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Rademacher series and decoupling

N.J. Kalton

ABSTRACT. We study decoupling in quasi-Banach spaces. We show that de-
coupling is permissible in some quasi-Banach spaces (e.g., Lp and L,/ Hp, when
0 < p < 1) but fails in other spaces such as the Schatten ideal S, when
0 < p < 1. We also relate our ideas to a possible extension of the Grothendieck

inequality.
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1. Introduction

This paper was inspired by the work of de la Pena and Montgomery-Smith
on decoupling of random variables taking values in Banach space ([7],[8] and [6];
see also [22] and [23]). It is natural to wonder if similar results might hold for
random variables taking values in a quasi-Banach space (e.g., in L,(0,1) when
0 < p < 1). As we shall see the main results on decoupling extend to some but not
all quasi-Banach spaces. Thus decoupling can be defined as a property of quasi-
Banach spaces and it is of some interest to decide which spaces enjoy the decoupling
property.

Suppose £ = (£1,...,&,) is a sequence of independent real-valued random vari-
ables and that §’ = (£],...,&;,) is an independent copy of §. Suppose F' = (fjx)7 1
is an array of Borel functions f; : R* — X where X is some quasi-Banach space
with fjr(s,t) = frj(t,s) for j # k and f;; =0 for 1 < j < n. If X is a Banach space

Received July 18, 2004.

Mathematics Subject Classification. Primary: 46A16, 60B11.
Key words and phrases. decoupling, quasi-Banach space.
The author was supported by NSF grant DMS-0244515.

ISSN 1076-9803/05

563


http://nyjm.albany.edu:8000/j/2005/11-27.html
http://nyjm.albany.edu:8000/j/2005/Vol11.htm
http://nyjm.albany.edu:8000/nyjm.html

564 N.J. KALTON

then it is shown in [7] that the random variables F'(§,&) = >7_) >p_; fik(&5,6x)
and F(§,&) = 30_1 Yp_y fin(§), &) satisfy the distributional inequalities:

(1.1) PP, > 1) < CP(|F(&, &) >t/C)  t>0,
(1.2) P(IF(, &N > 1) < CP(IF(E ] >t/C)  t>0.

Here C' is an absolute constant. (More general results for higher-order decoupling
are given in [8] but we will consider only decoupling of order two.)

For X a quasi-Banach space we may define X to have the decoupling property
if both (1.1) and (1.2) hold with C a constant which may depend on X.

By using techniques similar to those of [7] we show in §3 that the decoupling
property holds if it holds for the special case when F' is of the form

n n
Fle,e) =Y ) ejentjn
j=1k=1

where (k)" ,_; is a symmetric X-valued matrix with zero diagonal and € = (¢;)_;

is a sequence of independent Rademachers. Indeed it is only necessary to establish
inequalities of the form

n n n n

(1.3) E ZZejekmjk < CE ZZejezxjk :
j=1 k=1 J=1 k=1
n n n n

(1.4) E Z ejepxik|| < CE ZZejekxjk :
j=1 k=1 J=1 k=1

Using this criterion it is quite easy to see that the spaces L,(0,1) for 0 <p <1
have the decoupling property, while the Schatten ideals S, fail to have the decou-
pling property when 0 < p < 1.

In §4 we study more complicated examples of spaces with and without decou-
pling. We show that Pisier’s property («) [29] implies decoupling and use this to
show that L,/H, and L,/R when R is a reflexive subspace have property («a); this
uses techniques very similar to earlier work of Pisier [35] and Kisliakov [24]. We
also show any minimal extension of ¢; or L; has decoupling.

In §5 we point out that the decoupling property is equivalent to two distinct
inequalities (1.3) and (1.4) for Rademacher sums. We do not know whether each
individual inequality is sufficient to imply decoupling. We note that the Gauss-
ian analogue of (1.4) holds in every quasi-Banach space. We then show that the
Schatten ideal S, fails (1.4) when 0 < p < 1; we do not know if (1.3) or its Gauss-
ian analogue holds in S, when 0 < p < 1. We also show that a certain minimal
extension of S; fails (1.3) and its Gaussian analogue.

Finally in §6 we discuss a question which to some extent motivated our interest.
We point out that if we have a bounded bilinear form B : X x Y — Z where X, Y
are Banach spaces with type two and Z has decoupling then B factors through a
Banach space. We then consider the question whether the assumptions on X and
Y may be replaced by the assumptions that X* and Y* have cotype two and X
and Y have the bounded approximation property. In particular can one take X and
Y to be C(K)—spaces. If this were to be true it would imply a strengthening of
the Grothendieck inequality. We are able to give some simple weaker results which
suggest that it is at least plausible.
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In §2 we discuss the necessary background on quasi-Banach spaces for our results.

Let us note at this point that we will frequently find it useful to adopt the
convention that C' denotes a constant which may vary from line to line and which
may depend on the spaces being considered (X,Y, Z, etc.) and their parameters
(p,q,7, etc.) but not the elements of the spaces (z,y, z, etc.).

Acknowledgements. We would like to thank Stephen Montgomery-Smith and
Staszek Kwapien for some very helpful comments.

2. Background on quasi-Banach spaces

We recall that a quasi-Banach space X is called r-normable for 0 < r < 1 if
there is a constant C' so that

n 1l
SC(ZH%HT) Ziy..., Ty € X.
j=1

If X is r-normable then X may be equivalently renormed so that C' = 1; in this case
we refer to the quasi-norm as an r-norm. By the Aoki-Rolewicz theorem [2, 36]
every quasi-Banach space is r-normable for some 0 < r < 1. From now on we
shall assume that every quasi-norm is an r-norm for some r, and this implies that
all quasi-norms are continuous functions (allowing us to integrate when computing
expectations).

X is said to have (Rademacher) type p where 0 < p < 2 if there is a constant C'

so that
n D % n %
(IE Zejxj ) SC(ZH%‘]‘HP> Xiy..., Ty € X.
Jj=1 j=1

X has (Rademacher) cotype ¢ where 2 < ¢ < oo if there is a constant C' so that

@ ||az~j||q>é <ofe

The notion of Rademacher type for 0 < p < 1 is however, redundant, in the
sense that X has type p if and only if X is p-normable [11]. If 1 < p < 2 then
a quasi-Banach space of type p is 1-normable, i.e., a Banach space [10]; however
when p = 1 there are examples of spaces which are type one but are not Banach
spaces [11]. It is also important to note that quasi-normed spaces also obey the
Kahane—Khintchine inequality:

n

PILY

j=1

n

E €Ty

1
4\ q
T1,...,Tn € X.
=1

Proposition 2.1 ([11]). Let X be a quasi-Banach space and suppose 0 < p < q.
Then there is a constant C' = C(p,q, X ) such that

N n
(]E ) S C (E Z €55
i j=1

n
Z €5T;
j=1
We will need some factorization results. These results are well-known in the
context of Banach spaces, but, (perhaps a little surprisingly) they can be extended
almost unchanged to quasi-Banach spaces:

L
P
) T1,y...,Tn € X.
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Proposition 2.2. Suppose X is a quasi-Banach space of cotype q, 2 < q < 0.
Then if ¢ < s < 00 or q = s = 2 there is a constant C = C(q, s, X) such that if we
suppose K is a compact Hausdorff space and T : C(K) — X is a bounded operator
then there is a probability measure p on K so that

1 51 < cirl ([ 15an)
Proof. This follows from [19, Theorems 4.1 and 4.3]. O

The case ¢ = 2 is a special case of the following more general result from [21]
which extends Pisier’s abstract Grothendieck theorem [30]. We recall that a (sep-
arable) quasi-Banach space X has the bounded approximation property if there is
a sequence (7},) of finite-rank operators on X so that T,,o — x for all x € X. If X
has the bounded approximation property then the dual space X* separates points.

Proposition 2.3. Suppose X is a quasi-Banach space with the bounded approx-
imation property such that X* has cotype 2; let Y be a quasi-Banach space with
cotype 2. Then there is a constant C' so that if T : X — Y is a bounded operator
then T can be factorized T'= UV where U : X — ly and V : ly — Y are bounded
operators with |U||||[V|| < C||T.

