→
D be a full directed ball. There exists one and only one

functor

G−→D : Δext(−→D 0)op −→ Flow

satisfying the following conditions:
(1) For any object (α0, . . . , αp) of Δext(−→D 0)op,

G−→D (α0, . . . , αp) = −→
D �[α0,α1] ∗ · · · ∗

−→
D �[αp−1,αp] .

(2) The unique morphism G−→D (α0, . . . , αp) −→ G−→D (α0, . . . , α̂i, . . . , αp) for 0 <
i < p is induced by the composition law

−→
D �[αi−1,αi] ∗

−→
D �[αi,αi+1]−→

−→
D �[αi−1,αi+1] .

Notice that −→
D �[0̂,1̂]=

−→
D .

Proof. This comes from the associativity of the composition law of a flow. �

Proposition 7.10. Let −→
D be a full directed ball. Let (α0, . . . , αp) ∈ Δext(−→D 0)op

be a simplex. Then there exists a unique morphism of flows

u(α0,...,αp) : Glob(Pα0,α1

−→
D × . . .× Pαp−1,αp

−→
D )

−→ Glob(Pα0,α1

−→
D ) ∗ · · · ∗ Glob(Pαp−1,αp

−→
D )

such that u(α0,...,αp)(x1, . . . , xp) = x1 ∗ · · · ∗ xp. With (α0, . . . , αp) running over the
set of simplices of Δext(−→D 0)op, one obtains a morphism of diagrams of flows

Glob(F−→
D ) −→ G−→D.

Proof. Obvious. �
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Proposition 7.11. Let −→
D be a full directed ball. Then one has the pushout dia-

gram of flows:

Glob(L(0̂,1̂)F
−→
D ) ��

��

L(0̂,1̂)G
−→
D

��
Glob(P0̂,1̂

−→
D ) �� −→D.

This statement remains true when the 1-simplex (0̂, 1̂) is replaced by another
1-simplex (α, β) of Δ(−→D 0). This statement above becomes false in general when
the 1-simplex (0̂, 1̂) is replaced by a p-simplex of Δ(−→D 0) with p � 2.

Let us illustrate this proposition in the case of −→D 0 = {0̂ < A < 1̂}. One then
has:

(1) L(0̂,1̂)F
−→
D = P0̂,A

−→
D × PA,1̂

−→
D .

(2) L(0̂,1̂)G
−→
D = −→

D �[0̂,A] ∗−→D �[A,1̂]= Glob(P0̂,A

−→
D ) ∗ Glob(PA,1̂

−→
D ); the last

equality is due to the fact that ]0̂, A[=]A, 1̂[= ∅.
(3) The pushout above is equivalent to the following pushout:

Glob(P0̂,A

−→
D × PA,1̂

−→
D ) ��

��

Glob(P0̂,A

−→
D ) ∗ Glob(PA,1̂

−→
D )

��
Glob(P0̂,1̂

−→
D ) �� −→D.

Proof. One already has the commutative diagram

Glob(L(0̂,1̂)F
−→
D ) ��

��

L(0̂,1̂)G
−→
D

��
Glob(P0̂,1̂

−→
D ) �� −→D.

Therefore, one only has to check that −→
D satisfies the same universal property as

the pushout.
Consider a commutative diagram of flows of the form:

Glob(L(0̂,1̂)F
−→
D ) ��

��

L(0̂,1̂)G
−→
D

��
Glob(P0̂,1̂

−→
D ) �� X.

The morphism of flows Glob(P0̂,1̂

−→
D ) −→ X induces a continuous map P0̂,1̂

−→
D −→

PX. The morphism of flows L(0̂,1̂)G
−→
D −→ X induces a continuous map Pα,β

−→
D −→

PX for any 1-simplex (α, β) of Δ(−→D 0) with (α, β) �= (0̂, 1̂). The existence of the
morphism of flows L(0̂,1̂)G

−→
D −→ X ensures the compatibility of the continuous

maps Pα,β
−→
D −→ PX for (α, β) ∈ Δ(−→D 0) with the composition of execution paths

involving a triple (α, β, γ) such that (α, γ) �= (0̂, 1̂). And the commutativity of the
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diagram with X ensures the compatibility of the continuous maps Pα,β
−→
D −→ PX

for (α, β) ∈ Δ(−→D 0) with the composition of execution paths involving a triple
(α, β, γ) such that (α, γ) = (0̂, 1̂). Hence the existence and uniqueness of the mor-
phism −→

D −→ X. �

Theorem 7.12 ([ML98] Theorem 1, p. 213). Let L : J ′ −→ J be a final functor
between small categories, i.e., such that for any k ∈ J , the comma category (k ↓L)
is nonempty and connected. Let F : J −→ C be a functor from J to a cocomplete
category C. Then L induces a canonical morphism lim−→F ◦L −→ lim−→F which is an
isomorphism.

Notation 7.13. Let X be a loopless flow. Let α = (α0, . . . , αp) be a simplex of
the order complex Δ(X0) of the poset X0. Let α < α0. Then the notation α.α
represents the simplex (α, α0, . . . , αp) of Δ(X0).

Theorem 7.14. Let −→
D be a full directed ball. Let α = (α0, . . . , αp) be a simplex

of Δext(−→D 0)op. Let i(α0,...,αp) : L(α0,...,αp)F
−→
D −→ F−→

D (α0,...,αp). Then one has

i(α0,...,αp) = i(α0,α1)� . . .�i(αp−1,αp)

where � is the pushout product (cf. Notation B.2).

