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Global well-posedness and scattering for the
higher-dimensional energy-critical nonlinear
Schrodinger equation for radial data

Terence Tao

ABSTRACT. In any dimension n > 3, we show that spherically symmetric
bounded energy solutions of the defocusing energy-critical nonlinear Schro-
dinger equation iu; + Au = |u|ﬁu in R x R"™ exist globally and scatter
to free solutions; this generalizes the three and four-dimensional results of
Bourgain, 1999a and 1999b, and Grillakis, 2000. Furthermore we have bounds
on various spacetime norms of the solution which are of exponential type in the
energy, improving on the tower-type bounds of Bourgain. In higher dimensions
n > 6 some new technical difficulties arise because of the very low power of
the nonlinearity.
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1. Introduction

Let n > 3 be an integer. We consider solutions u : I x R™ — C of the defocusing
energy-critial nonlinear Schrédinger equation

(1) tup + Au = F(u)

on a (possibly infinite) time interval I, where F'(u) := |u] 777 4. We will be interested
in the Cauchy problem for the equation (1), specifying initial data u(tg) for some
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to € I and then studying the existence and long-time behavior of solutions to this
Cauchy problem.
We restrict our attention to solutions for which the energy

B(w = B(®) = [ [Vu(t.)? +

is finite. It is then known (see, e.g., [4]) that for any given choice of finite energy
initial data u(tg), the solution exists for times close to tp, and the energy F(u) is
conserved in those times. Furthermore this solution is unique® in the class C’tOH In
Li(mnﬂ)/ ("72), and we shall always assume our solutions to lie in this class. The
significance of the exponent in (1) is that it is the unique exponent which is energy-

critical, in the sense that the natural scale invariance

2 ut,0) A0 (1)

of the equation (1) leaves the energy invariant; in other words, the energy E(u) is
a dimensionless quantity.

If the energy E(u(to)) is sufficiently small (smaller than some absolute constant
€ > 0 depending only on n) then it is known (see [4]) that one has a unique global
finite-energy solution u : R x R™ — C to (1). Furthermore we have the global-in-
time Strichartz bounds

n

-2 2n
t,z)|7= d
—fu(t, ) do

HquLgL;(RXR”) < C(qa r,mn, E(U))
for all exponents (g, r) which are admissible in the sense that?

1 n n

3 2 < <oo; S —=—.
3) Sar<o g
In particular, from Sobolev embedding we have the spacetime estimate
(4) [ull p2ons2 /-2 gy gny < M (1, B(u))

for some explicit function M (n, E) > 0. Because of this and some further Strichartz
analysis, one can also show scattering, in the sense that there exist Schwarz solutions
U4, u— to the free Schrodinger equation (i0; + A)uy = 0, such that

||u(t) - ui(t)||['{1(Rn) — 0ast — too.

This can then be used to develop a small energy scattering theory (existence of
wave operators, asymptotic completeness, etc.); see [3]. Also, one can show that
the solution map u(tg) — wu(t) extends to a globally Lipschitz map in the energy
space H'(R").

The question then arises as to what happens for large energy data. In [4] it
was shown that the Cauchy problem is locally well posed for this class of data,
so that we can construct solutions for short times at least; the issue is whether

n fact, the condition that the solution lies in L?y(:'+2)/(n_2)
uniqueness result, thanks to the endpoint Strichartz estimate in [14] and the Sobolev embed-

ding H1 C Lin/(n72); see [13], [8], [9] for further discussion. We thank Thierry Cazenave for this

observation.

2Strictly speaking, the result in [4] did not obtain these estimates for the endpoint ¢ = 2, but
they can easily be recovered by inserting the Strichartz estimates from [14] into the argument in
(4].

can be omitted from the
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these solutions can be extended to all times, and whether one can obtain scattering
results like before. It is well-known that such results will indeed hold if one could
obtain the a priori bound (4) for all global Schwarz solutions u (see, e.g., [2]). It
is here that the sign of the nonlinearity in (1) is decisive (in contrast to the small
energy theory, in which it plays no role). Indeed, if we replaced the nonlinearity
F(u) by the focusing nonlinearity —F(u) then an argument of Glassey [10] shows
that large energy Schwarz initial data can blow up in finite time; for instance, this
will occur whenever the potential energy exceeds the kinetic energy.

In the defocusing case, however, the existence of Morawetz inequalities allows
one to obtain better control on the solution. A typical such inequality is

u(t, 2n/(n—2) 2
[ [ MEDPE g < 0 (sup u<t>||H1/2<Rn>>
I n cl

|z| t

for all time intervals I and all Schwarz solutions u : I xR™ — C to (1), where C' > 0
is a constant depending only on n; this inequality can be proven by differentiating
the quantity [, Im(ﬁl -Vu(t,z)u(t,z) ) dz in time and integrating by parts. This
inequality is not directly useful for the energy-critical problem, as the right-hand
side involves the Sobolev norm H'/2(R™) instead of the energy norm H'(R™).
However, by applying an appropriate spatial cutoff, Bourgain [1, 2] and Grillakis
[11] obtained the variant Morawetz estimate

t 271/(1’7,—2)
(5) /1/ < AT/ |u(7x)|x| dxdt < CA|I\1/2E(u)

for all A > 1, where |I| denotes the length of the time interval I; this estimate
is more useful as it involves the energy on the right-hand side. For sake of self-
containedness we present a proof of this inequality in Section 2.3.

The estimate (5) is useful for preventing concentration of u(t,z) at the spa-
tial origin = 0. This is especially helpful in the spherically symmetric case
u(t, ) = u(t, |x|), since the spherical symmetry, combined with the bounded energy
assumption can be used to show that w cannot concentrate at any other location
than the spatial origin. Note that spatial concentration is the primary obstruction
to establishing global existence for the critical NLS (1); see, e.g., [15] for some
dicussion of this issue.

With the aid of (5) and several additional arguments, Bourgain [1, 2] and Gril-
lakis [11] were able to show global existence of large energy spherically smooth
solutions in the three-dimensional case n = 3. Furthermore, the argument in [1, 2]
extends (with some technical difficulties) to the case n = 4 and also gives the
spacetime bound (4) (which in turn yields the scattering and global well-posedness
results mentioned earlier). However, the dependence of the constant M (n, E(u))
in (4) on the energy E(u) given by this argument is rather poor; in fact it is an
iterated tower of exponentials of height O(E(u)®). This is because the argument
is based on an induction on energy strategy; for instance when n = 3 one selects
a small number 17 > 0 which depends polynomially on the energy, removes a small
component from the solution u to reduce the energy from E(u) to E(u) —n*, ap-
plies an induction hypothesis asserting a bound (4) for that reduced solution, and
then glues the removed component back in using perturbation theory. The final
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argument gives a recursive estimate for M (3, E) of the form
M(3,E) < Cexp (ncM(?), E — 04)0)

for various absolute constants C' > 0, and with n = ¢cE~C. It is this recursive
inequality which yields the tower growth in M (3, E). The argument of Grillakis
[11] is not based on an induction on energy, but is based on obtaining Ly, control
on u rather than Strichartz control (as in (4)), and it is not clear whether it can be
adapted to give a bound on M (3, E).