Let us also recall that an operator T : X — Y where X is a Banach space and
Y is a quasi-Banach space is called p-absolutely summing if the there is a constant
C so that

<Z||Txk|p> <C sup <Z|x Tk) ) T1,...,T, € X.

llz=[I<1

The least constant C' is denoted 7, (T"). The well-known Pietsch factorization the-
orem extends again to the situation when Y is quasi-normed:

Proposition 2.4. Let X be a Banach space and suppose Y is a quasi-Banach
space. If T : X — Y 1is p-absolutely summing then there is a probability measure
on Bx-« such that

1
el < mr) ([l @pana))” e,
.
In particular if p = 2 then T admits a factorization T = Tyji1jo where Ty :

Lg(Bx*,M) — Y with ||T0|| = 7T2(T) and jl : C(Bx*) — LQ(/’(‘); jg X — C(Bx*)
are the natural injections.

Certain special types of quasi-Banach spaces will also interest us. A quasi-Banach
lattice X is p-convex where 0 < p < oo if there is a constant C' so that

n 1 n 1
H(Z|xj|p) H gc(zw) e € X
j=1 j=1

and p-concave if there is a constant C' so that

n % n %
(Sear) < (Stot) | mvmmex
Jj=1 j=1
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It is not true that every quasi-Banach lattice satisfies a p-convexity condition for
some p > 0; however every quasi-Banach lattice with nontrivial cotype satisfies a
p-convexity and g-concavity condition for some 0 < p < g < co. See [12] and [19]
for details.

We note that in a quasi-Banach lattice with nontrivial cotype, it is easy to show
that there exists a C' so that for zq,...,z, € X we have

(Br) 1< ClEonl) <l ()|

Indeed for Banach lattices this is proved in [26] and the same proof goes through
almost verbatim.
Let (7;)52; denote a sequence of independent normalized Gaussians. The follow-

ing proposition is well-known for Banach spaces (cf., e.g., [39] or [25] Propositions
9.14-9.15).

(2.2)

Proposition 2.5. Let X be a quasi-Banach space. Then for 0 < p < oo there is a
constant C'= C(p, X) so that if x1,...,2, € X,

P\ 5 P\ 3
<E > < C(E ) .
If X has nontrivial cotype then there is a constant C = C(p, X) such that

() sl

Proof. An important observation here is that a version of the Kahane contraction
principle holds, i.e., there exists C' = C(p, X) so that
) 1/p

P\ 1/p
(IE ) < C max aj|( Zeja:]

al,...,ozNe]R, xl,...,xneX.

n

E €Ll

k=1

]

n

E €Tk

k=

n
E Qj€jT;
j=1

For Banach spaces C'(p, X) =1 if p > 1 (see [25] Theorem 4.4).

Now let ¢ be the median value for each |v;| so that P(|y;| > o) = 1/2. Let
& = I(]v;| = o). Let (€1,...,€,) be Rademachers independent of (y1,...,7n).
Then, using the contraction principle,
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N\ 1/p ) o\ 1/p
(n«: ) <c (E ) +<IE

n
ijejxj
j=1

n
> Giea
J=1

n

> (1= &)eja;

j=1

p) 1/p

n
> e
j=1

p) 1/p

<c(e

n p\ 1/p
< Co! <IE Zafjejxj >
j=1
n p\ 1/p
§C<E > el )
j=1

o(e >

n p\ 1/p
el )
Jj=1

where the constant C = C(p, X) varies from line to line.
If we assume X has cotype g we proceed as in Proposition 9.14 of [25] and obtain

an estimate
p) 1/p
where r = max(p, q).

n
(E > eIyl > t)a;
j=1
At this point the last step in the proof of [25] must be modified as integration
is not permissible. However it is clear that if {; = 1+ Z;io 291 (Jry;] > 27) then
&; > |v,| and we have an estimate
:D> 1/p

(e )/ <c(e

The conclusion follows from the contraction principle. O

p\ 1/p
) = crlnl> 0 (e

n
> ej
j=1

n

> e

J=1

n

§ :ejxj

J=1

A quasi-Banach space X is called natural if it is isomorphic to a closed subspace
of a p-convex quasi-Banach lattice for some p > 0. It may be shown that X is
natural if and only if it is isomorphic to a subspace of an £, —product of L,-spaces
for some p > 0 (Theorem 3.1 of [13]).

A complex quasi-Banach space is A-convez (see [15]) if it has an equivalent
plurisubharmonic quasi-norm, i.e., one that satisfies

2
o 1 df
loll < [ le+etlly  mwex.

Every complex natural space is A-convex but the Schatten ideal S, where 0 < p <1
is A-convex but not natural.

If (©2,P) is some probability space we denote by L,(€2; X) the space of Bochner
measurable functions (or random variables) & : @ — X under the quasi-norm
€l = (Eli]?)7.

If £ € L,(Q X) we let

V() = (Eli¢ - €'||P)7
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where £ is an independent copy of &.

Lemma 2.6. (i) There is a constant C = C(p, X) so that if £ € L,(; X) then
i — 2P < <Ci — z|P)®
nf (E[§ —2|[")7 < Vp(§) < C inf (E[[§ —[|”)

(ii) There exists C = C(p,X) so that if & is a symmetric random variable in
L,(9Q; X) then
(E[E[I)> < CVp(E).
(iii) There exists C' = C(p, X) so that if & and n are independent random variables

then
Vp(§) < CVp(§+m).

Proof. If X is r-normed, let s = min(p,r) then If z € X then
1 1 1 1
EE=£'NP)r = Bl -z — (& = 2)|I")? <25 (B[ — [)7.

Conversely if we write

El¢ — &P = / / €(w) — E()|PdP(w)dP(s)

we see that there exists ¢ € X with E||€ — z||P < E||€ — &'||P.
For (ii) observe that if £ is symmetric then for any z € X we have { = ({42 +

€ — z) and hence we have E||¢||P < 2P(C—DE[|€ — z||P.
(iii) follows from (i). Indeed for any x € X it is clear that
. 1 1
nf (El|E —'|")? < (B¢ +n—a—a'|]")>.

(Note that (ii) and (iii) are special cases of the contraction principle mentioned
in Proposition 2.5 above). O

If f, g are positive random variables defined on some probability space it will be
convenient to introduce the notation f <¢ g to mean
P(f >t) <CP(Cg > 1)
and f =¢ g to both mean f ¢ g and g <¢ f.
We note next some simple properties:
Lemma 2.7. Let X be an r-normed quasi-Banach space.

(i) Suppose &1, ..., &, are X -valued random variables and [ is a positive random
vamable such that ||§;| <, [ for 1 <j <mn. Then || 37_, &l <c f where

C=nr maxi<;<n Cj.
(i) If&, & are independent identically distributed X -valued random variables then
1
€Nl < 1€ + &' where C = 3+.

Proof. Clearly

“
j=1

and (i) follows. For (ii) we follow the argument of Montgomery-Smith and de la
Pena [7]. Let £, &', &"” be three independent copies of £&. Then we write

E=5((E+E) +(E+E) — (€ +€")

n

>t) < ZPnrumw ICECHSEY
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and hence by (i)

€l < €+l
where C' = 37. O

3. Decoupling

Suppose X is quasi-Banach space. Let F' = {fjp : 1 < j,k <n}beannxn
matrix of Borel maps fjx : R? — X such that f;; = 0 and fjx(s,t) = fx;(t,s) if
j # k. Suppose £ = (&1,...,&,) be a sequence of independent real-valued random
variables and let ¢ = (&],...,&)) be an independent copy of (&1,...,&,). We
consider the X-valued random variables

(3.1) P& =Y firl& &)

j=1k=1

and

(3.2) ijk gjagk
j=1k=1

Then we refer to F'(£,£’) as the decoupled version of F(¢,€).
We now say that X has the decoupling property if there is a constant C' depending
only on X such that for every such F' and £ we have

I1F &N =c IF(&,&)Il.

The fundamental theorem of de la Pena and Montgomery-Smith [7] states that
every Banach space has the decoupling property.

If 0 < p < oo let us say that X has the L,-decoupling property if for some C we
have

“YE|F(E,E)P)F < (EB|F(E|P)F < CE|F(EL)|P)7.

Let € = (e1,...,€,) and € = (€},...,€,) denote two independent sequences of
Rademachers. We shall consider a weaker notion of decoupling for functions F' of

the form
n n
= Z Ze €Tk

j=1k=1

where (zjk)?,kzl is a symmetric X-valued matrix with x;; = 0 for all j. For de-
coupling of such functions (Rademacher chaos of dimension two) in Banach spaces,
see [22] and [4].