Proof. Let α = (α0, . . . , αp) be a fixed object of Δext(−→D 0)op. The latching cate-
gory

∂(Δext(−→D 0)op+ ↓α)

is the full subcategory of Δext(−→D 0)op consisting of the simplices β = (β0, . . . , βq)
such that there is a strict inclusion

{α0, . . . , αp} � {β0, . . . , βq},

that is {α0, . . . , αp} ⊂ {β0, . . . , βq} and {α0, . . . , αp} �= {β0, . . . , βq}. Recall that
by definition of the category Δext(−→D 0)op, one necessarily has α0 = β0 = 0̂ and
αp = βq = 1̂. Such a simplex β = (β0, . . . , βq) can be written as an expression of
the form

α0.δ1.δ2 . . . δp

with αi.δi+1 � (αi, αi+1) for all 0 � i � p− 1 and such that at least for one i, one
has αi.δi+1 � (αi, αi+1). And since the small category Δext(−→D 0)op only contains
commutative diagrams, one obtains the homeomorphism

L(α0,...,αp)F
−→
D ∼= lim−→ {α0,...,αp}�{β0,...,βq}F

−→
D (β0,...,βq).(1)

Let E be the set of subsets S of {0, . . . , p − 1} such that S �= {0, . . . , p − 1}.
Let I(S) be the full subcategory of Δext(−→D 0)op consisting of the objects β =
(β0, . . . , βq) such that:

(1) {α0, . . . , αp} � {β0, . . . , βq}.
(2) For any i /∈ S, one has αi.δi+1 � (αi, αi+1).

The full subcategory
⋃
S∈E I(S) is exactly the subcategory of Δext(−→D 0)op con-

sisting of the objects β such that {α0, . . . , αp} � {β0, . . . , βq}, that is to say the
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subcategory calculating L(α0,...,αp)F
−→
D . In other terms, one has the isomorphism

of spaces

lim−→
⋃

S∈E I(S)F
−→
D ∼= LαF

−→
D.(2)

The full subcategory I(S) of Δext(−→D 0)op has a final subcategory I(S) consisting
of the β = (β0, . . . , βq) such that:

(1) {α0, . . . , αp} � {β0, . . . , βq}.
(2) For any i /∈ S, one has αi.δi+1 � (αi, αi+1).
(3) For any i ∈ S, one has αi.δi+1 = (αi, αi+1).

The subcategory I(S) is final in I(S) because for any object β of I(S), there exists
a unique γ of I(S) and a unique arrow β −→ γ. Therefore, by Theorem 7.12, one
has the isomorphism

lim−→ I(S)F
−→
D ∼= lim−→ I(S)

F−→
D(3)

since the comma category (β ↓ I(S)) is the one-object category. For any object β
of I(S), one has

F−→
D β

=
i=q−1∏
i=0

Pβi,βi+1

−→
D by definition of F−→

D

=
i=p−1∏
i=0

F−→
Dαi.δi+1 by definition of F−→

D

=

(∏
i∈S

F−→
D (αi,αi+1)

)
×
(∏
i/∈S

F−→
Dαi.δi+1

)
by definition of S.

Thus, since the category Top is cartesian closed, one obtains

lim−→ I(S)F
−→
D

∼= lim−→ I(S)

((∏
i∈S

F−→
D (αi,αi+1)

)
×
(∏

i/∈S

F−→
D αi.δi+1

))

∼=
(∏

i∈S

F−→
D (αi,αi+1)

)
× lim−→ i /∈ S

αi.δi+1 � (αi, αi+1)

(∏
i/∈S

F−→
D αi.δi+1

)

∼=
(∏

i∈S

F−→
D (αi,αi+1)

)
×
(∏

i/∈S

lim−→ αi.δi+1�(αi,αi+1)F−→
D αi.δi+1

)
by Lemma B.1.

Therefore, one obtains the isomorphism of topological spaces

lim−→ I(S)
F−→
D ∼=

(∏
i∈S

F−→
D (αi,αi+1)

)
×
(∏
i/∈S

L(αi,αi+1)F
−→
D

)
.(4)

thanks to Isomorphism (1).
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If S and T are two elements of E such that S ⊂ T , then there exists a canonical
morphism of diagrams I(S) −→ I(T ) inducing a canonical morphism of topological
spaces

lim−→ β∈I(S)F
−→
D β −→ lim−→ β∈I(T )F

−→
D β .

Therefore, by Equation (3) and Equation (4), the double colimit

lim−→ S∈E
(
lim−→ I(S)F

−→
D
)

calculates the source of the morphism i(α0,α1)� . . .�i(αp−1,αp) by Theorem B.3. It
then suffices to prove the isomorphism

lim−→ S∈E
(
lim−→ I(S)F

−→
D
)
∼= lim−→ {α0,...,αp}�{β0,...,βq}F

−→
D β

to complete the proof. For that purpose, it suffices to construct two canonical
morphisms

lim−→ S∈E
(
lim−→ I(S)F

−→
D
)
−→ lim−→ {α0,...,αp}�{β0,...,βq}F

−→
D β

and

lim−→ {α0,...,αp}�{β0,...,βq}F
−→
D β −→ lim−→ S∈E

(
lim−→ I(S)F

−→
D
)
.

The first morphism comes from the isomorphism of Equation (2). As for the second
morphism, let us consider a diagram of flows of the form:

F−→
D β

��

�� lim−→ S∈E
(
lim−→ I(S)F

−→
D
)
.

F−→
D γ

��������������

One has to prove that it is commutative. Since one has
⋃
S∈E I(S) = Δext(−→D 0)op,

there exists S ∈ E such that γ is an object of I(S). So β is an object of I(S) as
well and there exists a commutative diagram

F−→
D β

��

�� lim−→ I(S)F
−→
D

F−→
D γ

������������

since the subcategory Δext(−→D 0)op is commutative. Hence the result. �

8. Calculating the underlying homotopy type

Theorem 8.1. Let −→D be a full directed ball. Then the diagram of spaces FQ(−→D )
(where Q is the cofibrant replacement functor of Flow) is Reedy cofibrant.