The main result of this paper is to generalize the result?® of Bourgain to general
dimensions, and to remove the tower dependence on M (n, E), although we are still
restricted to spherically symmetric data. As with the argument of Bourgain, a
large portion of our argument generalizes to the non-spherically-symmetric case;
the spherical symmetry is needed only to ensure that the solution concentrates at
the spatial origin, and not at any other point in spacetime, in order to exploit the
Morawetz estimate (5). In light of the recent result in [7] extending the three-
dimensional results to general data, it seems in fact likely that at least some of the
ideas here can be used in the non-spherically-symmetric setting; see Remark 3.9.

Theorem 1.1. Let [t_,ty] be a compact interval, and let
we CH ([to,ty) x R™) N L7202 ([ 1] x R™)

be a spherically symmetric solution to (1) with energy E(u) < E for some E > 0.
Then we have
||u||Lfy<;+2>/<n—2>([t_)men) < Cexp(CE®)

for some absolute constants C' depending only on n (and thus independent of E,
ty, u).

Because the bounds are independent of the length of the time interval [t_,¢,],
it is a standard matter to use this theorem, combined with the local well-posedness
theory in [4], to obtain global well-posedness and scattering conclusions for large
energy spherically symmetric data; see [3, 2] for details.

Our argument mostly follows that of Bourgain [1, 2], but avoids the use of
induction on energy using some ideas from other work [11, 7, 18]. We sketch the
ideas informally as follows: following Bourgain, we choose a small parameter n > 0
depending polynomially on the energy, and then divide the time interval [t_, ¢ 4]
into a finite number of intervals I, ..., I;, where on each interval the wa(zn“)/(n_z)
norm is comparable to ¢(n); the task is then to bound the number J of such intervals
by O(exp(CE®)).

An argument of Bourgain based on Strichartz inequalities and harmonic analysis,
which we reproduce here,* shows that for each such interval I;, there is a “bubble”
of concentration, by which we mean a region of spacetime of the form

{(t@) st — 1] < )N} % Je — 2] < cm)N; '}

3We do not obtain regularity results, except in dimensions n = 3,4, simply because the nonlin-
earity \u\‘l/("’Q)u is not smooth in dimensions n > 5. Because of this nonsmoothness, we will not
rely on Fourier-based techniques such as Littlewood—Paley theory, X spaces, or para-differential
calculus, relying instead on the (ordinary) chain rule and some use of Holder type estimates.

4For some results in the same spirit, showing that “bubbles” are the only obstruction to global
existence, see [15].
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inside the spacetime slab I; x R™ on which the solution u has energy® at least
c(n) > 0. Here (tj,x;) is a point in I; x R™ and N; > 0 is a frequency. The
spherical symmetry assumption allows us to choose x; = 0; there is also a lower
bound N; > ¢(n)|1;]'/? simply because the bubble has to be contained inside the
slab I; x R™. However, the harmonic analysis argument does not directly give an
upper bound on the frequency Nj; thus the bubble may be much smaller than the
slab.

In [1, 2] an upper bound on N; is obtained by an induction on energy argument;
one assumes for contradiction that N; is very large, so the bubble is very small.
Without loss of generality we may assume the bubble lies in the lower half of
the slab I; x R". Then when one evolves the bubble forward in time, it will
have largely dispersed by the time it leaves I; x R". Oversimplifying somewhat,
the argument then proceeds by removing this bubble (thus decreasing the energy
by a nontrivial amount), applying an induction hypothesis to obtain Strichartz
bounds on the remainder of the solution, and then gluing the bubble back in by
perturbation theory. Unfortunately it is this use of the induction hypothesis which
eventually gives tower-exponential bounds rather than exponential bounds in the
final result. Also there is some delicate playoff between various powers of n which
needs additional care in four and higher dimensions.

Our main innovation is to obtain an upper bound on N; by more direct meth-
ods, dispensing with the need for an induction on energy argument. The idea
is to use Duhamel’s formula, to compare u against the linear solutions uL(t) :=
e t=t£) Ay (t,). We first eliminate a small number of intervals I; in which the lin-
ear solutions u+ have large Lffg“)/ (n=2) norm; the number of such intervals can be
controlled by global Strichartz estimates for the free (linear) Schrodinger equation.
Now let I; be one of the remaining intervals. If the bubble occurs in the lower half
of I; then weS compare u with u, taking advantage of the dispersive properties of
the propagator e**2 in our high-dimensional setting n > 3 to show that the error
u — uy is in fact relatively smooth, which in turn implies the bubble cannot be too
small. Similarly if the bubble occurs in the upper half of I; we compare u instead
with u_. Interestingly, there are some subtleties in very high dimension (n > 6)
when the nonlinearity F'(u) grows quadratically or slower, as it now becomes rather
difficult (in the large energy setting) to pass from smallness of the nonlinear solution
(in spacetime norms) to that of the linear solution or vice versa.

Once the bubble is shown to inhabit a sizeable portion of the slab, the rest of
the argument essentially proceeds as in [1]. We wish to show that J is bounded, so
suppose for contradiction that J is very large (so there are lots of bubbles). Then the
Morawetz inequality (5) can be used to show that the intervals I; must concentrate
fairly rapidly at some point in time t¢,; however one can then use localized mass
conservation laws to show that the bubbles inside I; must each shed a sizeable
amount of mass (and energy) before concentrating at t,. If .J is large enough there
is so much mass and energy being shed that one can contradict conservation of

5 Actually, we will only seek to obtain lower bounds on potential energy here, but corresponding
control on the kinetic energy can then be obtained by localized forms of the Sobolev inequality.

6 Again, this is an oversimplification; we must also dispose of the nonlinear interactions of u
with itself inside the interval I;, but this can be done by some Strichartz analysis and use of the
pigeonhole principle.
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energy. To put it another way, the mass conservation law implies that the bubbles
cannot contract or expand rapidly, and the Morawetz inequality implies that the
bubbles cannot persist stably for long periods of time. Combining these two facts
we can conclude that there are only a bounded number of bubbles.

It is worth mentioning that our argument is relatively elementary (compared
against, e.g., [1, 2, 7]), especially in low dimensions n = 3,4,5; the only tools
are (nonendpoint) Strichartz estimates and Sobolev embedding, the Duhamel for-
mula, energy conservation, local mass conservation, and the Morawetz inequal-
ity, as well as some elementary combinatorial arguments. We do not need tools
from Littlewood—Paley theory such as the para-differential calculus, although in
the higher-dimensional cases n > 6 we will need fractional integration and the use
of Holder type estimates as a substitute for this para-differential calculus.