At this point we recall our convention that C' denotes a constant depending only
the space X and p, but may vary from line to line.

Theorem 3.1. Let X be a quasi-Banach space. The following conditions on X are
equivalent:

(i) X has the decoupling property.
(ii) For some (respectively, every) 0 < p < oo, X has the L,-decoupling property.
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(iif) For some (respectively, every) 0 < p < oo, there exists C so that if (x;)} —,
is a symmetric X -valued matriz with x;; =0 for 1 < j <n then

n n 1 n n 1
(3.3) ( ZZe]ekxjk ) _( ZZe]ekxjk )
j=1k=1 j=1k=1
n o n P %
C’(E ZZGjE;vxjk )

j=1k=1

(iv) There exists C so that if (wjx)},—y s a symmetric X-valued matriz with
x5 =0 for 1 < j <mn then for every v € X we have

(3.4) }P’<

(v) For some (respectively every) 0 < p < oo, there exists C' so that if (zjk)}—;
is a symmetric X -valued matriz with xj; = 0 for 1 < j < n then for every
x € X we have
p) s

Proof. We first note that (i) = (ii) (for every p) and (ii) = (iii) (for any p). We
next prove that (i) and (iv) are equivalent and that (ii) and (v) are equivalent
(for any p). The directions (i) = (iv) and (ii) = (v) are trivial. We turn to the
reverse implications. The proofs of these statements are very similar. Suppose F' =
(fjk)1<jk<n is given as described at the beginning of this section. If £ = (&;,...,&,)
and ¢ = (&,...,¢&,) are two identically distributed and mutually independent
sequences of independent random variables, we introduce a sequence €q,...,€, of
Rademachers independent of both sequences. We then (as in the argument of de la
Pena and Montgomery-Smith [7] define (61,...,60y,,07,...,0;) by (6;,0%) = (&;,})
when ¢; = 1 and (0;,0}) = (£, ¢;) when ¢; = —1.

éhi;].“hezllF(tﬁ)ﬂ’) F(¢,¢) and F(0,0) = F(&,€). However if we let ¢! = ¢ and

n n
xr + E E €5€LT )

j=1k=1

> C_1|x||) >Ch

n n
T+ E E €j€ELT L

=1 k=1

(3.5) lz]| < C(E

ZZ Z (14 656;)(1 — Oper) fin(€%,6%)

k=16,,6,==%1

Z ST (U 056) (1 + drer) fir (€5, €%).

k=16;,6,==%1

»Jk\'—‘

F(0,

F(6

,.p\»—t
HM: i
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If we expand these out we obtain formulas

F(0,0) = 1(F6 ) +2F(E€) + FE.€) + D 6Gi(6€)

j=1
+Y D GaHin(E€)

j=1k=1

F(0,0) = J(F(E.6) +2P(6,€) + F(E,€) + 3 G4 (6.€)

i=1
Y0 ejerH)(6.€)

j=1k=1

where (G;)7_1, (G) =y, (Hji) ey s (Hjp )7 =y ave X-valued Borel functions on R*"
with H, “,H vanishing identically for 1 < j7 < n. Here we have exploited the
symmetry asaumptions (so that F'(&,&') = F(£,§)).

We now prove that (iv) = (i). We adopt again the convention that C' is a
constant depending only on p and X but which may vary from line to line. We
start with observation that, since the transformation €; — —e; for all j leaves the
distribution of the right-hand unchanged, we have an estimate by averaging two
terms,

<c [F(6, 0]

Hi(F(E,§)+2F(€,£)+F§ ) +YD eenH;

j=1k=1

Now condition (iv) easily implies that

I1F(€,€) + 2F (&, &) + F(&, &)l <c [1F(6,0)]]

and from this we obtain

1F(&,6) + F(E, &) <c IF(E &I

Finally we appeal to Lemma 2.6 (iii) to obtain [|F(£,£)|| <c [|F(&,&)|]. The other
estimate ||F(£,£)]| <¢ [|F(&,€)| is quite similar.

For (v) = (ii) the calculations are quite analogous and we will omit them.

To complete the proof we will show that (iii) (for some p) = (iv). Let us note
first that (iii) = (v). Indeed suppose (z ;i) is any symmetric X-valued matrix with
xj; = 0. By considering two independent copies, it is clear that (3.3) implies

c~v, (ZZejezxjk) < %(ZZ%‘GI@%‘M) <Cv, (ZZeje%xﬂg)

j=1k=1 j=1k=1 j=1k=1

It follows that
P % n n
(E ) SC%( ejekxjk)
i=1 k=1

J:
Now we also have

non
E E €€LT 5k
j=1k=1
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P\ » P\ B
)l )

we deduce that (v) holds. Now it trivially follows that (v) holds also in the £.-
product Y = {(X). We deduce that (ii) holds in Y and hence that (iii) holds

with X replaced by Y. Now by the Kahane—Khintchine inequality (applied twice),
if ¢ > p, there exists C' = C(p, ¢, X) so that
p) H

n n q %
Zzejegcyjk ) < C(E
for all Y-valued matrices (y;x).

j=1k=1
Now suppose ¢ = >0 >3, ejexyyr and (' = 370 70 €j€,y;, where (yx)
is symmetric X-valued matrix with y;; = 0. We remark that (3.6) implies that we
have hypercontractivity for the decoupled random variable ¢’, but that we do not
at this stage have an equivalent statement for the undecoupled random variable (.
Now the set {[|¢'||P : (EHC’H”)% < 1} is equi-integrable and hence, using (iii),
for a suitable constant C,

(¢ > CTHE[C|P)F) > C

and as

n n

x + Z Z €5€ELT L

j=1k=1

n n
E E €jELT jk

j=1k=1

|wngc<E

n n
/
E E €i€kYjk

j=1k=1

(3.6) (IE

(or, equivalently ||{']] ¢ (]E||C||p)% where the right-hand side is a constant).
Again, since (iii) holds in Y, if (1,...,¢, are independent copies of ¢ and
¢1,---,C, are independent copies of (',
1 1
A% rp\?
(B max 1617)" < (B max 7).
It follows that if ¢ > 0

1—(1=P(|¢] > )" < Ct‘1<E max ||C§-||”) "

Pick n to be the smallest integer so that the left-hand side is at least 1/2. Then
1

(B max IG5I7)" = 20) 1

1<j<n

and hence
4 > (!
PC@ﬁgﬂKﬁ\>t/C);ﬁC

(where C'is a different constant depending only on p, X). By choice of n this implies
that

B(I¢']| > ¢/C) 21— (1 - C7H)r
but

P(I¢| >t) <1-27%
and this implies an estimate (for a different choice of C)
P([[¢ll > 1) < CP(|[¢[| > t/C)

or equivalently ||C]| ¢ ||¢’||- Once we have this estimate it follows from (3.3) that

the set {||C||? : (EHQ‘HP)% < 1} is also equi-integrable, and we can reverse the above
reasoning to also deduce that ||(’|| ¢ ||¢]| and hence ||{'|] =¢ |||
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Now suppose y € Y and consider y + (. We observe that ||y|| <¢ ||y + ¢|| + |[<]|
for some C and so to show (iv) (for the larger space Y) we need only show that
1<l <c llv + Cll. Now applying Lemma 2.7 repeatedly [l <c [I¢'] and [’ <o
I¢" = ¢ || where (1, (] are independent copies of ¢, ¢’. Thus

1Kl < € =Gl =1ty +¢) = (w+ )l < lly + ¢l 0

Corollary 3.2. Fvery natural quasi-Banach space has the decoupling property. In
particular any quasi-Banach lattice with nontrivial cotype has the decoupling prop-
erty.

Proof. We note from (iii) that it is trivial that if X has the decoupling property
that L,(X) (for 0 < p < 00) has the decoupling property; the fact that £, (X) has
the decoupling property follows from (v) (and was used in the proof). Thus from
the fact that R (or C) has the decoupling property we obtain that an f.-product
of Ly-spaces has decoupling and hence every natural space has decoupling. O

Corollary 3.3. If (Q, 1) is any probability space then X has the decoupling property

if and only if L,(X) = L,(Q, p; X) has the decoupling property.