Proof. By Proposition A.3 and since the model category Top is monoidal, one de-
duces that for any object α of FQ(−→D ), the topological space FQ(−→D )α is cofibrant.
By Theorem 7.14 and by induction on the cardinal of the set −→

D 0, it then suffices
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to prove that the continuous map L(0̂,1̂)FQ(−→D ) −→ FQ(−→D )(0̂,1̂) is a cofibration of
topological spaces.

Let X be an object of cell(Flow) such that X0 = −→
D 0 and such that the con-

tinuous map L(0̂,1̂)FX −→ FX(0̂,1̂) is a cofibration of topological spaces. Consider
a pushout diagram of flows with n � 0 as follows:

Glob(Sn−1)

��

φ �� X

��
Glob(Dn) �� Y .

One wants to prove that the continuous map L(0̂,1̂)FY −→ FY(0̂,1̂) is a cofibration
of topological spaces as well. One has the equality X0 = Y 0 since the morphism
Glob(Sn−1) −→ Glob(Dn) restricts to the identity of {0̂, 1̂} on the 0-skeletons
and since the 0-skeleton functor X �→ X0 preserves colimits.2 So one has the
commutative diagram

L(0̂,1̂)FX ��
� �

��

L(0̂,1̂)FY

��
FX(0̂,1̂)

�� FY(0̂,1̂).

There are two mutually exclusive cases:
(1) (φ(0̂), φ(1̂)) = (0̂, 1̂). One then has the situation

L(0̂,1̂)FX = ��
� �

��

L(0̂,1̂)FY

��
FX(0̂,1̂)

� � �� FY(0̂,1̂)

where the bottom horizontal arrow is a cofibration since it is a pushout of
the morphism of flows Glob(Sn−1) −→ Glob(Dn). So the continuous map
L(0̂,1̂)FY −→ FY(0̂,1̂) is a cofibration.

(2) (φ(0̂), φ(1̂)) �= (0̂, 1̂). Then, one has the pushout diagram of flows

L(0̂,1̂)FX ��
� �

��

L(0̂,1̂)FY

��
FX(0̂,1̂)

�� FY(0̂,1̂).

So the continuous map L(0̂,1̂)FY −→ FY(0̂,1̂) is again a cofibration. In this
situation, it may happen that L(0̂,1̂)FX = L(0̂,1̂)FY .

The proof is complete with Proposition C.1, and because the canonical morphism
of flows −→

D 0 −→ −→
D is a relative Igl-cell complex, and at last because the property

above is clearly satisfied for X = −→
D 0. �

2One has the canonical bijection Set(X0, Z) ∼= Flow(X, T (Z)) where T (Z) is the flow defined
by T (Z)0 = Z and for any (α, β) ∈ Z × Z, Pα,βT (Z) = {0}.
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Theorem 8.2. Let −→D be a full directed ball. Then the diagram of spaces

|Globtop(FQ(−→D ))|

(where Q is the cofibrant replacement functor of Flow) is Reedy cofibrant.

Proof. The endofunctor of Top defined by the mapping Z �→ |Globtop(Z)| pre-
serves colimits. Therefore, one has the isomorphism

L(0̂,1̂)|Globtop(FQ(−→D ))| ∼=
∣∣∣Globtop

(
L(0̂,1̂)FQ(−→D )

)∣∣∣ .
It remains to prove that this endofunctor preserves cofibrations.3 The proof will
then be complete thanks to Theorem 8.1.

The space |Globtop(Z)| is equal to the colimit of the diagram of spaces D(Z)

{0} × Z

������������

��

{1} × Z

����������

��
{0̂} [0, 1] × Z {1̂}.

Let us consider the small category C

b

���
��

��
��

�

��

d

����
��

��
�

��
a c e

equipped with the Reedy structure

1

���
��

��
��

��

1

����
��

��
�

��
0 2 0.

If D is an object of the diagram category TopC , then the latching spaces and the
matching spaces of D are equal to:

(1) LaD = LbD = LdD = LeD = ∅.
(2) LcD = Db Dd.
(3) MaD = MeD = McD = 1.
(4) MbD = Da.
(5) MdD = De.

A morphism of diagrams D −→ E is a Reedy fibration if:

(1) Da −→ Ea ×MaE MaD = Ea is a fibration.
(2) De −→ Ee ×MeE MeD = Ee is a fibration.
(3) Dc −→ Ec ×McE McD = Ec is a fibration.
(4) Db −→ Eb ×MbE MbD = Eb ×Ea Da is a fibration.
(5) Dd −→ Ed ×MdE MdD = Ed ×Ee De is a fibration.

3This functor is of course very close to the pointed suspension functor. But it is not known
how to view it as a left adjoint, and therefore as a left Quillen functor.
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Consider the categorical adjunction lim−→ : TopC � Top : Diag. By the calcula-
tions above, if X −→ Y is a (resp. trivial) fibration of spaces, then Diag(X) −→
Diag(Y ) is a (trivial) Reedy fibration. The colimit functor from TopC to Top is
therefore a left Quillen functor.

A morphism of diagrams D −→ E is a Reedy cofibration if:
(1) Da = Da LaD LaE −→ Ea is a cofibration.
(2) Db = Db LbD LbE −→ Eb is a cofibration.
(3) Dd = Dd LdD LdE −→ Ed is a cofibration.
(4) De = De LeD LeE −→ Ee is a cofibration.
(5) Dc (Db�Dd) (Eb  Ed) = Dc LcD LcE −→ Ec is a cofibration.