Acknowledgements. The author is indebted to Jean Bourgain, Jim Colliander,
Manoussos Grillakis, Markus Keel, Gigliola Staffilani, and Hideo Takaoka for useful
conversations. The author also thanks Monica Visan and the anonymous referee
for several corrections.

2. Notation and basic estimates

We use ¢,C' > 0 to denote various absolute constants depending only on the
dimension n; as we wish to track the dependence on the energy, we will not allow
these constants to depend on the energy FE.

For any time interval I, we use L{L"(I x R™) to denote the mixed spacetime

Lebesgue norm
1/q
e § ALy

with the usual modifications when g = oo.

We define the fractional differentiation operators |V|* := (—A)®/2 on R™. Recall
that if —n < a < 0 then these are fractional integration operators with an explicit
form

(6) VI*f(2) = ena /R

for some computable constant ¢, o > 0 whose exact value is unimportant to us;
see, e.g., [17]. We recall that the Riesz transforms V|V|~! = |V|~1V are bounded
on LP(R") for every 1 < p < oo; again see [17].

f(y)

oy W

2.1. Duhamel’s formula and Strichartz estimates. Let e*® be the propaga-
tor for the free Schrodinger equation iu; + Au = 0. As is well-known, this operator
commutes with derivatives, and obeys the energy identity

(7) €2 fll 2@y = [ £ ]l 2y

and the dispersive inequality

(8) €2 Flloe @y < CIIT"? [ fllr )

for t # 0. In particular we may interpolate to obtain the fixed-time estimates
% —-n(i-1

(9) e fll o@ny < CHIT"E T Fll Lo oy

for 2 < p < oo, where the dual exponent p’ is defined by 1/p+ 1/p’.
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We observe Duhamel’s formula: if iu; + Au = F on some time interval I, then
we have (in a distributional sense, at least)

t
(10) u(t) = 0Dy (g0) — / G R (g) ds

to
for all ty,t € I, where we of course adopt the convention that f:o = — tto when

t < to. To estimate the terms on the right-hand side, we introduce the Strichartz
norms S*(I x R™), defined for k = 0 as

el o (1 xmeny = sup  lulleyxre)s
(¢,r) admissible

where admissibility was defined in (3), and then for general” k by
o k
||U||s'k(1xR") = H|V| “HSO(IxR")'
Observe that in the high-dimensional setting n > 3, we have 2 < r < oo for
all admissible (¢,7), so have boundedness of Riesz transforms (and thus we could
replace |V|¥ by V¥ for instance, when k is a positive integer. We note in particular
that
k k
(1) v u||Lff§+2>/"r(Ian,) +IV u||L3<n+2>/(n—2)Lin<n+2>/(n2+4)(Ian)
k
+ VPl o2 (1xmn) < Ckllullgrrxrny
for all positive integer k > 1. Specializing further to the k = 1 case we obtain
(12) lull 2202 e qny + Ull poo g2 (1 gy S Cllullgr rxmny
and in dimensions n > 4

(13) [ull 2 +2)/m p2ncnszr/m2-20-0) 1, gny S Cllullgarxrny-

We also define dual Strichartz spaces N*(I x R"), defined for k = 0 as the
Banach space dual of S°(I x R"), and for general k as

||F||Nk(1xR") = |||v|kFHN0(Ian)

(or equivalently, N* is the dual of $~*). From the first term in (11) and duality
(and the boundedness of Riesz transforms) we observe in particular that

(14) 1E e (rmmy < HVFF N 2020040 1y
We recall the Strichartz inequalities

(15) ||ei(t7t0)AU(t0)||Sk([><R") < C”u(tO)HH’“(R”)

and

. < ClF gr(rxmnyi
Sk(IxR™)

t
/ ei(tfs)AF(S)

to

(16) |

see, e.g., [14]; the dispersive inequality (9) of course plays a key role in the proof of
these inequalities. While we include the endpoint Strichartz pair (¢, r) = (2, %)

"The homogeneous nature of these norms causes some difficulties in interpreting elements of
these spaces as a distribution when |k| > n/2, but in practice we shall only work with k = 0,1
and n > 3 and so these difficulties do not arise.
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in these estimates, this pair is not actually needed in our argument. Observe that
the constants C' here are independent of the choice of interval I.

2.2. Local mass conservation. We now recall a local mass conservation law
appearing for instance in [11]; a related result also appears in [1].

Let x be a bump function supported on the ball B(0,1) which equals one on the
ball B(0,1/2) and is nonincreasing in the radial direction. For any radius R > 0,
we define the local mass Mass(u(t), B(zg, R)) of u(t) on the ball B(xg, R) by

1/2

Mass(u(t), Bleo, ) = ( [ (252 o) )

note that this is a nondecreasing function of R. Observe that if w is a finite energy
solution (1), then

Hlu(t,z)|* = =2V, - Im(aV u(t, x))
(at least in a distributional sense), and so by integration by parts

8 Mass(u(t), B(zo, R))? = % / X(”” ;{wo)(vx)(x ;xo)lm(ﬂvxu(t,x)) d

so by Cauchy—Schwarz
|0:Mass(u(t), B(zo, R))?|

/2<|z—zo|<R

1/2
< %Mass(u(t),B(xo,R)) </ |V u(t, z)[? dx) .

R
If u has bounded energy F(u) < E, we thus have the approximate mass conservation
law

(17) |8, Mass(u(t), B(xo, R))| < CE'?/R.

Observe that the same claim also holds if u solves the free Schrédinger equation
iur+Au = 0 instead of the nonlinear Schrodinger equation (1). Note that the right-
hand side decays with R. This implies that if the local mass Mass(u(t), B(zg, R))
is large for some time ¢, then it can also be shown to be similarly large for nearby
times ¢, by increasing the radius R if necessary to reduce the rate of change of the
mass.

From Sobolev and Holder (or by Hardy’s inequality) we can control the mass in
terms of the energy via the formula

(18) |Mass(u(t), B(zo, R))| < CEY/?R.

2.3. Morawetz inequality. We now give the proof of the Morawetz inequality
(5); this inequality already appears in [1, 2, 11] in three dimensions, and the argu-
ment extends easily to higher dimensions, but for sake of completeness we give the
argument here.

Using the scale invariance (2) we may rescale so that A|I|'/? = 1. We begin with
the local momentum conservation identity

2
n—2
where j, k range over spatial indices 1, ..., n with the usual summation conventions,
and 0y, is differentiation with respect to the 2* variable. This identity can be verified

— 1
O Im(Opun) = —20;Re(Opud;ju) + iakA(MQ) - Op|u|?>/ (=2
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directly from (1); observe that when w is finite energy, both sides of this inequality
make sense in the sense of distributions, so this identity can be justified in the finite
energy case by the local well-posedness theory.® If we multiply the above identity
by the weight dra for some smooth, compactly supported weight a(z), and then
integrate in space, we obtain (after some integration by parts)

9, / (O m(Dpm) =2 / (0,01a)Re(Dpudu)

Jr%/ (*AAa)|u|2

2

+ sl Aa|u\2”/(”72).