Proof. This follows easily from the equivalence of (i) and (ii) in Theorem 3.1. O
Let us now give an example of a space failing decoupling. For 0 < p < 1, let S,

be the Schatten ideal of all compact operators x on a separable Hilbert space such
that [|z||, = tr (z*2)% < co. Let e;r, = e; @ e}, where e; is an orthonormal basis.

Then
n n
E E E €jELEGK|| =T
j=1k=1
However
n
1
E ejj =n°e
j=1

and this contradicts (v) of Theorem 3.1. We note that this space has a plurisub-
harmonic quasi-norm and so is A-convex (see [15]).

4. Property (a) and decoupling

Let us recall the definition of Pisier’s property («) [29]. A quasi-Banach space
X has property («) if there is a constant C' so that if (xjk);'l,kzl is an X-valued
matrix and (a;x)7 ,_; is a scalar matrix then

2) 3

n n
E :E : /
(E AT L€ €L

j=1k=1
It easily follows from this definition that X has («) if and only if for some

constant C' we have
2\ 1 2\ 1
) <(z )

Cl(E
2\ %
< c(E )

n n
!
E E :xjkcjek

j=1k=1

2\ 3
) < Cmax|ajk|<E
gk

n n
} :2 : !
Tjk€j€L

j=1k=1

n n
PIPBEATT

j=1k=1

n n
DD @k

j=1k=1
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for every X-valued matrix (z;y)},_; where (¢;x)7,_, denotes an array of indepen-
dent Rademachers.

Every quasi-Banach lattice X with nontrivial cotype has property («). This
follows from the facts that X is p-convex and g-concave for some 0 < p < ¢ < o0
and so using (2.2) on X and X (¢3) one quickly shows that for some C

(S5007) | CIE S =l (E5007)

j=1k=1 j=1k=1

§ :eyekxﬂc

j=1k=1

and

) <GS )]

j=1 k=1

S5

j=1k=1

n o n
2, 2
=1k=

Conversely property («) implies nontrivial cotype. To see this, first observe that
there are Banach spaces failing («). For example, it is easy to see the algebra KC(H)
of compact operators on a Hilbert space fails to have («) (and indeed the same is
true for every Schatten ideal S, when 1 < p < oo and p # 2). Now suppose a
quasi-Banach space X has property («); then so does any quasi-Banach (crudely)
finitely representable in X and so {,, cannot be finitely representable in X; thus
X has nontrivial cotype. (The fact that ¢, is finitely representable in X if and
only X fails to have some cotype is well-known for Banach spaces; for quasi-Banach
spaces, it is apparently only known that £, is crudely finitely representable in X
if X fails to have some cotype [3].)

Theorem 4.1. A quasi-Banach space with property («) has the decoupling prop-
erty.

Proof. Let us suppose X is r-normed where r < 1. Suppose X has property
(o) and is therefore of some nontrivial cotype ¢ > 2. Now consider any finite-
dimensional subspace V' of Ly(Q,P; X) spanned by vectors of the form €;e) x;; for
1 <4,k <n. By property («) this space is C-isomorphic to a quasi-Banach lattice
where C' is independent of V. Since it has nontrivial cotype with constants also
independent of V, it follows from Corollary 3.2 that V' has the decoupling property
with a constant independent of V. Now assume (z;;) is a symmetric X-valued
n X n-matrix with x;; = 0. Then if n; is a further sequence of Rademachers on
some other probability space (',P') we have, by the above remarks,

n o n n n 2 %
S 6k (E SN0 (1 - megehn ) .
j=1k=1 Lo (Ps X) j=1k=1 Lo (P;X)
Thus

(4.1) <
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Now fix A C [n] and let ; = 2x4(j) — 1. Then

(E DD cickTn Q)é = <]E DD ik

2>;
JEAKEA JEA kA

% <]E Z Z(l — 6j6k)€j€k$jk:

j=1k=1
2)§

n n
;
274 (] 02 cenr
Jj=1k=
2)§

Combining with (4.1) we have an estimate
n n 2 %
(42) (B[ eseon| ) < (e
j=1k=1
Let us now consider the reverse inequality. We will suppose n is a power of 2, say
n = 2"; this can be done without loss of generality by adding rows and columns of
zeros. Consider the operator T : o ([n] X [n]) — La(P; X) defined by

n n
n _ 3 . ! .
T(ajk)j,kzl = E § :aakﬁaekxﬂv

j=1 k=1

2>§

n n
E E €j€LT L

j=1k=1

Then for some constant C' depending only on X we have
n n 2\ 1

>3 )
j=1k=1

Hence since Lo(X) has nontrivial cotype ¢ say, we can use Proposition 2.2 to deduce
that if ¢ < s < oo there is a constant C'= C(g, s, X) so that we can find (Ajx)7 4
with Aji, >0, Aj; =0and 337, >3 Aji = 1 such that if A C [n] x [n] we have

(4.3) ( Z €jELT K ) (Z )\]k> (E Zzejekxﬂc )2.
(7,k)EA

(j,k)EA j=1k=1

Now define Ajp = {i: (k—1)29 +1 <i <k27} for j =0,1,...,mand 1 <k <
2m=J . Let

e c(

om—i
fg = E E €n€iLhs-

k=1 h,i€Ajy
Thus £ = 0 and

n

n
=2 it
j: k=1

Now for 1 < j<m

om—j
§—&-1=2 Z Z Z €hEITh-

k=1 h€A;_126_11€EA;_1 2k
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2) 3

This estimate remains valid if we permute the indices. Let H( [n]) be the set of all
permutations of [n]. We have

Hence
1

om—J S
1€ — &i—1llLo@ix) < 20( Z Z )\hi> (

k=1 h,i€A;y

n n
PIPBLLET

j=1k=1

Thus

ekx]k

lemll™ < i(z 3 m) (

=1 \ k=1 h,icAj

el < (202" (B IP I )
j=1k=1
where -
m 2m—d g
M’r’ — A A i .
WGH\(/e < Z Z " )
j=1 k=1 w(h),m(i)EA;\
Now

om—j om—j %
A A A Ahi
WGH\(IG ( hi > (ﬂ'GHV[en] Z Z h )
m(h),m(i) €Ak €A

k=1 k=1 m(h),x(i)

(771 J)T‘

<2”
Thus

m

o0

(m—j)r i

O e
j=1 j=0

It follows that we have an estimate of the form

(S o) sl i)

as required which together with (4.2) gives the conclusion. (I

n n

E E € €Tk

j=1k=1

n

n
!/
E ,E :€j€kxﬂf

j=1k=1

We consider (T, (27)~'df). Then H, is identified as the closed linear span
[e™9],,50 in L,(T). We will next show that the space L,/H, for 0 < p < 1 has
property («) and (hence) the decoupling property. We note that this space was
shown by Pisier [35] to have cotype 2.

It is possible to deduce the result from the ideas of Pisier [35] and Kislyakov [24]
on K-closed couples. However we shall give a self-contained argument for a more
general result, which also relies the same underlying ideas. Suppose 0 < ¢ < o0
and that V' is a closed subspace of L,(Q2,IP). We define V ®, X to be the closed
linear span in L,(£2,P; X) of functions of the time { ® z(w) = {(w)x for z € X and
& € V. Now suppose F is a closed subspace of X; we will say that the quotient map
Q:X — X/Eis (V;L,)-exact (or V-ezact if the choice of ¢ is unambiguous) if the
naturally induced map V ®r, X — V ®r, (X/FE) is a quotient map. In the special
case when V = R the span of a sequence of independent Rademachers, the space
R ®p, X is independent of p (up to equivalence of quasi-norm) and we denote by
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Rad X this common space. We will say Q) is Rademacher ezactif it is (R; L, )-exact
for any and hence for every 0 < p < co. The concept of Rademacher exactness
has appeared (without the name) several times before, particularly in the work of
Pisier (e.g., [32] and [34]).

We will need the following lemma. Let us say that a subspace V' of Ly(2,P) is
strongly embedded if for some € > 0 and C we have ||f| g+ < C||f|lq for f € V.

Lemma 4.2. Suppose 0 < p,s < g < oo and that V' is a strongly embedded subspace
of Lq(Q,P). Then there exists C = C(p,q,V) so that for & € Ly(Q,P;L,(1)) we
have

(4.4) CI(Elg])

1 1
s s

» < (EE|9)7 < C|I(ElE]*)

Proof. Since V is strongly embedded in L, it suffices to prove (4.4) in the case
s = q. First notice that

-

I(El£17) 7|, < C|I(EIEP)F ],
= C(E|2)
< C(E||€]|2)7.