Now take a cofibration Z1 −→ Z2. Since the colimit functor lim−→ : TopC −→ Top
preserves cofibrations, it then suffices to check that the morphism of diagrams
D(Z1) −→ D(Z2) is a Reedy cofibration. It then suffices to check the fifth condition
above, that is to say it suffices to prove that the continuous map

([0, 1] × Z1) {0}×Z1�{1}×Z1 ({0} × Z2  {1} × Z2) −→ ([0, 1] × Z2)

is a cofibration of topological spaces. It turns out that the latter map is the pushout
product (cf. Notation B.2) of the two cofibrations {0, 1} −→ [0, 1] and Z1 −→ Z2.
The proof is then complete because Top is a monoidal model category. �

Theorem 8.3. Let −→
D be a full directed ball. Then the diagram of flows GQ(−→D )

(where Q is the cofibrant replacement functor of Flow) is Reedy cofibrant.

Proof. The argument is different from the one of Theorem 8.1. The flow Q(−→D ) is
an object of cell(Flow). Therefore, the canonical morphism of flows −→D 0 −→ Q(−→D )
is a priori a transfinite composition of pushouts of elements of Igl

+ = Igl ∪ {R,C}.
Since there is a bijection of sets −→

D 0 ∼= Q(−→D )0, a pushout of R : {0, 1} −→ {0}
or of C : ∅ −→ {0} in the globular decomposition of the relative Igl

+ -cell complex
−→
D 0 −→ Q(−→D ) is necessarily without effect on −→

D 0. Thus, the canonical morphism
of flows −→

D 0 −→ Q(−→D ) is a transfinite composition of pushouts of elements of Igl.
So there exists an ordinal λ and a λ-sequence M : λ −→ Flow such that M0 = −→

D 0,
Mλ = Q(−→D ) and for any μ < λ, the morphism of flows Mμ −→Mμ+1 is a pushout
of the inclusion of flows eμ : Glob(Snμ−1) ⊂ Glob(Dnμ) for some nμ � 0, that is
one has the pushout diagram of flows:

Glob(Snμ−1)

��

φμ �� Mμ

��
Glob(Dnμ) �� Mμ+1.

Let (α0, . . . , αp) be a simplex of Δext(−→D 0)op. The relative Igl-cell complex
−→
D 0 −→ GQ(−→D )(α0,...,αp) = −→

D �[α0,α1] ∗ · · · ∗
−→
D �[αp−1,αp]

is a relative Igl-cell subcomplex which is the union of the globular cells eμ such
that [φμ(0̂), φμ(1̂)] ⊂ [αi, αi+1] for some 0 � i < p.4 So the subcomplex −→

D 0 −→

4A Igl-cell subcomplex is characterized by its cells since any morphism of Igl is an effective
monomorphism of flows by [Gau03] Theorem 10.6 and by [Hir03] Proposition 12.2.1.
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GQ(−→D )(α0,...,αp) contains the globular cells eμ such that [φμ(0̂), φμ(1̂)] ⊂ [α0, α1] 
· · ·  [αp−1, αp] ( meaning the disjoint union !).

We then deduce that all morphisms of the diagram GQ(−→D ) are inclusions of
relative Igl-cell subcomplexes. Thus, the canonical morphism of flows

L(α0,...,αp)GQ(−→D ) −→ GQ(−→D )(α0,...,αp)

is an inclusion of relative Igl-cell subcomplexes as well. More precisely, it is equal
to the transfinite composition of the inclusions of flows Glob(Snμ−1) ⊂ Glob(Dnμ)
such that [φμ(0̂), φμ(1̂)] ⊂ [α0, α1]· · ·[αp−1, αp] and such that there does not exist
any state α such that [φμ(0̂), φμ(1̂)] ⊂ [α0, α1]· · ·[αi, α][α, αi+1]· · ·[αp−1, αp]
and αi < α < αi+1. �

The proof of Theorem 8.3 also has the following consequences:

Corollary 8.4. Let −→D be a full directed ball. Then there exists a diagram of glob-
ular complexes

GtopQ(−→D ) : Δext(−→D 0)op −→ glTop

such that the composition by the functor cat : glTop −→ Flow

Δext(−→D 0)op −→ glTop −→ Flow

is exactly the diagram GQ(−→D ).

Proof. First of all, consider the flow Q(−→D ) and using Theorem 6.1, construct a
globular complex Q(−→D )top such that cat(Q(−→D )top) = Q(−→D ). Let (α0, . . . , αp) be
a simplex of Δext(−→D 0)op. Then the globular complex

GtopQ(−→D )(α0,...,αp)

is defined as the globular subcomplex containing the globular cells of Q(−→D )top such
that the attaching map φ satisfies [φ(0̂), φ(1̂)] ⊂ [α0, α1]  · · ·  [αp−1, αp]. �

Let (α0, . . . , αp) be a simplex of Δext(−→D 0)op. The category of multipointed
topological spaces being cocomplete, one can consider the multipointed topological
space

L(α0,...,αp)GtopQ(−→D ).

It consists of the globular subcomplexes of Q(−→D )top containing the globular cells
such that the attaching map φ satisfies [φ(0̂), φ(1̂)] ⊂ [α0, α1] · · ·  [αp−1, αp] and
such that there exists a state α such that [φ(0̂), φ(1̂)] ⊂ [α0, α1]  · · ·  [αi, α] 
[α, αi+1]  · · ·  [αp−1, αp] and αi < α < αi+1. So the multipointed topological
space L(α0,...,αp)GtopQ(−→D ) is a globular complex. And one obtains the equality

cat(L(α0,...,αp)GtopQ(−→D )) = L(α0,...,αp)G
−→
D.

Corollary 8.5. With the choices of Corollary 8.4. Let −→
D be a full directed ball.

Then the diagram of spaces |GtopQ(−→D )| (where Q is the cofibrant replacement func-
tor of Flow) is Reedy cofibrant.
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Proof. Let (α0, . . . , αp) be a simplex of Δext(−→D 0)op. The continuous map

|L(α0,...,αp)GtopQ(−→D )| −→ |GtopQ(−→D )(α0,...,αp)|

is a transfinite composition of pushouts of continuous maps of the form

|Globtop(Sn−1)| −→ |Globtop(Dn)|
with n � 0. The proof is complete thanks to the proof of Theorem 8.2. �

Theorem 8.6. Let −→
D be a full directed ball. Then its underlying homotopy type

|−→D | is that of a point.