We apply this in particular to the C§° weight a(m) = (&% + |z*)Y/?x(x), where

X is a bump function supported on B(0,2) which equals 1 on B(0,1), and 0 <
€ < 1 is a small parameter which will eventually be sent to zero. In the region
|z] < 1, one can see from elementary geometry that a is a convex function (its
graph is a hyperboloid); in particular, (9;0,a)Re(0yud;u) is nonnegative. Further
computation shows that

n—1 g2

_|_
(52 + |Z‘|2)1/2 (52 + |JI|2)3/2

Aa =

and ) .
CAAg - (n—1)(n—-23) 6(n — 3)5r N 15¢
(e2 + |z[2)3/2 (2 + |z[2)572 (2 + |z|2)7/2
in this region; in particular —AAa, Aa are positive in this region since n > 3. In
the region 1 < |z| < 2, a and all of its derivatives are bounded uniformly in e, and
so the integrals here are bounded by O(E(u)) (using (18) to control the lower-order
term). Combining these estimates we obtain the inequality

B t $)|2n/(n—2)
8/ aaImauuZC/ |u(’—dac—C’Eu.
t ‘w|§2( k ) ( k ) el<1 (€2+‘$|2)1/2 ( )

Integrating this in time on 7, and then using the fundamental theorem of calculus
and the observation that a is Lipschitz, we obtain

[ vut i)l a ult )2 e cB
sup u(t,z)| |u(t,z)| de > c// ——— dx — u)|1]|.
tel J)z|<2 o<1 (€24 |2[2)1/2

By (18) and Cauchy—Schwarz the left-hand side is O(E(u)). Since |I| = A72 < 1,

we thus obtain 2 Jn2)
|u(t, x)|*/(n=
[, e < oBw.

Taking ¢ — 0 and using monotone convergence, (5) follows.

Remark 2.4. In [7], an interaction variant of this Morawetz inequality is used
(superficially similar to the Glimm interaction potential as used in the theory of
conservation laws), in which the weight 1/|z| is not present. In principle this allows

8 For instance, one could smooth out the nonlinearity F' (or add a parabolic dissipation term),
obtain a similar law for smooth solutions to the smoothed out equation, and then use the local
well-posedness theory, see, e.g., [4], to justify the process of taking limits.
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for arguments such as the one here to extend to the nonradial setting. However the
(frequency-localized) interaction Morawetz inequality in [7] is currently restricted
to three dimensions, and has a less favorable numerology” than (5), so it seems that
the arguments given here are insufficient to close the argument in the general case
in higher dimensions. At the very least it seems that one would need to use more
sophisticated control on the movement of mass across frequency ranges, as is done
in [7].

3. Proof of Theorem 1.1

We now give the proof of Theorem 1.1. The spherical symmetry of u is used in
only one step, namely in Corollary 3.5, to ensure that the solution concentrates at
the spatial origin instead of at some other location.

We fix F, [t_,t4], u. We may assume that the energy is large, £ > ¢ > 0,
otherwise the claim follows from the small energy theory. From the bounded energy
of u we observe the bounds

(19) ()]l g2 (g + ()| p2n /2 rny < CEC

forall t € [t_,t4].

We need some absolute constants 1 < Cp < €7 < (3, depending only on
n, to be chosen later; we will assume Cy to be sufficiently large depending on n,
C; sufficiently large depending on Cy,n, and Cs sufficiently large depending on
Cy, C1,n. We then define the quantity n := C’Q_lE*C? Our task is to show that

t
/ : / lu(t, 2) 2+ =) gy

< C(Cy, Cy,Cs) exp (C(Co,ch02)EC(C°’01’02)) .

We may assume of course that

i+
/ / lu(t, z) 2D/ =2 gadt > 4an
t7 n

since our task is trivial otherwise. We may then (by the greedy algorithm) subdivide

[t—,t4] into a finite number of disjoint intervals Iy, ..., I; for some J > 2 such that
(20) n< / / lu(t, 2) 2D/ 0=2) gy < o
I; JRn

for all 1 < j < J. It will then suffice to show that
J < C(Co, Cy, CQ) exp (0(007 Ci, CQ)EC(COLH,C:))) ]

We shall now prove various concentration properties of the solution on these
intervals. We begin with a standard Strichartz estimate that bootstraps control on
(20) to control on all the Strichartz norms (but we lose the gain in 7):

9In the notation of Corollary 3.6, the interaction inequality in [7] would give a bound of the
form ZIjCI |1;]3/2 < C(n)(maxy;cr |1; [)3/2, which is substantially weaker and in particular does
not seem to easily give the conclusions in Corollary 3.7 or Proposition 3.8, because the exponent
3/2 here is greater than 1, whereas the corresponding exponent 1/2 arising from (5) is less than
1.
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Lemma 3.1. For each interval I; we have
lullgr(r, xmny < CE°.
Proof. From Duhamel (10), Strichartz (15), (16) and the equation (1) we have
ol 1y < I 1 gy + 1P 11 ey
for any t; € I;. From (19), (14) we thus have
[ull g1 1, xmny < CEC + IV F(u)|| g2t /ot (1, xRm) -
But from the chain rule and Holder we have (formally, at least)
IVE@W)| 2t /eia 1, xrey < Cllul* "2 [Vull| oo o (1, me)

4/(n—2)
< C||uHLff;‘+2)/("*2>(1j <R HVUHLMHH)/"(IJ- xR™)

< 0772/("+2)||U||s'1(1ijn)

by (20), (11). Thus we have the formal inequality
ullgs gy < CEC + O™ g0 .

If n is sufficiently small (by choosing Cs large enough), then the claim follows,
at least formally. To make the argument rigorous one can run a Picard iteration
scheme that converges to the solution u (see, e.g., [4] for details) and obtain the
above types of bounds uniformly at all stages of the iteration; we omit the standard
details. O

Next, we obtain lower bounds on linear solution approximations to u on an

2(n+2)/(n—2)

interval where the L; norm is small but bounded below.

Lemma 3.2. Let [t1,t2] C [t—,t4] be an interval such that

ta
(21) n/2 g/ / lu(t, )22/ =2) qadtr < 2.
t1 m

Then, if we define w(t, ) := e/t~ A2(t;) for 1 = 1,2, we have

to
/ / | (t, )22/ (=2) qadt > en©
tl n
forl=1,2.

