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Weak mixing of maps with bounded cutting
parameter

El Houcein El Abdalaoui, Arnaldo Nogueira and Thierry de
la Rue

Abstract. In the class of Ornstein transformations the mixing property satis-
fies a 0-1 law. Here we consider Ornstein’s construction with bounded cutting
parameter. In fact, these latter transformations are not mixing, however it
is proved that the weak mixing property occurs with probability one. Our
situation is similar to the case of interval exchange transformations whose link
with the cutting and stacking construction relies on a dynamical process called
Rauzy induction.
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1. Introduction

In a nowadays classical work [11], Ornstein associates to every point ω in a proba-
bility space Ω a rank one transformation Tω which he proves to be mixing for almost
every ω. There are many extensions and generalizations of Ornstein’s construction.
Here we regard a class of natural examples of rank one maps of the interval for
inspiration to consider a generalization of Ornstein’s result.

It has been established by Veech [13] that interval exchanges are almost surely
rank one, assuming the permutation is irreducible. The link between the cutting
and stacking construction and interval exchanges is done through Rauzy induction
which is a way to define first return induced transformation without increasing
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the number of exchanged intervals (see [12]). However Katok [10] proved that no
interval exchange map is mixing. Katok’s result remains at the present time, the
only universal result about the spectrum of interval exchanges. In fact, he showed
that every interval exchange map is α-rigid (a transformation T is said to be α-
rigid, 0 < α < 1, if there exists an infinite sequence of integers {nk}k∈N such that
limk→∞ µ(TnkA ∩ A) ≥ αµ(A), for every measurable set A). Naturally, one asks
the following question:

Question 1.1. Does any interval exchange map have singular spectral type?

It is known that the stacking construction using a constant cutting parameter
results in a map which is not mixing. In the class of interval exchanges, whether
weak mixing is almost surely satisfied was still an open question (see [12]) until the
recent work of Avilla and Forni [1]. We recall that Katok and Stepin [9] and Veech
[13] have proved that for some permutations almost every interval exchange map
is weak mixing, nevertheless in [4] it is shown that those permutations force the
eigenvalue to be 1.

Here we will consider the class of Ornstein transformations with bounded cut-
ting parameter. We prove that in this case the weak mixing property occurs with
probability one.

It is clear that our result is in the same spirit of the result of [1]. One may hope
that there is sufficient analogy between our construction and interval exchange
maps for our methods to extend to this case and to obtain a unified proof.

Here we begin by considering a generalization of Ornstein’s construction with
less restrictions (namely in Ornstein’s case, some nonexplicit cutting parameters
satisfying some growth condition ensuring mixing are shown to exist, whereas here
we fix them in advance). In this context, answering a question asked by J.-P.
Thouvenot, we extend a result proved in [8] to the class of Ornstein transformations
with bounded cutting parameter.

We will assume that the reader is familiar with the method of cutting and stack-
ing for constructing rank one transformations.

Acknowledgements. The authors express their thanks to J.-P. Thouvenot and
J. De Sam Lazaro for their help and support.

2. Construction of rank one transformations

Using the cutting and stacking method described in Friedman [7, 8], we can define
inductively a family of measure preserving rank one transformations, as follows: let
B0 be the unit interval equipped with the Lebesgue measure. At the first stage we
split B0 into p0 equal parts, add spacers and form a stack of height h1 in the usual
manner. At the k-th stage we divide the stack obtained at the (k− 1)-st stage into
pk−1 equal columns, add spacers and obtain a new stack of height hk. If during the
k-th stage of our construction the number of spacers put above the j-th column of
the (k − 1)-st stack is a

(k−1)
j ≥ 0, 1 ≤ j ≤ pk, then we have

hk = pk−1hk−1 +
pk−1∑
j=1

a
(k−1)
j .
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Figure 1. kth tower.

Proceeding in this way we get a rank one transformation T on a certain measure
space (X,B, ν) which may be finite or σ-finite depending on the number of spacers
added.

The construction of a rank one transformation thus needs two parameters: a
cutting and stacking parameter (pk)∞k=0 and a spacers parameter

((
a
(k)
j

)pk

j=1

)∞

k=0
.

