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The Atiyah–Patodi–Singer theorem for perturbed
Dirac operators on even-dimensional manifolds

with bounded geometry

Jeffrey Fox and Peter Haskell

Abstract. This paper establishes conditions under which one can prove an
Atiyah–Patodi–Singer index theorem for perturbed Dirac operators on com-
plete noncompact even-dimensional manifolds with boundary. This index the-
orem introduces into index theory spectral invariants of self-adjoint perturbed
Dirac operators on noncompact manifolds.
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1. Introduction

A perturbed Dirac operator is the sum of a first-order elliptic differential operator
of Dirac type and a vector-bundle map (the perturbation). The paper of C. Callias
[5] stimulated the publication of many papers on the Fredholm index theory of
perturbed Dirac operators. The index theory of these operators has played a role
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in mathematical physics [4, 13] and geometry [10]. References to many of the papers
on the subject appear in [8]. A heat equation derivation of an index formula for a
class of Fredholm perturbed Dirac operators appears in [9].

The present paper uses this heat equation method to prove an index formula
for a class of perturbed Dirac operators satisfying Atiyah–Patodi–Singer boundary
conditions on complete noncompact even-dimensional manifolds with boundary.
The boundary operators associated with these operators are self-adjoint perturbed
Dirac operators on the odd-dimensional complete noncompact boundaries. Their
eta invariants appear in the index formula and thus introduce into index theory the
spectral invariants of perturbed Dirac operators on noncompact manifolds.

Sections 2 and 3 introduce the manifolds and operators we study. Briefly the
manifolds and vector bundles in this paper have bounded geometry, and the Dirac
operators’ perturbations grow sufficiently rapidly and regularly. Section 4 outlines
the tools that can help identify rates of growth for the spectra of self-adjoint per-
turbed Dirac operators. Section 5 outlines the results of [9] that provide essential
estimates related to the domains of powers of self-adjoint perturbed Dirac opera-
tors. Throughout the paper we show that natural constructions on manifolds with
cylindrical or linearly expanding ends lead to operators that satisfy the assumptions
of our theorems. Most of the proofs that the operators so constructed satisfy our
hypotheses are straightforward, but the discussion of these issues for the hypotheses
leading to the estimates in Section 5 is more involved.

Section 6 discusses the properties of and constructions on normal neighborhoods
that are permitted by bounded geometry. Section 7 introduces the Atiyah–Patodi–
Singer boundary conditions and proves some properties of vector-bundle sections
supported near the boundary of the manifold. Section 8 provides the estimates
on heat kernels that show that our perturbed Dirac operators are Fredholm and
that are the foundation for the expression of an index formula in terms of an
asymptotic expansion involving locally defined quantities. Section 9 summarizes
our assumptions and proves our index formula. Section 10 comments on some
properties of the eta invariants of self-adjoint perturbed Dirac operators.

2. The manifolds

The operators whose index theory is discussed in this paper live on even-dimen-
sional, not necessarily compact, complete, oriented, Riemannian manifolds with
not necessarily compact boundaries. Let M denote the manifold with boundary,
and let N denote the boundary. We assume throughout that, in M , N has a collar
neighborhood of uniform widthN×[0, δb] on which all structures we use are product
structures. (All references to a collar neighborhood include the assumption that all
structures are products.) We also assume that all of our manifolds have bounded
geometry. We use the discussion of bounded geometry given in [19], where earlier
references can be found, and we extend it to manifolds with boundaries having
collar neighborhoods by taking it to mean that the manifold’s double has bounded
geometry. We denote the double of M by M∗.

Definition 2.1. A complete Riemannian manifold is said to have bounded geom-
etry if it has positive injectivity radius and if the curvature tensor and its covariant
derivatives are each uniformly bounded.

The following proposition appears in [19].
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Proposition 2.2. A Riemannian manifold M has bounded geometry if and only
if: one can choose a fixed ball B in Euclidean space that serves as the domain of a
normal coordinate system at every x ∈M , and the Christoffel symbols of M (viewed
as a family parametrized by x ∈M and their indices) lie in a bounded subset of the
Fréchet space C∞(B).