=

Conversely if F' = (]E|§|q)% + v, where v > 0, then

el = ([ 175 6P FEean)

p_ 1—
< |[Fa W) gl Flp

P

Y]

Thus
1 1-2 p_ 1
EllENg)s < IFllp * (EIFs ¢lld)
1-2 _ 1
= [Flly “I(FPIEE) ]l
< [1Fl,
and the result follows letting v — 0. 0

Theorem 4.3. Suppose 0 < p < 1 < g < oo and that V is a strongly embedded
closed subspace of Ly(2,P). Then the quotient map @ : L, — L,/H, is (V;Ly)-
ezact for 0 < s <gq.

Proof. As usual, C will denote a constant which may vary from line to line but
depends only on V, p,q and s. We will use || - ||, to denote the norm in L,(T) and
@ will be the quotient map @ : L, — L,/H,.

The key fact which we use is that L, is BMO-regular ([17], [24]). This means
that there is a constant C' = C(p) so that if f € L, then there exists wy > |f|
with [[wollz, ) < C|fllz, ) and [[logwollsmo < C. In fact w can be obtained as
M(|f]*)% where 0 < u < p and M is the Hardy-Littlewood maximal function [5];
in particular if f is bounded then w can be chosen bounded. Let us note that since
logwy € BMO then we can write logwy = ¢1 + H(p2) + o where « is constant,
H is the Hilbert transform and ||¢1]|cc, ||¢2]lcc < Clllogwo|lpmo < C. If we then
write logw = logwy — @1 + ||¢1]|ec then we have [|[H(logw)||e < C, w > |f| and
lwlly < CI1 7l
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If we then define the outer function

2w 36
e’ +z 0\ d0
F = - I Y — 1
(=) exp</0 T ogue )277) 2l <

then F' € H, and on the boundary we have |F| = |w| > |f] a.e., [|[F|l, < C|fll,-
Furthermore we have an estimate (from the bound on H(logw)) that Slog F' is
uniformly bounded on the boundary. Hence F is in H,, and ||[F"|, < CeC*
where C' = C(p).

Suppose € V@ L,/ H,, is of the form 2?21 v;j(w)Qg; where vi,...,v, € V and

g; are bounded functions. Suppose E||n||°* < 1. Let M be defined by

M = inf {(EJg])* ¢ € € Ly(Q. P Ly(T)), Q¢ =n}.

It clearly suffices to prove an estimate on M which is independent of 1. We may
pick a nearly optimal choice of ¢ such that (E||¢ ||§,)l < 2M with the additional
constraint that £(w) € Lo (T) for all w. At the same time we may choose for each
w, fu € Loo such that Qf., = n(w) and || fulp < 2(n(w)]].

By Lemma 4.4 we have an estimate ||(E|¢]*)* ]|, < CM. Next we use the above
remarks to find a bounded outer function G with |G| > (E[¢]*)* + 1, G, <
C(M + 1) and ||G%|o < Ce®*. Similarly for each w we find a bounded outer
function F, so that |F,| > |f.|, |Fll, < C(|n(w)]| + 1) and ||[F*|s < Ce®t.

Now fix 1 < r < ¢. Suppose ¢ is any polynomial of the form ¢(e??) =
S e, axe™®® such that |||, < 1. For each fixed w we consider the entire function
2m do

D(z) =€ GF 1R (W) —.
0 2T

We claim that ¢ is bounded on vertical strips. In fact if z = a + it then
a?—t? Ct o E_1-a a do
[@(z)[ < Ce* e GO E e @)l 5
0 m

Let us consider the line z = % — 1+ 4t. Then

27
®(z) = e” G_itijFf_lfwgo 49
0 27T
so that
27
p,  df
i) <C Wl ol =—
20 [ IlFlol

P
T

< C(lnw)ll+ 1)~
Now suppose z = £ — % + it. Then

2m

D(z) = e ; G_“Ffnglefi%f(w)go %
so that o
19(2)] < CIGT @l FS 7
Where%Jr%Jr%*l,le, i:%f%. Thus

p_P
g,

P_pP P
1Sl = [[Folls < CIn(@)ll +1)
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Now by applying the Maximum Modulus Principle to a function of the type
e“*®(z) where ¢ is real, we obtain an estimate

|2(0)] < C(ln(w) + 1)1 IGT W)l
where § = (1 — 2)(1 — g)_l. As this estimate holds for all such ¢ we obtain
inf IGF (W) = Bllr < C(lIn(w) + 121G w5,
Since the Riesz projection R is bounded on L, we thus have
IGF 7 ¢(w) = R(GFT @)l < CllInw) + 1) 0G5 Ew)]5-
Hence
_r p_ 1-& —_ B_
lE@) = G RG]l < ClGIE " (In(w) + LD IIG T E(w)llg-
It follows that
(4.5) M < CM'((E|n]l*)* + 1) (EIGT¢ll;)%.
Now by Lemma 4.4 we obtain

E||Gi7Ye||2)F < C|GiT (ElE])* |l

ya
<ClGallq
< ClGlIp
<CMs3.
Now by (4.5) we have
M < CM*
which gives the required bound on M and completes the proof. O

Now by taking the special cases of V' = [¢;]jen or V' = [€iex]j ken or V = [ejex] i<k
in any Lg-space we can deduce the following. (We have already noted that the fact
that L,/H, has cotype two is due to Pisier [35].)

Theorem 4.4. For 0 < p < 1, the space L,/H, has has cotype two, property (o)
and the decoupling property.

Let us remark that L,/H, is an example of a non-A-convex space (first proved
by Aleksandrov [1]); it is therefore of some interest that it nevertheless has the
decoupling property.

Our next result is an extension of a result of Pisier [32] to the context of quasi-
Banach spaces. Note that Pisier’s argument uses the convexity of the norm in an
essential way so that a new proof is required.

Theorem 4.5. Let X be a quasi-Banach space and suppose E is a closed subspace
with type greater than one. If either X or X/E has nontrivial cotype then the
quotient map X — X/E is Rademacher exact.

Proof. Assume X has nontrivial cotype. We argue that X/E must also have
nontrivial cotype. Indeed if not by passing to an ultraproduct we can find a similar
example where ¢y embeds in X/E; then by passing to a subspace we have an
example where X/F is isomorphic to ¢g. Now by the results of [20] and [10] X is
locally convex, i.e., a Banach space and this contradicts Pisier’s result [32].
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Conversely if X/F has nontrivial cotype we claim X has nontrivial cotype. In-
deed by a similar ultraproduct argument we need only show that ¢y cannot be
embedded into X. Let T : ¢ — X be an embedding. If @ : X — X/F is the
quotient map we have lim,, o ||QTe,|| = 0 and so there is a sequence (y,) in E
with limy, o ||yn —Ten|| = 0. Simple perturbation arguments then yield that some
subsequence of (y,) is a basic sequence equivalent to the ¢o-basis, contradicting the
fact that F has type.

Now assume X/E has nontrivial cotype and let fo:l €,vn, be a converging
series in Rad (X/E) := R ®p, (X/E). Then there is a bounded operator T :
co — Lo(X/E) defined by T((an)3%q) = D oney n€nvy. By the results of [19] for
some ¢ < oo, T' may be factored in the form 7" = UV where V' : ¢y — {, and
U : {4, — Ly(X/E) are bounded operators.

We now construct the pullback of the short exact sequence 0 — Ly(E) —
Ly(X) — Lo(X/E) — 0 by the operator U : ¢; — Lo(X/E), so that we have
the following diagram:

0 Ly (E) Ly(X) —— Ly(X/E) ——0
P
0 Ly(E) Y 4, 0.

Since Ly (E) and ¢4 both have nontrivial type, the space Y is a Banach space with
nontrivial type [10]. Hence the quotient map Qy : Y — ¢, is Rademacher exact.
In particular we can find y, € Y so that > -, ey, € Lo(Y) and Qyy, = Ve,
where ¢, is the canonical basis of ¢o. Let Sy, = fn € Lo(X). Then > 7 €, f, €
Ly(Le(X)) and Qfn(w) = €n(w)v,. Note that by a symmetry argument if X is
r-normed we have

m 2\ 3 ) n 2\ 3
(E Zeﬁcfk(w) > <2r_1<E Zeﬁcfk(w) > m < n.
k=1 k=1
Hence
m 2
/ supE Ze;fk(w) dP(w) < 0o
@ m lg=
and hence we may choose w so that
m 2
supE Ze%fk(w) < 0.
k=1

Let x, = €,(w)fn(w). Then since X has cotype it is easy to see that > e,x, €
Rad (X) and that Qx,, = vy,. O

Theorem 4.6. Let X be a quasi-Banach space with property («) and suppose E is
a closed subspace with type greater than one. Then X/E also has property («) (and
hence the decoupling property).