Proof. We are going to make an induction on the cardinal of the poset −→
D 0. If−→

D 0 = {0̂ < 1̂}, then Q(−→D ) = Glob(Z) for some topological space Z. By hypoth-
esis, the space Z = P0̂,1̂

−→
D is contractible (and cofibrant). Therefore, the flows

Glob(Z) and Glob({0}) are S-homotopy equivalent. Thus, the globular complexes
Globtop(Z) and Globtop({0}) are S-homotopy equivalent as well. Hence the topo-
logical spaces |Globtop(Z)| and |Globtop({0})| are homotopy equivalent by Theo-
rem 6.1. Now suppose that −→

D 0\{0̂ < 1̂} is nonempty and suppose the theorem
proved for any full directed ball −→E such that card(−→E 0) < card(−→D 0).

By Proposition 7.11 applied to the full directed ball Q(−→D ), one has the pushout
diagram of flows:

Glob(L(0̂,1̂)FQ(−→D )) ��

��

L(0̂,1̂)GQ(−→D )

��
Glob(P0̂,1̂Q(−→D )) �� Q(−→D ).

One obtains the commutative diagram of globular complexes:

Globtop(L(0̂,1̂)FQ(−→D )) ��

��

L(0̂,1̂)GtopQ(−→D )

��
Globtop(P0̂,1̂Q(−→D )) �� GtopQ(−→D )

which must be a pushout of multipointed topological spaces by Corollary 8.5. One
can now pass to the underlying topological spaces of all of these globular complexes
and one obtains the pushout diagram of topological spaces:

L(0̂,1̂)|Globtop(FQ(−→D ))| = |Globtop(L(0̂,1̂)FQ(−→D ))| ��

��

L(0̂,1̂)|GtopQ(−→D )|

��
|Globtop(P0̂,1̂Q(−→D ))| �� |GtopQ(−→D )|(0̂, 1̂).

The top horizontal arrow is induced by the morphism of diagrams of spaces

|Globtop(FQ(−→D ))| −→ |GtopQ(−→D )|.
If we can prove that the top horizontal arrow is a weak homotopy equivalence
of topological spaces, and since the continuous map L(0̂,1̂)|Globtop(FQ(−→D ))| −→
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|Globtop(P0̂,1̂Q(−→D ))| is a cofibration of spaces by Theorem 8.2, then one will be
able to deduce the weak homotopy equivalence of spaces |Globtop(P0̂,1̂Q(−→D ))| 	
|GtopQ(−→D )|(0̂, 1̂) since the model category Top is left proper. Since the topological
space |Globtop(P0̂,1̂Q(−→D ))| is contractible, one will be then able to deduce that
the space |GtopQ(−→D )|(0̂, 1̂) 	 |−→D | is weakly contractible. And the proof will be
finished.

The diagrams of topological spaces |Globtop(FQ(−→D ))| and |GtopQ(−→D )| are both
Reedy cofibrant by Theorem 8.2 and Corollary 8.5. So their restriction to the full
subcategory ∂(Δext(−→D 0)op+ ↓(0̂, 1̂)) ∼= Δext(−→D 0)op\{(0̂, 1̂)} of Δext(−→D 0)op is Reedy
cofibrant as well. Thus, one obtains

L(0̂,1̂)|Globtop(FQ(−→D ))| ∼= lim−→ ∂(Δext(
−→
D 0)op+↓(0̂,1̂))|Globtop(FQ(−→D ))|
by definition of the latching space

	 holim−−−→
∂(Δext(

−→
D 0)op+↓(0̂,1̂))

|Globtop(FQ(−→D ))|

by Corollary 7.4 and by Theorem 8.2

and

L(0̂,1̂)|G
topQ(−→D )| ∼= lim−→ ∂(Δext(

−→
D 0)op+↓(0̂,1̂))|G

topQ(−→D )|
by definition of the latching space

	 holim−−−→
∂(Δext(

−→
D 0)op+↓(0̂,1̂))

|GtopQ(−→D )|

by Corollary 7.4 and by Corollary 8.5.

It then suffices to prove that for any simplex (α0, . . . , αp) of the latching category
∂(Δext(−→D 0)op+ ↓(0̂, 1̂)), the morphism of diagrams

|Globtop(FQ(−→D ))| −→ |GtopQ(−→D )|

induces a weak homotopy equivalence

|Globtop(FQ(−→D ))|(α0, . . . , αp) 	 |GtopQ(−→D )|(α0, . . . , αp).

The topological space |GtopQ(−→D )|(α0,...,αp) is the “concatenation”

|GtopQ(−→D )|(α0,α1) ∗ · · · ∗ |GtopQ(−→D )|(αp−1,αp)

of p topological spaces, that is where the final state of GtopQ(−→D )(αi,αi+1)
is identified

with the initial state of GtopQ(−→D )(αi+1,αi+2)
for any i+ 2 � p. The latter space is

contractible by induction hypothesis and since a finite join of well-pointed cofibrant
contractible spaces is contractible. The topological space

|Globtop(FQ(−→D ))|(α0,...,αp)

is contractible since the product of spaces

Pα0,α1Q(−→D ) × . . .× Pαp−1,αp
Q(−→D )
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is contractible since −→
D is a full directed ball and since a finite product of cofibrant

contractible spaces is contractible. �

The proof of Theorem 8.6 implies the following theorem:

Corollary 8.7. Let −→D be a loopless flow such that:

(1) The poset −→
D 0 is finite and bounded with initial state 0̂ and with final state

1̂.
(2) For any (α, β) ∈ −→

D 0 such that α < β and (α, β) �= (0̂, 1̂), the topological
space Pα,β

−→
D is weakly contractible.