Proof. Without loss of generality it suffices to prove the claim when [ = 1. In
low dimensions n = 3,4,5 the lemma is easy; indeed an inspection of the proof of
Lemma 3.1 reveals that we have the additional bound

lw =il g1 gty o) xmmy < CECn?/ ("2

and hence by (12)

C, 2 +2
||u — ’ul||L$7(;1+2)/(n72)([tl’tﬂan) <CFE n /(n )

When n = 3,4,5 we have 2/(n+2) > (n —2)/2(n+ 2), and so the above estimates
then show that uw — uy is smaller than u in Lfgﬁz)/(nﬁ)([tl,tg] x R™) norm if n
is sufficienty small (i.e., Cy is sufficiently large), at which point the claim follows
from the triangle inequality (and we can even replace n by 7).
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In higher dimensions n > 6, the above simple argument breaks down. In fact
the argument becomes considerably more complicated (in particular, we were only
able to obtain a bound of 7 rather than the more natural n); the difficulty is that
while the nonlinearity still decays faster than linearly as u — 0, one of the factors
is “reserved” for the derivative Vu, for which we have no smallness estimates, and
the remaining terms now decay linearly or worse, making it difficult to perform a
perturbative analysis. The resolution of this difficulty is rather technical, so we
defer the proof of the higher-dimensional case to an Appendix (Section 4) so as not
to interrupt the flow of the argument. We remark however that the argument does
not require any spherical symmetry assumption on the solution. (I

Define the linear solutions u_, uy on [t_,t,] x R™ by ux(t) := e/ t7t) 8y (tL);
these are the analogue of the scattering solutions for this compact interval [t_,¢,].
From (19) and the Strichartz estimate (15), (12), we have

ty
/ / lus (t, )22/ (=2 gedt < CEC.

Call an interval I; exceptional if we have

/ / lug (t, )22/ =2 dydt > n©
I; i

for at least one choice of sign =+, and unexceptional otherwise. From the above
global Strichartz estimate we see that there are at most O(E®/n“1) exceptional
intervals, which will be acceptable for us from definition of . Thus we may assume
that there is at least one unexceptional interval.

Unexceptional intervals will be easier to control than exceptional ones, because
the homogeneous component of Duhamel’s formula (10) is negligible, leaving only
the inhomogeneous component to be considered. But as we shall see, this compo-
nent enjoys some additional regularity properties. In particular, we now prove a
concentration property of the solution on unexceptional intervals.

Proposition 3.3. Let I; be an unexceptional interval. Then there exists an x; €
R™ such that

Mass (u(t),B(xj,Cn_C|Ij|1/2)) > en©Co|1;|M?
forallt € ;.

Proof. By time translation invariance and scale invariance (2) we may assume
that I; = [0, 1]. We subdivide I; further into [0,1/2] and [1/2,1]. By (20) and the
pigeonhole principle and time reflection symmetry if necessary we may assume that

1
(22) // / lu(t, )2+ (=2 qudt > n/2.
1/2 JrR»

Since I; is unexceptional, we have

1
(23) / / lu_(t, )22/ (=2 qoar < n©r.
O n
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By (23), (20) and the pigeonhole principle, we may find an interval [t, — n°, t,] C
[0,1/2] such that'?

[
(24) / / lu(t, )2+ (=2 et < OnCo.
t*,nco n
and
(25) / i (b — 7, )P/ (2 g < Oy

Applying Lemma 3.2 to the time interval [t., 1] we see that

1
(26) / / ‘(ei(t—t*)Au(t*))(l‘)|2(n+2)/(n—2) ddt > ch-
t. JRn

By Duhamel’s formula (10) we have
ta

(27) IRy (1) = u_(t) — i / AP (u(s)) ds

t*fnco

t*fnco )
- ’L/ =B E(u(s)) ds.
t

Since I; is unexceptional, we have

1
/ / u_(t, )22 =2 dgdr <
t. JRn
From (24) and Lemma 3.1, it is easy to see (using the chain rule and Hélder as in
the proof of Lemma 3.1) that
(28) IE (Wl g1 (2, —nco £, xmm) < CE“n*,
and hence by Strichartz (16)

-k

From these estimates and (26), we thus see from the triangle inequality (if Cjy is
large enough, and 7 small enough (i.e., Cs large enough depending on Cy)) that

2(n+2)/(n—2)
(z) dadt < CE“nco.

t .
/ e =B P(u(s)) ds
t*—'r]CO

c
(29) ‘|U||Lff;L+2)/(7L72)([t*,1]><R”) >
where v is the function
t*fnco )
(30) V= / DB B (u(s)) ds.
t

We now complement this lower bound on v with an upper bound. First observe
from Lemma 3.1 that
c
lullgr e, aywmmy < CET;

10Tn the low-dimensional case n = 3,4, 5 we may skip this pigeonhole step. Indeed from (22),
(23) and Duhamel we may conclude that ft(i eHt=5)A P(y(s)) ds has large Lf’<;+2>/(n72)
the slab [1/2, 1] x R™; this is because the proof of Lemma 3.2 shows that the effect of the forcing
terms arising from the time interval [0, 1] are of size O(n*/("=2)) which is smaller than 7/2 for
n = 3,4,5; one then continues the proof from (29) onwards with only minor changes. However

norm on

this simple argument does not seem to work in higher dimensions.
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also from (19) and (15) we have

”u—”Sl([t*,l]xR") < CE“.

Finally, from (28) and (16)

ty
/ =B (u(s)) ds
¢

«—n<o

< CE°.
S1([t,1]xR™)

From the triangle inequality and (27) we thus have
(31) 1ol g1 e, 1yxrmy < CEC.
We shall need some additional regularity control on v. For any h € R", let u(")
denote the translate of u by h, i.e., u™ (t,z) := u(t,z — h).
Lemma 3.4. We have the bound
H’U(h) — /UHL?CLi(n{»2)/(n72)([t*’1]XRn) < CECU—CCO |h|°
for all h € R™.

Proof. First consider the high-dimensional case n > 4. We use (19), the chain rule
and Holder to observe that

IVE (u(s)) | L2nscrsar ey < Clluls)[ Y2 1Vu(s)|[| p2ns s )

4/(n—2
< Cluls)l13al 0 g V() 122 ey

< CE®,
so by the dispersive inequality (9)
||vei(t_s)AF(u(S))||L2n/(n—4)(Rn) S CEclt - 8|_2.

Integrating this for s in [t_,¢. — n©°] we obtain

||V,U||L,‘,’°Li"/("74)([t*,tl]XR") < CECn_CCU;

interpolating this with (31), (11) we obtain

C, —CC
||VU||L§°L§<7L+2)/("72)([t*,tl]xR") S CE 7 0.

The claim then follows (with ¢ = 1) from the fundamental theorem of calculus and
Minkowski’s inequality.