Proof. Note that X must have some nontrivial cotype because it has («)). Hence
the quotient map @ : X — X/FE is Rademacher-exact by Theorem 4.5; we then
also obtain that the quotient Rad (X) — Rad (X/F) is Rademacher-exact. This
implies that X — X/E is (V; Lz)-exact where V' = [e;€,]; 1. Hence if (vj)},_, is
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an n X n-matrix with values in X/E it follows that we can find (2;x)7,_; € X with

Qz i, = vji and
2\ 3 2\ 3
Zeje%xjk ) SC(E )
j=1

n
(E 3
1 k=1 =1k
n n
/
E E:ejekxjk
j=1k=1

n

NE

/
€j€kVjk
1

<.
Il

where C' = C(X, E). Now

n n
!
(E E g AjR€EjELT ik

1
2)2

2\ 3
) < C'max|a | (E
gk

j=1k=1
and so
n n ) 2 % n n , 2 %
E E E AjL€jELVjk S CH;.E}CXMJ'/C‘ E E €5€LV K . O
j=1k=1 ’ j=1k=1

Note that this implies that any quotient of L,, (0 < p < 1), by a subspace with
nontrivial type has the decoupling property. Let us remark that we do not know
whether such a space is in fact already natural. We also remark that we do not
know if the theorem above can be improved to show that if X has some cotype and
the decoupling property and E has nontrivial type then X/F has the decoupling

property.
Theorem 4.7. Suppose X is a quasi-Banach space and E is a closed subspace.

(a) Suppose dimE < oo. If X/E has cotype two then X has cotype two. If
X/E has additionally property («) then X has property («) and hence the
decoupling property.

(b) Suppose E is Hilbertian and X has cotype two. Then if X/E has property (o)
then X also has property («) and hence the decoupling property.

Proof. We will start with the following claim. We denote the canonical basis of
£y by (e;)j—; and the Hilbert-Schmidt norm by || - [|us. Let @ : X — X/FE be the
quotient map.

Claim. There is a constant C' so that if vy, ...,v, € X/FE then there are bounded
operators U : £y — £y and V : {5 — X with ||[V| <1, QVUe; = v, for 1 <j <mn,

and
2) 1
To verify the claim it is sufficient to show that if (vg)?2, is an infinite sequence
with 2211 exvg converging in Lo(X/FE) then we can find operators U : ly — {5,

V ity — X with my(U) < o0, [|[V]| < 0o and QVUey, = vy, for k € N.
Consider the operator T : ¢, — X/E defined by Te; = v;. We will show that

n

§ LUk

(4.6) |Ullas < C’(IE)
k=1

this operator is 2-absolutely summing. Indeed suppose ui,..., U, € [ej]évzl and
>oiy [(ug, @) |* < ||z]? for all # € 5. Then we may find u}, ..., u; € e;]32, so that

oo

l
Sl )P+ W o)P+ > e )P =lz*  x el
j=1

j=1 j=N+1
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Hence if (7;)524, ( ;)] 1 (7 )] ° v41 denote independent normalized Gaussians
m % 2 %
(Xmﬂmﬂ <o(g]; )
j=1
UEIS SR DL

j=N+1

*T’Ltj

| /\

>;

ofs
oi- ( -
(el on])

It follows that m2(T) < C(E[| 3272, ejvj||2)%. Now by Proposition 2.4 we have a
factorization of T given by T' = TpjL where L : 3 — C(K), j : C(K) — Lo(K, p)
is the inclusion and g is a probability measure on K and Ty : Lo(K,u) — X is

bounded. Identifying Lo(K, ) with ¢5 we let U = jL which is therefore Hilbert—
Schmidt. Now consider the pull back using Ty,

1

y

| |
ﬂ

0 E X X/E 0
o
0 E Y Uy 0.

Now in case (a) we note that Y is necessarily locally convex [10] and hence the
second row splits. In case (b) Y is again locally convex and is also a subspace of
X @ ¢y which implies Y has cotype 2. Since E is Hilbertian, we certainly have that
Y has some nontrivial type ([9]) and so Y* has type two. By the Maurey extension
theorem [27] the dual short exact sequence 0 — ¢ — Y* — E* — 0 splits; by the
reflexivity of the spaces this is enough again to show that the second row splits.
Let S : ¢ — Y be a lifting and set V = V4S. Then the claim (4.6) is established.

Now let us show in case (a) that X has cotype two. Suppose z1,...,2, € X.
Use (4.6) to find U,V with QVUe; = Qz; and

2> 1

n
'Uej

[N

nwm<c@

Z GjQ.’Ej

j=1
Let y; = VUe;. Then
2\ 4
(<zen] ) = (e
" }
(X hwl?) <cfe
j=1

(Zm%—mQ <ofe

y
y

and so

(NI

n

E :ej@"j
j=1
Now

Z €;(x;

j=1
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since E is isomorphically Hilbertian (in fact, finite-dimensional). Combining we

have
n % 2 %
(Shot?) <c(e )
j=1
, i.e., X is cotype 2.

Next in either case (a) or (b) we assume that X/FE has property («). Now
suppose (xjk)?,kzl is an n x n array in X. Then since X/FE has property (a) we

can find a map U : {3(n?) — €§2 and a map V : 632 — X with QVUeji, = Qi
(labelling the canonical basis of £3° as (ejx) for 1 < j,k < n) such that [|[V| <1

and
n n 2\ 1
!
E E €;€,QTj1 ) .
j=1k=1

n

E EjfL'j

j=1

nwmgc@

Let y;x = VUej. Then if |aji| <1,

n o n 2\ %
(E ZZajkejekyjk )2 < (E

N
S~—~
M

j=1k=1 G=1 k=1
< |[[U|lus
n n 2\ 3
<C’<E Zeje;a:]k ) .

Note in particular

(B2 S eseon

2\ % n o n
)2 < C’<E’ ZZeje;ijk

j=1k=1 J=1lk=1
Again since F is Hilbertian
n n 2 % n n 2 %
(¥ anesehton —sn| )" <o)X S esektasn =0 )
j=1k=1 j=1k=1
n o n 2 %
gC(E SO e ) |
j=1k=1
Combining we see that X has property («). O

A minimal extension of a quasi-Banach space X is a space Y so that there is a
one-dimensional subspace E of Y with Y/ E isomorphic to X. We have the following
immediate corollary:

Corollary 4.8. FEvery minimal extension of £1 or Ly has the decoupling property.

We remark that there is a minimal extension of ¢; [18] with the property that it
contains no basic sequence. In particular the complex version of this space is not
A-convex [38], and hence not natural. Let us remark that in [14] an example of a
non-A-convex minimal extension of L;/H; is created and it follows also from our
arguments that this space also has decoupling.

In the next section we will give an example of a minimal extension of the trace
class 81 (which has cotype two but fails («)) which fails to have decoupling.
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5. Further remarks on decoupling

In this section we will examine some problems related to Theorem 3.1. By (iii)
we see that a quasi-Banach space X has the decoupling property if (3.3) holds for
some 0 < p < oo, which we may split as two distinct inequalities. Precisely, we
require the existence of a constant C' so that for every X-valued symmetric matrix
(Tjk)} ey With 2j; =0for 1 <j<n

2> 1

n n
E E €jELT 5k
2)

j=1k=1
In this section we show that there are quasi-Banach spaces where (5.1) fails and
spaces where (5.2) fails.