We define
T

def= T(
pk,

(
a
(k)
j

)pk

j=1

)∞

k=0

.

3. Ornstein’s class of transformations

In Ornstein’s construction, the pk’s are rapidly increasing and the number of
spacers, a

(k)
i , 1 ≤ i ≤ pk − 1, is chosen stochastically in a certain way (subject to

certain bounds). This may be organized in various ways as noted by Bourgain [3],
in fact, let (tk) be a sequence of positive integers such that 2tk ≤ hk. We choose
now independently, using the uniform distribution on the set Xk = {−tk, . . . , tk},
the numbers (xk,i)

pk−1
i=1 , and xk,pk

is chosen deterministically in N. We set, for
1 ≤ i ≤ pk,

a
(k)
i = 2tk + xk,i − xk,i−1, with xk,0 = 0.

Then one sees that
hk+1 = pk(hk + 2tk) + xk,pk

.

So the deterministic sequences of positive integers (pk)∞k=0 and (xk,pk
)∞k=0 com-

pletely determine the sequence of heights (hk)∞k=1. The total measure of the result-
ing measure space is finite if

∞∑
k=1

tk
hk

+
∞∑

k=1

xk,pk

pkhk
< ∞.

We will assume that this requirement is satisfied.
We thus have a probability space of Ornstein transformations

∏∞
k=1 Xpk−1

k equip-

ped with the natural probability measure P
def= ⊗∞

k=1Pk, where Pk
def= ⊗pk−1

l=1 Ul,
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with Ul the uniform probability on Xl. We denote this space by (Ω,A, P). The
projection of Ω onto the i-th coordinate space of Ωk

def= Xpk−1
k , 1 ≤ i ≤ pk − 1 is

xk,i. Naturally each point ω =
(
ωk = (xk,i(ω))pk−1

i=1

)∞
k=1

in Ω defines the spacers and
therefore a rank one transformation which we denote by Tω,x, where x = (xk,pk

)∞k=1

is admissible, i.e.,
∞∑

k=1

xk,pk

pkhk
< ∞.

The above construction gives a more general definition of the random construc-
tion due to Ornstein.

We recall that an automorphism is said to be totally ergodic if all its nonzero
powers are ergodic. It is shown in [5] that the classical Ornstein transformations
are almost surely totally ergodic using the fact that a measure preserving auto-
morphism is totally ergodic if and only if no root of unity other than 1 is an
eigenvalue. In fact it is proved in [5] that, for a fixed z ∈ T \ {1} ≡ [0, 1) \ {0},
{ω : z is an eigenvalue of Tω} is a null measure set. Later, in [6], by Van der
Corput’s inequality and Bernstein’s inequality on the derivative of a trigonometric
polynomial combined with the ingredients of [5] and [2], we obtain a null measure
set N such that for all ω /∈ N , Tω has no eigenvalue other than 1 provided that
for infinitely many n’s we have tn = pn (pn goes to ∞, as n goes to ∞), and this
implies the almost sure weak mixing property.

We note that it is an easy exercise to show that the spectral properties satisfy
the Zero-One law.

4. Ornstein transformations with bounded cutting
parameter

Here we assume that the cutting parameter (pk)k≥0 is bounded. Next we state
our main result.

Theorem 4.1. Let x = (xk,p)k∈N
be admissible sequences of positive integers: i.e.,

∞∑
k=1

xk,pk

pkhk
< ∞.

Then P(W) = 1, where W is the set of ω for which Tω is weak mixing.

First we remark that it is an easy exercise to see that the weak mixing property

occurs with probability 1 if the series
∞∑

k=1

1
tk

diverges. In fact, one can show that

Chacon’s pattern occurs for infinitely many values of k with probability 1. Hence

we assume that the series
∞∑

k=1

1
tk

converges.

A standard argument yields that for any rank one transformation

T(
pk,

(
a
(k)
j

)pk

j=1

)∞

k=0
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with bounded cutting parameter, if λ = e2iπα is an eigenvalue, then

λhk+a
(k)
1 −−−−−→

k→∞
1 or ||(hk + a

(k)
1 )α|| −−−−−→

k→∞
0,

where ||x|| = d(x, Z).
Let N be the subsequence of positive integers (nk) and put

G(N ) def= {λ = e2iπα ∈ T : ||nkα|| −−−−−→
k→∞

0}.