Then the underlying homotopy type of −→D is homotopy equivalent to the underlying
homotopy type of Glob(P0̂,1̂

−→
D ): in other words, one has |−→D | 	 |Glob(P0̂,1̂

−→
D )|.

9. Preservation of the underlying homotopy type

Theorem 9.1. Let f : X −→ Y be a generalized T-homotopy equivalence. Then
the morphism |f | : |X| −→ |Y | is an isomorphism of Ho(Top).

Proof. First of all, let us suppose that f is a pushout diagram of flows of the form

Q(F (P1))� �

Q(F (u))

��

�� X

f

��
Q(F (P2)) �� Y

where P1 and P2 are two finite bounded posets and where u : P1 −→ P2 belongs
to T . Let us factor the morphism of flows Q(F (P1)) −→ X as a composite of a
relative Igl

+ -cell complex Q(F (P1)) −→W followed by a trivial fibration W −→ X.
Then one obtains the commutative diagram of flows

Q(F (P1))� �

Q(F (u))

��

� � �� W� �

��

� �� �� X

f

��
Q(F (P2))

� � �� T
� �� Y .

The morphism T −→ Y of the diagram above is a weak S-homotopy equivalence
since the model category Flow is left proper by [Gau05c] Theorem 6.4. So the flows
W and X (resp. T and Y ) have the same underlying homotopy types by [Gau05a]
Proposition VII.2.2 and we are reduced to the following situation:

Q(F (P1))� �

Q(F (u))

��

� � �� X� �

f

��
Q(F (P2))

� � �� Y .

The four morphisms of the diagram above are inclusions of Igl
+ -cell complexes. So

using the globular decompositions of the flows Q(F (P1)), Q(F (P2)), X and Y ,
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there exist four globular complexes Qtop(F (P1)), Qtop(F (P2)), Xtop and Y top and
a commutative diagram of globular complexes

Qtop(F (P1))� �

��

� � �� Xtop
� �

��
Qtop(F (P2))

� � �� Y top

which is a pushout diagram of multipointed spaces and whose image by the functor
cat : glTop −→ Flow gives back the diagram of flows above. Now by passing to
the underlying topological spaces, one obtains the pushout diagram of topological
spaces

|Qtop(F (P1))|� �

��

� � �� |Xtop|� �

��
|Qtop(F (P2))| �

� �� |Y top|.

The continuous map |Qtop(F (P1))| −→ |Qtop(F (P2))| is a trivial cofibration of
topological spaces since the morphism of posets u : P1 −→ P2 is one-to-one. Thus,
the continuous map |Xtop| −→ |Y top| is a trivial cofibration as well.

Now let us suppose that f : X −→ Y is a transfinite composition of morphisms
as above. Then there exists an ordinal λ and a λ-sequence Z : λ −→ Flow with
Z0 = X, Zλ = Y and the morphism Z0 −→ Zλ is equal to f . Since for any u ∈ T ,
the morphism of flows Q(F (u)) is a cofibration, the morphism Zμ −→ Zμ+1 is a
cofibration for any μ < λ. Since the model category Flow is left proper by [Gau05c]
Theorem 6.4, there exists by [Hir03] Proposition 17.9.4 a λ-sequence Z̃ : λ −→ Flow
and a morphism of λ-sequences Z̃ −→ Z such that for any μ � λ, the flow Z̃μ
is an object of cell(Flow), such that each morphism Z̃μ −→ Z̃μ+1 is a relative
Igl
+ -cell complex, and such that the morphism Z̃μ −→ Zμ is a weak S-homotopy

equivalence. Using the globular decomposition of Z̃0, construct a globular complex
Z̃top

0 such that cat(Z̃top
0 ) = Z̃0. And by transfinite induction on μ, since each

morphism Z̃μ −→ Z̃μ+1 is a relative Igl
+ -cell complex, construct a globular complex

Z̃top
μ such that cat(Z̃top

μ ) = Z̃μ. Then one obtains a λ-sequence of topological spaces
μ �→ |Z̃top

μ | whose colimit is the underlying topological space of Z̃top
λ .

For any μ < λ, the continuous map |Z̃top
μ | −→ |Z̃top

μ+1| is a trivial cofibration
of topological spaces. So the transfinite composition |Z̃top

0 | −→ |Z̃top
λ | is a trivial

cofibration as well.
The case remains where f is a retract of a generalized T-equivalence of the

preceding kinds. The result follows from the fact that everything is functorial and
that the retract of a weak homotopy equivalence is a weak homotopy equivalence.

�

10. Conclusion

This new definition of T-homotopy equivalence seems to be well-behaved because
it preserves the underlying homotopy type of flows. For an application of this new
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approach of T-homotopy, see the proof of an analogue of Whitehead’s theorem for
the full dihomotopy relation in [Gau06].

Appendix A. Elementary remarks about flows

This is a reminder of results of [Gau05d].

Proposition A.1 ([Gau03] Proposition 15.1). If one has the pushout of flows

Glob(∂Z)
φ ��

��

A

��
Glob(Z) �� M

then the continuous map PA −→ PM is a transfinite composition of pushouts of
continuous maps of the form Id× . . .×Id×f×Id× . . .×Id where f : Pφ(0̂),φ(1̂)A −→
T is the canonical inclusion obtained with the pushout diagram of topological spaces

∂Z ��

��

Pφ(0̂),φ(1̂)A

��
Z �� T .

Proposition A.2. Let Y be a flow such that PY is a cofibrant topological space.
Let f : Y −→ Z be a pushout of a morphism of Igl

+ . Then the topological space PZ
is cofibrant.