Now consider the three-dimensional case n = 3. From (19), the fundamental
theorem of calculus, and Minkowski’s inequality we have

[u™(s) = u(s)||L2rs) < CEC|h],
while from the triangle inequality we have
[ut™ (s) — u(s)|| Lo sy < CEC,

and hence
||u(h)(s) — U(S)HLa(Rs) < CEC|h|1/2.
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Since F'(u) is quintic in three dimensions, we thus have from Hoélder and (19) that
1F ()™ (5) = F(u)($) ]| 2 rs) < Clllu™ (s) = uls)|([u™ ()] + [u(s)) |1 (ms)

< Cllu™(s) - ()]l 2o () 1u(s) | 2o ()

< CEC|n|Y/2.
Integrating this for s € [t_,t, — n®°] using (8) we obtain

||’U(h) - 7f||L;>°j$([t*,1]xR") < C'Ec7fcco|h|1/2-
On the other hand, from (31), (12), and the triangle inequality we have
[ — Vl|Lee Lot xR < CE“p=c

and the claim follows by interpolation. (I

We can average this lemma over all |h| < r, for some scale 0 < r < 1 to be

chosen shortly, to obtain
C,—CCo,.c
v v nt2)/(n— < CE 0
lvaw HLgOLi( T2 (1, 1] xR = CE™n

where vy, (2) := [ x(y)v(x+ry) dy for some bump function x supported on B(0, 1)
of total mass one. In particular by a Holder in time we have

||’U,w — UHLf.’(;*%/("*Q)([t*7l]><R") < CECU*CCOTC.

Thus if we choose r := n©“0 for some large enough C, and 7 is sufficiently small,
we see from (29) that

||Uav||Li(;ﬁ?)/('ﬂ*@([t*yl]XRn) > cen®.
On the other hand, by Holder and Young’s inequality
||Uav||ij;/("*2)([t*)1]XRn) < C”UavHL?oLin/(n*Q)([t*’l]XR")
< Clloll 2
< CE®
by (31), (11). Thus by Holder we have

" ([t 1] xRM)

[vaollLge, (ft. 1) xR7) 2 en“EC.

Thus we may find a point (¢;,z;) € [t., 1] x R" such that

/x(y)v(tj,xj +ry) dy| = en°EC,
and in particular by Cauchy—Schwarz
Mass(v(t;), B(zj, R)) > en® E~rC.

for all R > r. Observe from (30) that v solves the free Schrodinger equation on
[t. —n©°, 1], and has energy O(E®) by (31), (11). Thus by (17) we have

Mass(v(t, —n°°), B(x;, R)) > en® E=“r¢

for all t € [t., 1], if we set R := O~ E“r~C for some appropriate constants C.
From Duhamel’s formula (10) (or (27)) we have

u(te = 1) = u_(t. —n) = iv(t. —n).
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From (25) and Holder we have
Mass (u—_(t. —n), B(z;,R)) < CRn“".

Thus if we choose O} sufficiently large depending on Cy (recalling that r = n©co
and R = Cn~“E%r~%), and assume 7 sufficiently small depending polynomially
on F, we have
Mass (u(t. —n°), B(z;,R)) = en®E~“rC.
By another application of (17) we thus have
Mass (u(t),B(xj,n*CCO)) > en~CC0
for all ¢ € [0,1], and Proposition 3.3 follows. O

We now exploit the radial symmetry of u to place the concentration point x; at
the origin. This is the only place where the spherical symmetry assumption is used.

Corollary 3.5. Let I; be an unexceptional interval, and assume that the solution
u 18 spherically symmetric. Then we have

Mass (u(t),B (O,Cn_cc"ﬂj\lﬂ)) > chC°|Ij\1/2
for all t € I;.

Proof. We again rescale I; = [0,1]. Let z; be as in Proposition 3.3. Fix ¢ € [0, 1].
If |z;] = O(n~¢"“) for some C' depending only on n then we are done. Now
suppose that |z;| > n~C"Co. Then if €’ is big enough, we can find 77" rotations
of the ball B(z;, Cn~¢“0) which are disjoint. On each one of these balls, the mass
of u(t) is at least cn®“° by the spherical symmetry assumption; by Hoélder this
shows that the L>*/("=2) norm of u(t) on these balls is also cy©“°. Adding this
up for each of the ~¢¢"% balls, we obtain a contradiction to (19) if C'Cy is large
enough. Thus we have |z;| = O(~¢"%) and the claim follows. O

From this corollary and Hélder we see that
t 2n/(n—2)
/ lu(t, )| dedt > en©O |11/
lz|<R |z|

whenever ¢ € I; for some unexceptional interval I;, and R > On~¢“|I;|'/2. In
particular we have

2n/(n—2)
// lu(t, )] dadt > enCO |1, |12,
I; J|z|<R 2|

Combining this with (5) and the bounded energy we obtain the following com-
binatorial bound on the distribution of the intervals I;.

Corollary 3.6. Assume that the solution u is spherically symmetric. For any in-
terval I C [t_,t,], we have

Z ‘Ij|1/2 < CTIfC(CO,Cl)|I|1/2'
1<j<J: ;T

(note we can use n~¢ to absorb any powers of the energy which appear; also, note
that the O(Cn~C") exceptional intervals cause no difficulty).
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This bound gives quite strong control on the possible distribution of the intervals
1;, for instance we have

Corollary 3.7. Assume that the solution u is spherically symmetric. Let I =
Ujlgjgjz I; be a union of consecutive intervals. Then there exists j1 < j < jo such

that |I;] > en©(©o:CV)|]|.

Proof. From the preceding corollary we have
Oy~ o2 = 3G VE = Y LI sup )TV

J1<5<g2 71<5<jo VIS

Since > I;| = |I], the claim follows. O

J1=5<g2 |
We now repeat a combinatorial argument!! of Bourgain [1] to show that the
intervals I; must now concentrate at some time ¢,:

Proposition 3.8. Assume that the solution u is spherically symmetric. Then there

exists a time t, € [t_,ty] and distinct unexceptional intervals I, ..., I, for some
K > en©(©0:C Jog J such that

K—
(32) |Ij1| 22|IJ2‘ Z4|IJ3| 222 1|IjK|

and such that dist(t,, I;,) < On~CCoCO|L, | for all 1 <k < K.

Proof. We run the algorithm from Bourgain [1]. We first recursively define a nested
sequence of intervals %), each of which is a union of consecutive unexceptional I i
as follows. We first remove the O(n~¢") exceptional intervals from [t_, ], leaving
O(n~=°*) connected components. One of these, call it 7™"), must be the union of
Ji > en©'J consecutive unexceptional intervals. By Corollary 3.7, there exists an
I;, € IM such that |I;,| > en© ||, so in particular dist(¢, I;,) < Cn~CC|1,, |
for all t € [IM)|. Now we remove I;, from I (1), and more generally remove all
intervals I; from IM) for which |I;| > |I;,|/2. There can be at most Cp~¢“o
such intervals to remove, since I; was so large. If J; < Cn~%“ then we set
K =1 and terminate the algorithm. Otherwise, we observe that the remaining
connected components of (1) still contain at least cn©©o.J intervals, and there are
O(n=%%0) such components. Thus by the pigeonhole principle we can find one
of these components, 1), which is the union of Jo > en©©oJ; intervals, each of
which must have length less than or equal to |I;,|/2 by construction. Now we
iterate the algorithm, using Corollary 3.7 to locate an interval I;, in () such that
1;,| > en©C0|1?)|, and then removing all intervals of length > |I;,|/2 from 1()|. If