1

2>2 <C<E

2\ % n n
) < C(]E‘ ZZejekmjk

j=1k=1

n n
!
E E €j€ETjk

j=1k=1

(5.1) (E

and

(5.2) (]E‘ Zn: Zn: €5 €k

j=1k=1

(NI

Proposition 5.1. Let X be a quasi-Banach space. Then for 0 < p < oo there
exists a constant C' = C(p, X) with the following property: suppose (xjk)?,kzl 18
n

any X -valued matrixz. Then
n n n D %
(5.3) m(zzejem> < C(E S G ) |
j=1 k=1
Proof. Suppose X is r-normed and s = min(p,r). Suppose u,v € {7 . Let

j=1k=1 j=1
n n
C(u,v) = Z Z U jURE; LT ik,

j=1k=1
n n
(u,0) = D) ujone .
j=1k=1

Let x = (1,1,...,1) and x4 be the indicator of a subset A of [n] = {1,2,...,n}.
Let ¢ = ((x, x) and ¢’ = ¢'(x, x)- Then for any A, B and 61,5 = £1, we have

¢'(xa+01x5, xB +d2xp) =1 ¢
and so, by averaging, for any subset A of [n] we have
1 1 1
(E[I¢"(xa, xp)[IP)» < 457 HE[C|P)7.
If AN B =0 then ((xa,x5) =1 ¢'(xa,xs) and so
1 1 1
(5.4) (ElICOxa, xp)P)r <45 HE|CP)»  ANB=0.
Note also that if § = +1
Clxa +0xz,xa +0x3) = C.

Hence
(5.5) Vo(C(xa, xa) + C(x 1. x 1)) < 2571V, (0),
(5.6) Vo(C(xa x5) +C0x i, xa)) < 2571V, (C)
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We now prove (5.3). In fact by rewriting § = x4 — x; and 6’ = xp — x5 we
need only estimate V,,({(xa, xn)) for arbitrary A, B. Then we write
C(xa;xB) = ¢(xanB;XanB) + ((XanB, xB\4) + ((Xa\Bs XANB)-
Combining (5.4) and (5.5) gives an estimate

1
Vo(C(xa, x5)) < CE[P)7 +V,(¢))
and hence
1
Vp (Z 25j55c€j6kxi’€) < CE[CP)F + Vi(C))-
j=1k=1
It follows that if 7;, n; = +1 we also have

%(Z > ejekxjk) < CBIC (0,1 P + B, ) 7).

j=1k=1
Treating 7,1, are independent Rademachers, also independent of €; we note that
El[¢(n, n)I[P = E[I¢"(n, n")||” = E[|¢'[|” and so (5.3) follows. 0

We would also like to introduce the notion of Gaussian decoupling, replacing the
Rademachers with normalized Gaussians. We say that X has Gaussian decoupling
if there is a constant such that for every symmetric X-valued matrix (xjk)?,k:1

n n
) SR

with z;; = 0 we have
: 2y 4
j=1k=1

(5.7) ( ZZ Tk Y
=1 k=1
n n 2\ 1
C(E SN @i ) ,
j=1k=1

where, as usual (v;)7_; and (7})7_; denote two mutually independent sequences of
independent normalized Gaussians.
The following proposition was pointed out by Stephen Montgomery-Smith:

Proposition 5.2. Let X be a quasi-Banach space. Then if (bL]k) =1 U any X-
valued symmetric matriz then

n n 1 n n n n
D RIAEEIIR ST B )
Hence there exists a constant C = C(X) so that
1

j=1k=1 =1 k=1 ==
n n 2 1 n n 5 %
(E szjwhk ) = C<]E szjk'Yj'Yk )

Jj=lk=1 Jj=1k=1
Thus X has Gaussian decoupling if and only if there exists a C' so that for every
X -valued matriz (ajjk)nkzl with zero diagonal,
2) 1

o9 (5] <o

n n
szjwﬂllc

j=1k=1
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Proof. We may replace ; by 272 (v; +7;) and v} by 273 (7 —7;). Then the first
equation is immediate and the others then follow trivially. Notice that (5.8) holds
for arbitrary matrices once it holds for symmetric matrices. O

Proposition 5.3. Suppose X is quasi-Banach space satisfying condition (5.1).
Then X has Gaussian decoupling.

Proof. It is easy to derive (5.8) from (5.1) by approximating a normalized gaussian
~ by N~ (61 + -+ en). We omit the details. O

We conclude the section by discussing two examples. First we recall that the
Schatten ideal S, fails decoupling. In fact we will see that it fails condition (5.2).
For j # k let xj, = %(ejk + ey;) where ej;, = e; ® e, and let x;; = 0. Let
Cn = 2?21 Y or_q €j€xzii and let &, be its decoupled version 2?21 > ohq €5ELT k-
Observe that condition (5.2) implies that

(E[&n]|?)? < CVa(€n) < CVa(Cn).

However
n 2 %
(IE fn—i—Zeje;-ejj ) =n
j=1
and
n 2 %
(E Cn—l-Zejj ) =n
j=1
Thus
1 1
(Ell&al?)2 > env
but
Va(¢n) < Cn

where 0 < ¢,C < co. Notice that this shows that (5.3) cannot be replaced by an
equivalence.
Let us recall that S, has cotype two [40]. It follows from Proposition 2.5 (applied
twice) that for some C we have
2\ 3
) =(e

<o(el

for every Sp-valued matrix (xjk)?,k:r However it is not true that there exists a
constant C' so that for every symmetric matrix (2;x)7,_; with zero diagonal we

have
3 2\ 4
(E ) SC(E ) |

n n
Z Z YiVkT jk
=1 k=

n n
22 cenin
j=1k=1
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) = RS i)
cofefSi )"

Problem. Does S, fail (5.1) when 0 < p < 1?7 Does S, have Gaussian decoupling?

Indeed by Proposition 5.2

n

We conclude with an example of a minimal extension of the trace class &7 which
fails Gaussian decoupling and hence also (5.1). Note that S; has cotype two but
fails to have property («).

Let (e;)$2; be an orthonormal basis of a separable Hilbert space and let ej), =
e; ® e as usual. Let F be the linear span of {e;; : 1 < j,k < oo}. For z € F
let ()‘j);?il be the sequence of eigenvalues of x repeated according to algebraic
multiplicity (this sequence is finitely nonzero). Define

2l
A;j log
Z ® el

Here we interpret the summand as zero if A\; = 0. Then @ is homogeneous and
quasi-additive in the sense that there is a constant C so that if z,y € F

[@(z +y) — D(x) — (y)| < C(lz]| + llylD)-

This is a special case of Theorem 6.8 of [16]. It follows that we can create a minimal
extension C ®4¢ S1 by completing the direct sum C & F quasi-normed by

A 2) | = A = ()] + [l]s, -

Let us denote this space by X. By Theorem 4.7 X has cotype two. We will show
that this space fails Gaussian decoupling. Indeed, let us suppose it has the Gaussian
decoupling property. Then using the Kahane—Khintchine inequality we can suppose
that for any matrix (z;)}_; with 2;; = 0 we have an estimate using L;-norms:

- - |ZT‘L—1 a;b;|
<I>< a»bke»k> = ( a»b) log — L .
; Y 2 b (C la )2 (S [bs[?)2
Hence
n n 3 /n 3
(o)< () (o)
k=1 J=1 =1

Let us define x5, = (O7ejk) for 1 < j,k < n. This matrix does not have zero
diagonal but we will later apply our estimate (5.8) from Proposition 5.2 to the same
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matrix with the diagonal removed. Then

ikz:: VTR sk ‘ (zn:zn:vg'vzéejk)’ﬂLE(ZlngQ) (ZI%P)

=1 k=1

<.

< 2n.

Similarly we see that

< 2n.

HM:

n
Z LjkViVk

On the other hand

’
iLjj

n n !
1511751
<EY vl +E|D 97 log et |-
— ; k=1 Wk|‘7k|

The first term on the right is estimated by Cn. The second we split and notice
first that the sequence of independent identically random variables v;77 log(|v;{|7}|)
is uniformly bounded in Lo with mean zero. Hence

n

2 4
(E > v log(lv75) ) < OV
=1

However, using the fact tlogl/t <1/e <1 for 0 <t <1,

n

|Z 1’7]’7
S log 2= I < S5
j=1

Zk 1 el =

n n n 2
E ZVJW} log Z'VJ‘V;‘ < E(C(l + (Z'yj'y;) )) < Chn.
j=1 j=1 j=1

Combining all the above estimates we have

and

E Z’yj'y;xjj < Chn.
j=1
It follows that
E Z’Yj%/cfjk < Chn.

i#k
Now if X has the Gaussian decoupling property we will obtain by (5.8) a similar
estimate for the undecoupled version, i.e.,

E Z'Yj'kajk <Cn
itk
and this implies an estimate
n
E Z%ijj <Cn

j=1
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which in turn gives

< Chn.