4.1. Some general facts about G(N ) when
(

nk+1

nk

)
k∈N

is bounded. Let

ε be a positive number and L a positive integer. Put

A
(ε)
(nk),L = {λ ∈ [0, 1) : ||nkλ|| < ε,∀nk > L}.

Observe that we have

G(N ) =
⋂
ε>0

⋃
L∈N

A
(ε)
(nk),L.(1)

Now, from this observation, we shall study the properties of G(N ) when the se-

quence
(

nk+1

nk

)
is bounded. We note, first, that we have the following lemma:

Lemma 4.2. Assume that there exists a postive number M such that
nk+1

nk
< M, for any k ∈ N.

Then, for any ε less than
1

4M
we have |A(ε)

(nk),L| ≤ nk0 , where k0 is the smallest

positive integer such that nk0 > L and |A(ε)
(nk),L| is the cardinal of A

(ε)
(nk),L.

Proof. Observe that

Aε
(nk),L =

⋂
nk≥L

Bε
nk

,(2)

where Bε
nk

= {λ ∈ [0, 1) : ||nkλ|| < ε}. We deduce from the definition of k0 and
(2) that

Aε
(nk),L =

⋂
k≥k0

Bε
nk

.

But Bε
nk

is the union of the intervals centered on
j

nk
, 0 ≤ j ≤ nk − 1 and of

length
2ε

nk
. It follows that if some interval I from Bε

nk
centered on some

j

nk
has a

nonempty intersection with two different intervals from Bε
nk+1

, then we must have

1 − 2ε

nk+1
≤ 2ε

nk
.(3)

It follows from (3) that
2ε

1 − 2ε
≥ 1

M
hence 4ε ≥ 1

M
,

which yields a contradiction. Now, Let x, x′ be in Aε
(nk),L. Assume that x, x′ are

in the same interval from Bε
nk0

. Then from the above we deduce by induction that
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x, x′ are in the same interval from Bε
nk

, for any k ≥ k0. It follows that x = x′ and
this yields that |A(ε)

(nk),L| ≤ nk0 . The proof of the lemma is complete. �

Corollary 4.3. If
(

nk+1

nk

)
is bounded then G(nk) is countable.

We have also the following lemma:

Lemma 4.4. Let N = {nk, k ∈ N} and N ′ = {n′
k, k ∈ N} be two sequences of

positive integers such that there exist infinitely many k for which n′
k = nk + 1.

Then G(N )
⋂

G(N ′) = {1}.
Proof. Straightforward. (Chacon’s argument!) �

5. Application and proof of theorem

First, set

nk(ω) def= hk + xk,1(ω),

N (ω) def= {nk(ω), k ∈ N},
ω ∈ Ω, and observe that we have, for any ω ∈ Ω,

nk+1

nk
≤ p + 1.

Let F be the σ-algebra generated by the random variables {x2k, k ∈ N} and the
event x2k+1 ∈ A, where A is any atom from the partition P2k+1 given by

P2k+1 =
{{

− t2k+1

2
,− t2k+1

2
+ 1

}
, · · ·

}
.

The proof of the theorem will follow easily from the following lemma:

Lemma 5.1. The conditionnal probability knowing F satisfies

PF (G(N (ω)) = {1}) = 1.

Proof. Observe that

G(N (ω)) ⊆ G(N2 (ω)) ,

where N2 = {n2k, k ∈ N}. Fix a fiber φ in F . It follows that the sequence
N2 = {n2k} is fixed. But, then if for some ω ∈ φ, λ is an eigenvalue of Tω then λ is
in G(N2) and this last set is countable by the corollary. We deduce that there are
countably many possible eigenvalues, for any ω in the fibre φ.

Let λ �= 1 and assume that there exists ω0 in the fiber such that λ ∈ G(N (
ω0)

)
.

It follows from Lemma 4.4 that for any ω such that λ ∈ (N (ω)) we have ω0
k �= ωk

for only finitely many k. We deduce that

P|φ (λ ∈ G(N (ω))) = 0.

The proof of the lemma is complete. �
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