One section of this paper relies on calculations on N and on the double of M ,
M∗, that are special to manifolds with cylindrical or linearly expanding ends. Both
are examples of manifolds with warped-product ends. A manifold with warped-
product end is separated by a hypersurface H into a compact submanifold with
boundary H and an end diffeomorphic to [r0,∞) × H for some positive r0. The
metric on the [r0,∞) ×H piece is of the form

dr ⊗ dr + h2(r) · gH ,

where gH is a Riemannian metric on H and h(r) is a positive function called the
warping factor. When h is constant, the end is called cylindrical. When h(r) = r,
the end is called linearly expanding. Any compact manifold with boundary can
be extended to have a cylindrical end by attaching a cylinder to the boundary
H. Euclidean space, with H the unit sphere, has a linearly expanding end. Any
compact manifold with boundary can be extended to have a linearly expanding end
by attaching a cylinder to the boundary and altering the metric on the cylinder.

A Euclidean half-space is an example of a noncompact manifold whose double
and whose boundary have linearly expanding ends. Other examples of manifolds
whose doubles and whose boundaries have cylindrical or linearly expanding ends
can be constructed as follows. Start with a compact oriented manifold with bound-
ary. In this manifold choose a hypersurface H satisfying two conditions: H has
nonempty boundary equal to H’s intersection with the original manifold’s bound-
ary; and H separates the original manifold into two pieces. (Examples of such H
include, but are not limited to, the boundary relative to the original manifold, of
a small neighborhood of a point on the original manifold’s boundary.) Choose a
metric in which the boundary of the manifold and the boundary of H have com-
patible collar neighborhoods and in which H has a neighborhood isometric to the
product of H with an interval. Remove one of the two pieces into which H divides
the manifold, and replace this piece by [r0,∞) × H. This piece can be given a
cylindrical metric, or that metric can be altered to provide a linearly expanding
end.

3. Operators on manifolds without boundary

In this section we describe perturbed operators of Dirac type (henceforth called
perturbed Dirac operators) on complete noncompact even-dimensional manifolds
without boundary. We also describe self-adjoint perturbed Dirac operators on
complete noncompact odd-dimensional manifolds without boundary. We show that
when the even-dimensional manifold is the double of a manifold with boundary
(having a collar neighborhood), then the self-adjoint perturbed Dirac operator on
the boundary can be viewed as the restriction of the perturbed Dirac operator on
the even-dimensional manifold to the boundary directions.
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Our goal in this paper is the index theory of certain perturbed Dirac operators
on even-dimensional manifolds with boundary. However the definition of such op-
erators depends on boundary conditions whose expression depends on the spectra
of perturbed Dirac operators on manifolds without boundary. For this reason we
introduce the operators on manifolds without boundary in this section and develop
their spectral theory in the following section before introducing the operators on
manifolds with boundary.

Let M be a complete, noncompact, oriented, Riemannian manifold without
boundary. In discussing the structure of Dirac operators and perturbed Dirac
operators, it is simplest to assume that the operators are acting on their natural
domains of smooth vector-bundle sections with compact support. At some point
rigorous analysis requires that we pass to the closures of these operators. For each
operator that we consider on manifolds without boundary, this closure is the only
closed extension whose adjoint’s domain contains all smooth compactly supported
sections [6].

Using the terminology of [14], let S be a complex Dirac bundle over M, and
let D be the associated Dirac operator. When M is even-dimensional, we use the
grading S = S+ ⊕ S− determined by the volume form. Then D decomposes as
D = D± mapping sections of S± to sections of S∓.

On M let E be a Hermitian vector bundle that has a connection compatible with
its metric. We assume that E is graded, E = E0 ⊕E1, and that all of E’s structure
respects this grading. We let A denote a smooth vector-bundle map E0 → E1 that
is invertible off some compact subset of M. Throughout the paper we use the same
notation for a vector-bundle map that we use for the associated map on sections.

Using tensor-product connections, we extend D to sections of E ⊗ S. We use
the notation Dj for the Dirac operator mapping sections of Ej ⊗ S+ to sections of
Ej ⊗ S− in the even-dimensional case and mapping sections of Ej ⊗ S to sections
of Ej ⊗ S in the odd-dimensional case. In the even-dimensional case we use the
notation A± for the vector-bundle map A ⊗ I : E0 ⊗ S± → E1 ⊗ S±. In the odd-
dimensional case Ã denotes the vector-bundle map A⊗ I : E0 ⊗ S → E1 ⊗ S.

Assumption 3.1. We assume throughout the paper that the vector bundle E⊗S
has bounded geometry in the sense (of [19]) that the Christoffel symbols for E ⊗ S
lie in a bounded subset of the Fréchet space referred to in Proposition 2.2.