1Tt seems of interest to remove the logarithm in this proposition, since this would make our
final estimate polynomial in the energy instead of exponential. It seems however one cannot
achieve this purely on the strength of the Morawetz estimate (5) and the mass conservation law
(17), as the control on the intervals I; provided by these two estimates does not preclude the
possibility for the energy to concentrate on a Cantor set of times of dimension less than 1/2,
which can use up an exponential number of intervals before the local mass conservation begins to
conflict with energy conservation. One possibility is to combine the Morawetz inequality (5) with
the interaction Morawetz inequalities in [7], although those inequalities are in some sense even
weaker and thus less able to control the total number of intervals. We remark that for the cubic
NLS in three dimensions, the known bounds are polynomial in the energy and mass [5, 6], but
this is because the equation is H!-subcritical and L?-supercritical, which force the lengths |1;] of
the intervals to be bounded both above and below. See [16] for a related discussion.
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the number of intervals in [1®)| is O(7~¢“?), we terminate the algorithm, otherwise
we can pass as before to a smaller interval 73 which is a union of Jg > ¢n©©0.J,
intervals. We can continue in this manner for K steps for some K > ¢n©(€0.C1) Jog .J
until we run out of intervals. The claim then follows by choosing t, to be an
arbitrary time in 7(5%). (I

Let t, and I,

j1s---,1j, be asin the above proposition. From Proposition 3.3 we
recall that

Mass (u(t), B (w5, Cn~ 0 15,]1/2) ) = |15, |1/2

for all t € I;,. Applying (17) and adjusting the constants ¢, C' as necessary we thus
see that

Mass(u(ty), By) = en® (@1 |12

where each By is a ball By, := B (xj,,Cn~¢(©-C)|I; [1/2). On the other hand,
from (18) we observe that

Mass(u(t,), By,) < Cn—C(Co,C1)|Ijk|1/2_

Let N := Cylog(1/n). If we choose this constant C5 large enough, we thus see from
the above mass bounds and (32) that

1
ulty, z)]? doe < = u(ty, z)|? dz,
S )P e < g
k+N<k'<K “ Bw Br
and hence
/B \( u(te, z)[* > en® @1, |
k

Uk+N§k’§K Byr)

Applying Holder’s inequality,'? we thus obtain

/ |u(t*’x)|2n/(n—2) > CnC(CO,Cl).
Bk\(UkJrNgk/gK Bk’)

Summing this in k and telescoping, we obtain
| lutte )i = €,
Using (19) we thus obtain
K < Oy~ A INES < O(Co, O, Ca)y~ @,
Since K > ¢n©(©0:C1) 1og J, we obtain
J < exp (CW‘C(CD’CI)) < exp (C(Cm Cy, Cz)EC(CO’C“Cz))

as desired. This proves Theorem 1.1.

12 An alternate approach here is to use the spherical symmetry to move the balls to be centered
at the origin, and apply Hardy’s inequality, see [1, 11]. However this approach shows that one
does not need the spherical symmetry assumption to conclude the argument provided that one
has a concentration result similar to Proposition 3.8.
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Remark 3.9. One can use Proposition 3.3 to improve the bounds obtained in [7]
in the nonradial case, as one no longer needs to use the induction hypothesis to ob-
tain concentration bounds on the solution. It may also be possible to use a variant
of the techniques here to also obtain the reverse Sobolev inequality. However the
remaining portion of the arguments seem to require a heavier use of the induction
hypothesis (in order to obtain certain frequency localization properties of the en-
ergy), and so we were unable to fully remove the tower-type bounds from the result
in [7].

4. Appendix: Proof of Lemma 3.2 in high dimensions

We now give the rather technical proof of Lemma 3.2 in the high-dimensional
case n > 6; the idea is to find an iteration scheme which converges acceptably after
the first few terms, leaving us to estimate a finite number of iterates (which we can
estimate by more inefficient means). We differentiate (1) and use the chain rule to
obtain the equation

(i@t + A)V'LL = ViVu + VQW

4
"% and Vs i= 25 |u

n

4 2
n—2 %o From (21) we have
n—2 |

where V; 1=

|u

(33) Vall Lgmorrz oy ey xmey  1V2ll itz e, o) ey < €15

which by (14), (11), and Holder implies in particular that

(34) [Viw + Vawl| o g, a1 xmmy < Cnlwllgo e, 131xm)-

From Duhamel’s formula (10) we have Vu = Vu; + AVu, where A is the (real)

linear operator

Aw(t) := —i / IRV (s)w(s) + Va(s)w(s)) ds.

t1
From Strichartz (16) and (34) we see that

(35) ||Aw||so([t1,t2]an) < CncHw”SO([tl,tz]xR");

thus for 7 sufficiently small, A is a contraction on S°([t1,t5] x R"). Also, from
Strichartz (15) and (19) we see that

(36) HVU1HSO([M¢2}XR") S CEC.

Thus for some absolute constant M (depending only on n), we see that we have
the Neumann series approximation

M
Vu — Z A"™Vuy

m=0

<n

SO([tl,tQ] XR”)

(for instance), assuming that 7 is sufficiently small depending (polynomially) on
the energy. Now introduce the spacetime norm

e [ R Ty

where |V|~! := (=A)~%2. From (12) (and the boundedness of Riesz transforms)
we observe that

(37) wllx < C||7UHSO([t1,t2]XRn)
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and hence

< Ch.
X
On the other hand, from (21) and Calderén-Zygmund theory we have

HVUHX > Cn(n—Q)/Q(n—i—Q).

M
Vu — Z A"V

m=0

Thus by the triangle inequality, we have
||AmVU1||X > Cn(n—Z)/2(n+2)

for some 0 < m < M, again assuming that 7 is sufficiently small.

Ideally we would now like the operator A to be bounded on X. We do not know
if this is true; however we have the following weaker (and technical) version of this
fact which suffices for our application.

Lemma 4.1. For any w € S°([t1,t2] x R™), we have the estimate

—0
||Aw||X < CEC”wH,lS'U([tl,tz]XR”)Hng(

for some absolute constant 0 < 6 < 1 (depending only on n).

Assuming this lemma for the moment, we apply it together with (35), (36), (37)
we obtain a bound of the form

|A™ V|| x < Crunp~m B || Vg |9

for some constants C,, 0,, > 0. Together with our lower bound on ||A™Vu4 || x this
gives ||[Vui||x > en® (assuming 7 sufficiently small depending on F, and allowing
constants to depend on the fixed constant M), and Lemma 3.2 follows (again using
the boundedness of Riesz transforms).

It remains to prove Lemma 4.1. The point is to take advantage of one of the
(many) refinements of the Sobolev embedding used'® to prove (37); we shall use an
argument based on Hedberg’s inequality. We will not attempt to gain powers of i
here (since the Neumann series step has in some sense fully exploited those gains
already) and so shall simply discard all such gains that we encounter.

We make the a priori assumption that w is smooth and rapidly decreasing; this
can be removed by the usual limiting argument. We normalize [|w|| o, 1,]xrn) =
1, and write a := ||w||x, thus @ < C by (37). Our task is to show that || Aw||x <
Cac.