1
Z% D S Zk 17

Now %(Z 4 'yj log 'y]) converges in Li-norm by the Strong Law of Large Num-
bers. Hence

1 n n
B (220 ) es(X8) | < €
1= J]1=

Again by the Strong Law of Large Numbers,

1 (&
nlin;o - <Zl ’yj> = 1 almost surely.
]:

Hence by Fatou’s Lemma,

Elim inf

n—oo

<C

08 >

j=1

which is absurd since Z;’;l nyQ- = oo almost surely.

6. Bilinear maps and Grothendieck’s theorem

We conclude with a discussion of applications to bilinear maps. Consider a
continuous bilinear map B : X xY — Z. If XY, Z are all Banach spaces then
B induces a linear map B:X®,Y — Z where X ®, Y is the projective tensor
product. Now suppose X,Y are Banach spaces but Z is a quasi-Banach space.
Then B induces a bounded linear map B:X®,Y — Zif and only if the convex
hull of the set {B(x,y) : ||z, |ly|ll < 1} is bounded or equivalently there is a constant
C so that

n

ZB(fj’yj)

Jj=1

(6.1)

n
<Y llz; .
j=1

An equivalent formulation is that B factors through some Banach space Zj, i.e.,
B =TBy where By : X XY — Zj is a bounded bilinear form and T : Zyg — Z is a
bounded linear operator.

Theorem 6.1. Let X,Y be Banach space of type two and suppose Z is a quasi-
Banach space with the decoupling property. Then any bilinear form B : X XY — Z
factors through a Banach space.
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Proof. This is an easy modification of [15] Theorems 4.6 and 4.8. Let x1,...,2, €
X and y1,...,yn € Y. Then since Z has the decoupling property

n n
Z Z ejexB(z;, yk)

j=1k=1
n n
E €5 E €LYk
j=1 j=1
2\ 3
j=1

sC|B||(Z||xj||2> (Zmn?) .
=1

n

> B(z),y;)

Jj=1

<cE

<C|B||E

n

1
2)2

< c|B||(1E

Jj=1

E :ejxj
Jj=1

1 _1 — .
Now let a; = ;]| |y} ~%. Then Y7, Bl ;) = S0, Blaj oy, a50,) (with
appropriate modifications if z; = 0 or y; = 0). Thus we obtain an inequality of
type (6.1). O

It is natural to consider Theorem 6.1 as a bilinear analogue of the Maurey fac-
torization theorem which asserts that any linear map 7' : X — Y where X has
type two and Y has cotype two factors through a Hilbert space [27]. So by analogy
with Pisier’s abstract Grothendieck theorem [30] (see [21] for the nonlocally convex
version) we may ask whether Theorem 6.1 remains true if the type two assump-
tion is replaced by the assumption that X and Y have the bounded approximation
property and that X* and Y* are both of cotype two. The most important special
case is when X =Y = ¢p and Z = L, when 0 < p < 1, and this would be equivalent
to a refinement of Grothendieck’s inequality:

Problem. Suppose 0 < p < 1. Is there a constant K = K(p) so that if (fjx)}—,
is a matrix with values in L,(0, 1) such that

n o n
sup sup ZZGJ‘E;«fJ"“ <1
=l e =%11135 =
then
n n
33t < &
j=1k=1
whenever uy, ..., un, v, ..., 00 € by with [luy]], [Jor]| <1 for 1 <j<n, 1<k<n?

We will prove some partial results in this direction.

Theorem 6.2. Suppose X and Y are quasi-Banach spaces with the bounded ap-
proximation property and such that X* and Y™ have cotype two; such Z is a quasi-
Banach space with cotype two and the decoupling property. Then there is a constant
C depending only on X,Y and Z so that if B: X XY — Z is any bounded bilinear
mapping then

(6.2) E

S 6 B(r;,u,) \ < CIBI'S s |
=1 =1

T1yeo s Tn € X, Y1,...,Yn €Y.
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Proof. Let us fix « and consider the map T : Y — Z given by T(y) = B(z,y).
Then by Theorem 6 of [21] (Proposition 2.3 above) we have

n

S e ’ < CllTl(Z ||yk||2) Uiy €Y
k=1

k=1
where C' = C(Y, Z). Thus

n }
) ] < c||B|||x||(Z ||yk||2) S
k=1

Now fix y1,...,yn € Y and consider the map S : X — L;(Z) given by Sz =
Y p—q €xB(x,yx). The same reasoning yields (since L;(Z) also have cotype two)
for z1,...,x, € X,

n o s/ !
S5 B m) <C||B|(Z||x]||2) (3 r?)
=1 k=1 j=1 k=1

where C = C(X,Y,Z). It remains to observe that L;(Z) also has the decoupling
property and so if n; is another sequence of independent Rademachers

E

E

E||> €je;B(;,95) ‘ < CE(D > nieimmerB(x;, ui)
=1 =1 k=1
n n
E|Y > eienBlaj,ur)
j=1k=1
This establishes (6.2). O

We can now prove a Maurey—Nikishin style factorization for bilinear forms with
values in L,. We recall that if (Q, u) is any probability space then L o (€, 1) (weak
Ly) is the space of all measurable functions f such that

1l Ly oo () = suptu(|f| > t) < oo.
t>0

Theorem 6.3. Suppose 0 < p < 1 and that X and Y are quasi-Banach spaces
with the bounded approrimation property and such that X* and Y™* have cotype
two. Then there is a constant C = C(X,Y,p) so that if B: X xY — L,(Q, ) is a
bounded bilinear map then there is function w € Ly (p) with w > 0 a.e., f wdp =1,
{w =0} C{|B(z,y)| =0} a.e. forallz € X andy €Y and

_1
w3 B, )l 21, iy < CIBI 2l 1]

Remark. Theorem 6.3 states that B factors through weak L, via a change of
density. If we take the example X =Y = C[0,1] it is clear this result cannot be
improved by replacing L; o, with L;. Indeed there is a quotient map @ of C10,1]
onto ¢y and an isometric embedding J : ¢ — Lj 5(0,1) using 1-stable random
variables. Let B(f,g) = J(Qf.Qg) and it is easy to see that B cannot map into
Ly via any change of density. Note also that if B factored through a Banach space
then Theorem 6.3 would be an immediate deduction from the classical results of
Nikishin [28].
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Proof of Theorem 6.3. Suppose x1,...,Z, € X, y1,...,Y, € Y with max ||z;| <
1, max|jyg| < 1. Suppose a; > 0 and -7, a; = 1. Then if ¢; = \/a;

" }
| max lay Bz, )| [lp < H (Z B(cjxj,cjyjn?)

j=1

p

n
S CE Z €jB(CjJ3j, ijj)

Jj=1

<C|B|

p

by Theorem 6.2. Now the result follows immediately from Theorem 1.1 of [33]. O

From this result we can deduce an estimate slightly weaker than (6.1) for the
special case when the range is natural.

Corollary 6.4. Suppose that X andY are Banach spaces with the bounded approz-
imation property and such that X™* and Y™ have cotype two and Z is a natural quasi-
Banach space. Then there is constant C = C(X,Y,Z) so that if B: X XY — Z
is a bounded bilinear map and x1,...,x, € X, y1,...,yn € Y are such that

>t llzillllysll =1 then

> B(xj,y;)
j=1

Proof. Assume Z is r-normable and that 0 < p < r. Let z = 2?21 B(xj,y;).
Then since Z is natural we can find an operator T : Z — L, (£, ), where (€2, p1) is
some probability space, with ||T'|| =1 and ||z|| < C||Tz||,, where C' = C(Z). Now
by Theorem 6.3 we can find w satisfying the conclusions of the theorem for the
bilinear form 7o B. Then

2]l < ClIT=]|,

(6.3)

] < CIB] [ 143 llz; llys og

1
= ll25[[11y;]]

_1
< CHU] pTz”Lp(w dp)

< C’Hw_zlj ZTB(a:j,yj)
j=1

Ly, oo (wdp)

Now we use the fact that Ly o is logconvex (this is due to Stein and Weiss [37]; see
also [11]). Thus if 6; = |TB(2},yj) ||, o (wdpy and 8 = -7, 6; we have

= 0
121l SCE ejlog?-
J

j=1
Now 0; < C||BJ|||z;||lly;]l and the result follows. O
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