Definition 3.2. On our even-dimensional M a perturbed Dirac operator is an
operator of the form

D̃A =
(
A+ −D∗

1

D0 A∗
−

)
from sections of E0 ⊗ S+ ⊕ E1 ⊗ S− to sections of E1 ⊗ S+ ⊕ E0 ⊗ S−.

Notation 3.3. On even-dimensional M we also use the notations

D̃ =
(

0 −D∗
1

D0 0

)
D =

(
0 D̃∗

D̃ 0

)

Ã =
(
A+ 0
0 A∗

−

)
A =

(
0 Ã∗

Ã 0

)
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as well as

DA =

(
0 (D̃A)∗

D̃A 0

)
and ∆A = (DA)2.

Definition 3.4. On an odd-dimensional M a self-adjoint perturbed Dirac operator
is an operator of the form

DA =

(
D0 Ã∗

Ã −D1

)
from sections of E0 ⊗ S ⊕E1 ⊗ S to sections of E0 ⊗ S ⊕E1 ⊗ S. The terminology
“self-adjoint” is justified by our previous reference to [6]: with domain the smooth
compactly supported sections, this operator is esssentially self-adjoint.

Notation 3.5. On odd-dimensional M we use the notations

D =
(
D0 0
0 −D1

)
, A =

(
0 Ã∗

Ã 0

)
and ∆A = (DA)2.

Suppose that our even-dimensional manifold is the double of a complete non-
compact manifold M with noncompact boundary N having a collar neighborhood
of uniform width. Assume that the vector bundles and vector-bundle maps have
product structures in this collar neighborhood. By this we mean that all structures
are independent of the variable normal to N in the collar neighborhood. We use
the notation ∂u to denote differentiation (“directional derivative”) in the direction
normal to N and pointing into M on the collar neighborhood. We use e0 for the
element the corresponds to the inward unit normal in the bundle of Clifford alge-
bras associated with the tangent bundle. We assume that M and N are oriented so
that N ’s orientation followed by the inward unit normal agrees with M ’s orienta-
tion. As noted before we use the conventions of [14], including the volume elements
referred to there as the complex volume elements. Under the above conventions, in
a collar neighborhood of N , we can identify S+ and S− with the pullback (under
the projection from the collar to N) of a single complex Dirac bundle S over N .
The identification proceeds as follows. Let {∂1, . . . , ∂m−1} denote an orthonormal
basis of the tangent space to N at a point in N , and let {e1, . . . , em−1} denote
the associated Clifford algebra elements. Define the action of ei on S+ to be the
Clifford action over M of eie0, and define the Clifford action of ei on S− to be
the Clifford action over M of e0ei. The Clifford action of e0 maps S+ to S− and
intertwines these actions. Its inverse is the Clifford action of −e0.

Changing the order of summands in the range, we can rewrite D̃A on M as(
D0 A∗

−
A+ −D∗

1

)
.

In coordinates on the collar neighborhood, this operator equals(
e0∂u 0

0 −e0∂u

)
+
(∑

ei∂i A∗
−

A+ −∑ ei∂i

)
,

which can be rewritten(
e0∂u 0

0 −e0∂u

)
+
(
e0
∑
eie0∂i A∗

−
A+ −e0

∑−e0ei∂i

)
.
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Under our conventions for identifying S+ and S− with a single Dirac bundle pulled
back from N , we can write the above as(

∂u 0
0 ∂u

)
+

(
D0 Ã∗

Ã −D1

)
as a map from sections of E0 ⊗ S ⊕E1 ⊗ S to sections of E0 ⊗ S ⊕E1 ⊗ S over the
collar neighborhood.

Remark 3.6. Later in this paper we will start with an even-dimensional manifold
M with boundary and, on it, a perturbed Dirac operator D̃A taking the form
described in Definition 3.2. We will form the double of M , M∗, by using the
identity map between the boundaries of two copies of M to attach a copy of M
to a second copy of M with the opposite orientation. Both copies of M will carry
bundles E ⊗ S. At the boundaries we will attach E to itself by the identity map,
which will intertwine the maps A from the two copies. Over the second copy of M ,
we will give S the Dirac-bundle structure determined by defining the action of a
tangent vector on the associated fiber of S to be the negative of the corresponding
action over the first copy of M . At the boundary we will attach the first copy of
S to the second copy of S by the Clifford action of e0 (as defined over the first
copy of M). Due to the choice of orientations, the decomposition S = S+ ⊕ S−

will be well-defined over M∗. Due to the choice of actions, S will have a well-
defined Dirac-bundle structure over M∗, and the Dirac operator on M will extend
to a Dirac operator on M∗. It will follow that the operator D̃A on M will extend
naturally to an operator D̃A on M∗.