Observe from (35) and (13) that

|| ‘V|*1Aw||Lf<n+2>/nLin<n+2)/(n272n74>([tl7t2] xR") <C

and hence by Holder it will suffice to show that
”|V|71Aw(t)||L2n/(n—2>(Rn) <Ca*
for all ¢ € [t1,ta].

I3More precisely, we need a statement to the effect that the Sobolev theorem is only sharp
if one of the “wavelet coefficients” of the function is extremely large (close to its maximal size).
The argument below could be reformulated as an interpolation inequality (of Gagliardo—Nirenberg
type) for Triebel-Lizorkin spaces, but we have elected to give a direct argument that does not
rely on too much external machinery.
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By time translation invariance we may set ¢ = 0. Write v := Aw(0). We now
use a variant of Hedberg’s inequality. From (35) and (11) we have

(38) lollzs < C;

if we let M denote the Hardy—Littlewood maximal function

1
Mo(z) = sup = — / ()| dy,
>0 |B(@,7)] /B

then by the Hardy-Littlewood maximal inequality (see [17]) we have
| (M) 2 awsnzy = Ml 3" < C.

P

It thus suffices to prove the pointwise Hedberg-type inequality

IV ol(z) < Ca®(Mu(x))"—2/m,
We may translate so that z = 0. Set R := (Mwv(0))~2/" (the case Mv(0) = 0 being
trivial), thus

| pwldy<crree
B(0,r)

for all » > 0. From (38) and Cauchy-Schwarz we also have
[ bl <o
B(0,r)
and thus
—n/2

(39) / ()| dy < /2 (14 2)

B(0,r) R
By (6), it suffices to show that

‘/ ’U(y) dy’ SC&CRl_%.
re [y|" 7t

By the above estimates, we see that we can prove this estimate in the regions
lyl < a®R and |y| > o~ R, even if we place the absolute values inside the integral,
where 0 < ¢y < 1 is an absolute constant to be chosen shortly. Thus it will suffice
to estimate the remaining region a® R < |y| < a~ R. Partitioning the integral via
smooth cutoffs, we see that it suffices (if ¢y was chosen sufficiently small) to show
that

< Ca‘rz,

| vty dy

for all » > 0, where ¢ is a real-valued bump function. One may verify from dimen-
sional analysis that this estimate (as well as the hypotheses) are invariant under
the scaling

w(t,z) — N 2w(t/A2 2/N); ot z) — X 2w(t/A2, 2/ \)
and so we may take r = 1. Since v = Aw(0), we thus reduce to proving that
[(Aw(0), ¢)| < Ca”.

Expanding out the definition of A and using duality, we can write this as

/ ’ / (ViBwlt) + Va(tym()e" S drdt| < Cac.

(40)
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From (33), (11) we have

“Viw + %@||Lf§;+2)/(n+4)([tl,0] xR™) S C?

while a direct computation® of e~#* shows that

—itA _
||€ it SD||L51(:+2>/”([M,*T]XR”) SCT c

for all 7 > 1. Thus if we set 7 = Ca™“ for some small ¢y to be chosen later, we see
that the portion of (40) arising from [t;, —7] is acceptable, and it suffices to then
prove the bound on [—7,0]. In fact we will prove the fixed time estimates

/H(Vl(t) (t) + Va(yw(t)e" ¢ da| < CEC(1+ )|V ()]G 2020/ 002 ()

for all t € [—T, 0], which proves the claim if ¢ is sufficiently small, thanks to Holder’s
inequality and the hypothesis ||w||x = a.

Fix t. We shall just prove this inequality for Vow, as the corresponding estimate
for Vjw is similar. Because of the negative derivative on w on the right-hand side, we
shall need some regularity control on V. Note that V5 behaves like |u|*/("~2); since
4/(n —2) < 1, the standard fractional chain rule is not easy to apply. Instead, we
will work in Holder-type spaces,'® which are more elementary. As with Lemma 3.4,
we let u(™ denote the translate u™(z) := u(z — h) of u by h for any h € R™;
similarly define V( ). etc. From (19), the fundamental theorem of calculus, and
Minkowski’s inequality we have

[u™ () = w(t)]| 2 (rny < CEC[].

Since the function z — |z %% is Holder continuous of order 4/n — 2, we thus

have the pointwise inequality
VA" (1) = Va(®)] < Clu® —uft/(=2
which gives the Holder type bounds
V2" (t) = Va@®ll n-2r2ny < CEC [ "2,

From (11) and the normalization Hw||s‘0([th
itA

1o)xmny = L we have [lw(t)]| Lz < C, and

hence by Hélder (and the decay of e=*2¢ in space)

/ (Va(t) — VIYw@e™ g dz| < CEC(1 + )€ ||/ (=2,

Similarly, from (19) we have

h n
(41) VA Ol ey < Cllu) a2 gy < CES

a direct computation also shows that
1640 = (€*20) ™M || L2nsn—ar gy < C(1+ )[R < C(1+1)C[RM (72

14Indeed, one just needs to note that e~ 2 ¢ is bounded in L2 and decays in L2 like O(t~"/2)
to verify this claim.

15Using Holder spaces rather than Sobolev spaces costs an epsilon of regularity (see, e.g., [17]
for a discussion) but for our purposes any nonzero amount of regularity will suffice. The reader
may recognize the arguments below as that of splitting a product into paraproducts; however we
are avoiding the use of standard paraproduct theory as it does not interact well with nonlinear
maps such as u — V2 which may only be Holder continuous of order 4/(n — 2) < 1.
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for |h| <1 (say), and so by Holder again

/ VQ(’E)W (eitASO -~ (eitAgo)(h)) dr
Combining this with the previous estimate we obtain
/ w(t) (VeritA(p - (VzeitA@)(h)) da
or equivalently that

[ @@ w0 ") veesp da

We can average this over all |h| < r, where the radius 0 < r < 1 will be chosen
later, to obtain

/n (W - m) Vae'™2 ¢ da

where wq,(t,2) == [ x(y)w(t,z + ry) for some bump function y of total mass 1.
On the other hand, from the Hérmander multiplier theorem (see [17]) and some
Fourier analysis we see that

< CEC(1 +t)C|h|H (=2,

< CEC(l + t)C"h|4/(n—2)7

< CEC(I + t)C‘h|4/(n72).

(42) < CE(14t)¢r¥/(n=2)

||wav(t)||L2(n+2)/(n*2)(R") < CT_C H|v|_lw(t)HLz(n+2)/(nf2)(Rn) s

and by combining this with (41) and decay estimates on e’**¢ we obtain
‘/ w(w(t)Vge“Ago dx| < CEC(l + t)cr_c |||V|_1w(t)HLQ(TLH)/(TL,Z)(RH) .

Combining this with (42) and optimizing in r we obtain Lemma 4.1, and thus
Lemma 3.2.
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