Proof. By hypothesis, f is the pushout of a morphism of flows g ∈ Igl
+ . So one has

the pushout of flows

A

g

��

φ �� Y

f

��
B

ψ
�� Z.

If f is a pushout of C : ∅ ⊂ {0}, then PZ = PY . Therefore, the space PZ
is cofibrant. If f is a pushout of R : {0, 1} → {0} and if φ(0) = φ(1), then
PZ = PY again. Therefore, the space PZ is cofibrant again. If f is a pushout of
R : {0, 1} → {0} and if φ is one-to-one, then one has the homeomorphism

PZ ∼= PY 
⊔
r�0

(
P.,φ(0)Y × Pφ(1),φ(0)Y × Pφ(1),φ(0)Y × . . . (r times) × Pφ(1),.Y

)

⊔
r�0

(
P.,φ(1)Y × Pφ(0),φ(1)Y × Pφ(0),φ(1)Y × . . . (r times) × Pφ(0),.Y

)
.

Therefore, the space PZ is again cofibrant since the model category Top is monoidal.
It remains the case where g is the inclusion Glob(Sn−1) ⊂ Glob(Dn) for some n � 0.



90 Philippe Gaucher

Consider the pushout of topological spaces

Sn−1

g

��

Pφ �� Pφ(0̂),φ(1̂)Y

f

��
Dn

Pψ
�� T.

By Proposition A.1, the continuous map PY −→ PZ is a transfinite composition of
pushouts of continuous maps of the form Id× Id× . . .× f × . . .× Id× Id where f is
a cofibration and the identities maps are the identity maps of cofibrant topological
spaces. So it suffices to notice that if k is a cofibration and if X is a cofibrant
topological space, then IdX ×k is still a cofibration since the model category Top
is monoidal. �
Proposition A.3. Let X be a cofibrant flow. Then for any (α, β) ∈ X0 ×X0, the
topological space Pα,βX is cofibrant.

Proof. A cofibrant flow X is a retract of a Igl
+ -cell complex Y and PX becomes a

retract of PY . So it suffices to show that PY is cofibrant. Proposition A.2 completes
the proof. �

Appendix B. Calculating pushout products

This is a reminder of results of [Gau05d].

Lemma B.1. Let D : I −→ Top and E : J −→ Top be two diagrams in a complete
cocomplete cartesian closed category. Let D × E : I × J :−→ Top be the diagram
of topological spaces defined by (D × E)(x, y) := D(x) × E(y) if (x, y) is either
an object or an arrow of the small category I × J . Then one has lim−→(D × E) ∼=
(lim−→D) × (lim−→E).

Proof. One has lim−→(D × E) ∼= lim−→ i(lim−→ jD(i) × E(j)) by [ML98]. And one has
lim−→ j(D(i) × E(j)) ∼= D(i) × (lim−→E) since the category is cartesian closed. So
lim−→(D × E) ∼= lim−→ i(D(i) × (lim−→E)) ∼= (lim−→D) × (lim−→E). �
Notation B.2. If f : U −→ V and g : W −→ X are two morphisms of a complete
cocomplete category, then let us denote by f�g : (U×X)(U×W )(V ×W ) −→ V ×X
the pushout product of f and g. The notation f0� . . .�fp is defined by induction
on p by f0� . . .�fp := (f0� . . .�fp−1)�fp.
Theorem B.3. (Calculating a pushout product of several morphisms): Let fi :
Ai −→ Bi for 0 � i � p be p + 1 morphisms of a complete cocomplete cartesian
closed category C. Let S ⊂ {0, . . . , p}. Let

Cp(S) :=

(∏
i∈S

Bi

)
×
(∏
i/∈S

Ai

)
.

If S and T are two subsets of {0, . . . , p} such that S ⊂ T , let Cp(iTS ) : Cp(S) −→
Cp(T ) be the morphism(∏

i∈S
IdBi

)
×

⎛⎝ ∏
i∈T\S

fi

⎞⎠×
(∏
i/∈T

IdAi

)
.



invariance of the underlying homotopy type 91

Then:
(1) The mappings S �→ Cp(S) and iTS �→ Cp(iTS ) give rise to a functor from

Δ({0, . . . , p}) (the order complex of the poset {0, . . . , p}) to C.
(2) There exists a canonical morphism

lim−→ S ⊂ {0, . . . , p}
S �= {0, . . . , p}

Cp(S) −→ Cp({0, . . . , p}).

and it is equal to the morphism f0� . . .�fp.

Proof. The first assertion is clear. Moreover, for any subset S and T of {0, . . . , p}
such that S ⊂ T , the diagram

S ��

��

{0, . . . , p}

T

��									

is commutative since there is at most one morphism between two objects of the
order complex Δ({0, . . . , p}), hence the existence of the morphism

lim−→ S ⊂ {0, . . . , p}
S �= {0, . . . , p}

Cp(S) −→ C({0, . . . , p}).

The second assertion is clear for p = 0 and p = 1. We are going to prove it
by induction on p. By definition, the morphism f0� . . .�fp+1 is the canonical
morphism from⎛⎝⎛⎝ lim−→ S⊂{0,...,p}

S �={0,...,p}
Cp(S)

⎞⎠ × Bp+1

⎞⎠ �⎛⎜⎝
⎛⎜⎝ lim−→ S⊂{0,...,p}

S �={0,...,p}
Cp(S)

⎞⎟⎠×Ap+1

⎞⎟⎠
(
Cp({0, . . . , p}) × Ap+1

)

to B0×. . .×Bp+1. Since the underlying category is supposed to be cartesian closed,
the functors M �→ M × Bp+1 and M �→ M × Ap+1 both preserve colimits. So the
source of the morphism f0� . . .�fp+1 is equal to(

lim−→ S⊂{0,...,p}
S �={0,...,p}

(Cp(S) × Bp+1)

)
�⎛⎜⎝ lim−→ S⊂{0,...,p}

S �={0,...,p}
(Cp(S)×Ap+1)

⎞⎟⎠
(Cp({0, . . . , p}) × Ap+1)

or in other terms to⎛⎝ lim−→ S⊂{0,...,p}
S �={0,...,p}

Cp+1(S ∪ {p + 1})
⎞⎠ �⎛⎜⎝ lim−→ S⊂{0,...,p}

S �={0,...,p}
Cp+1(S)

⎞⎟⎠
Cp+1({0, . . . , p})

or at last to⎛⎜⎝lim−→ S⊂{0,...,p+1}
S 	={0,...,p}
p+1∈S

Cp+1(S)

⎞⎟⎠ ⎛⎜⎝ lim−→S⊂{0,...,p}
S 	={0,...,p}

Cp+1(S)

⎞⎟⎠
Cp+1({0, . . . , p}).

The notation ∂Δ({0, . . . , p + 1}) will represent the simplicial order complex
Δ({0, . . . , p+ 1}) with the simplex (0, . . . , p+ 1) removed.
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Let us consider the small category D

1 3

2

u

��������� v

���������

and the composition of functors:

∂Δ({0, . . . , p+ 1}) −→ D −→ ∗

where ∗ is the category with one object and one morphism and where the functor
F : ∂Δ({0, . . . , p+ 1}) −→ D is defined as follows:

(1) The full subcategory of ∂Δ({0, . . . , p+1}) of S such that S ⊂ {0, . . . , p+1},
S �= {0, . . . , p} and p+ 1 ∈ S is mapped to 1 and the identity morphism Id1

of 1.
(2) The full subcategory of ∂Δ({0, . . . , p+1}) of S such that S ⊂ {0, . . . , p} and

S �= {0, . . . , p} is mapped to 2 and the identity morphism Id2 of 2.
(3) F ({0, . . . , p}) = 3.
(4) Any morphism from F−1(2) to F−1(1) is mapped to u.
(5) Any morphism from F−1(2) to F−1(3) is mapped to v.

The functor F gives rise to the adjunction between diagram categories:

F∗ : C∂Δ({0,...,p+1})\{{0,...,p+1}} � CD : F ∗

where F ∗(X) = X ◦ F . It is easily seen that its left adjoint F∗ (i.e., the left Kan
extension) sends a diagram X of C∂Δ({0,...,p+1}) to the diagram:

lim−→ S⊂{0,...,p+1}
S 	={0,...,p}
p+1∈S

X(S)
X({0, . . . , p}).

lim−→ S⊂{0,...,p}
S 	={0,...,p}

X(S)

��













����������������

The functor D −→ ∗ gives rise to the adjunction

lim−→D : CD � C : DiagD

where DiagD is the diagonal functor. By composition of the two adjunctions, one
obtains the isomorphism

lim−→ S⊂{0,...,p+1}
S �={0,...,p+1}

X ∼=

⎛⎜⎝ lim−→ S⊂{0,...,p+1}
S �={0,...,p}

p+1∈S

X(S)

⎞⎟⎠ �⎛⎜⎝ lim−→ S⊂{0,...,p}
S �={0,...,p}

X(S)

⎞⎟⎠
X({0, . . . , p}).

This completes the induction. �

Appendix C. Mixed transfinite composition of pushouts and
cofibrations

This is a reminder of results of [Gau05d].
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Proposition C.1. Let M be a model category. Let λ be an ordinal. Let (fμ :
Aμ −→ Bμ)μ<λ be a λ-sequence of morphisms of M. Let us suppose that for any
μ < λ, the diagram of objects of M

Aμ ��

fμ

��

Aμ+1

��
Bμ

� � �� Bμ+1

is either a pushout diagram, or Aμ → Aμ+1 is an isomorphism and such that for
any μ < λ, Bμ −→ Bμ+1 is a cofibration. Then: if f0 : A0 −→ B0 is a cofibration,
then fλ : Aλ −→ Bλ is a cofibration as well, where of course Aλ := lim−→Aμ and
Bλ := lim−→Bμ.

Proof. It is clear that if fμ : Aμ −→ Bμ is a cofibration, then fμ+1 : Aμ+1 −→
Bμ+1 is a cofibration as well. It then suffices to prove that if ν � λ is a limit ordinal
such that fμ : Aμ −→ Bμ is a cofibration for any μ < ν, then fν : Aν −→ Bν is a
cofibration as well. Consider a commutative diagram

Aν ��

fν

��

C

��
Bν ��

k

���
�

�
�

D

where C −→ D is a trivial fibration of M. Then one has to find k : Bν −→ C
making both triangles commutative. Recall that by hypothesis, fν = lim−→ μ<νfμ.
Since f0 is a cofibration, there exists a map k0 making both triangles of the diagram

A0
��

f0

��

C

��
B0

��

k0

���
�

�
�

D

commutative. Let us suppose kμ constructed. There are two cases. Either the
diagram

Aμ ��

fμ

��

Aμ+1

��
Bμ

� � �� Bμ+1

is a pushout, and one can construct a morphism kμ+1 making both triangles of the
diagram

Aμ+1 ��

fμ+1

��

C

��
Bμ+1 ��

kμ+1

��





D

commutative and such that the composite Bμ −→ Bμ+1 −→ C is equal to kμ by
using the universal property satisfied by the pushout. Or the morphism Aμ → Aμ+1
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is an isomorphism. In that latter case, consider the commutative diagram

Bμ ��
� �

��

kμ �� C

��
Bμ+1 �� D.

Since the morphism Bμ −→ Bμ+1 is a cofibration, there exists kμ+1 : Bμ+1 −→ C
making the two triangles of the latter diagram commutative. So, once again, the
composite Bμ −→ Bμ+1 −→ C is equal to kμ.

The map k := lim−→ μ<νkμ is a solution. �
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