4. The spectrum

In this section we identify conditions under which ∆A has discrete spectrum and
conditions under which {λ ∈ σ(∆A) : |λ| ≤ L} has growth satisfying a polynomial
bound as L → ∞. Here ∆A refers to any of the operators (DA)2 defined on
manifolds without boundary in Section 3. The arguments, given in detail in the
even-dimensional case in [9], extend without complication to the odd-dimensional
case.

Writing

∆A = D2 + (DA+AD) +A2,

let

R(DA) = (DA+AD) +A2.

Let µ(R(DA))(x) denote the infimum of the spectrum of the self-adjoint vector-
bundle map R(DA) at the point x, with µ(A2)(x) having an analogous meaning.
Throughout this paper we make the following assumption about the operators DA.

Assumption 4.1. As x→ ∞ in M, µ(A2)(x) → ∞ and µ(R(DA))(x) → ∞.

Lemma 4.2. If the R(DA) part of ∆A satisfies Assumption 4.1, then ∆A has
empty essential spectrum, and thus (1 + ∆A)−1 is compact.

Proof. The argument is standard and may be found, for example, in [8]. �
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Examples of operators satisfying Assumption 4.1 arise naturally on manifolds
with warped-product ends. Detailed calculations appear in [9], but the idea is as
follows. Assume that, on the end, E takes the form of the pullback of a bundle from
the end’s cross-section to the end. Assume that A is the product of a function j(r)
(where r is the variable representing the direction orthogonal to the cross-section)
and the pullback of an invertible vector-bundle map on the cross-section. Noting
that the individual entries inDA+AD are commutators, we see that A2 is a positive
vector-bundle map that grows as j2(r), while DA + AD has terms (not necessar-
ily positive) with norms growing as j′(r) and terms (not necessarily positive) with
norms growing as j(r)/h(r). The former terms arise from commutators with dif-
ferentiation in the r-direction, while the latter terms arise from commutators with
differentiation in the cross-section direction, which introduce the reciprocal of the
warping factor h(r). Thus Assumption 4.1 is satisfied when j2(r) exhibits growth
that dominates the growth of j′(r) and of j(r)/h(r). On a cylindrical or linearly
expanding end, any positive power of r will have this property.

To study the growth rate of the discrete spectrum, we introduce the following
notation.

Notation 4.3. For L ≥ 1 let N(∆A;L) denote the cardinality of

{λ ∈ σ(∆A) : |λ| ≤ L},
the number of eigenvalues, counting multiplicity, of ∆A that have absolute value
no greater than L.

One “expects” N(∆A;L) to grow with L at the same rate as the volume of
{(x, ξ) ∈ T ∗M : |ξ|2 + µ(R(DA))(x) ≤ L} does. Arguments based on Neumann
comparison and certain estimates prove a theorem that realizes the expectation.
The Neuman comparison argument, given in detail in the even-dimensional case in
[9], extends without change to the odd-dimensional case. We outline the argument
here. The estimates of [9] on cylindrical and linearly expanding ends also extend
without change. We recall them.

Let M be a complete, noncompact, oriented, Riemannian m-dimensional man-
ifold without boundary and with bounded geometry. The manifold M may be
either odd-dimensional or even-dimensional. Let the operators D, DA, and ∆A be
as in Section 3. Let ∇ denote the operator formed from the gradient by two-by-two
matrix constructions so that on M the formula known as the Weitzenböck formula
[18] or the general Bochner formula [14] gives

D2 = ∇∗∇ + K(x),

where K(x) is the curvature term. By our assumption of bounded geometry and
Assumption 4.1, it is possible to choose a positive constant λ0 so that for every
x ∈ M, K(x) +R(DA)(x) + λ0 ≥ 1.

Definition 4.4. Choose a constant λ0 so that for every x ∈ M
K(x) +R(DA)(x) + λ0 ≥ 1.

Let W be an m-dimensional submanifold of M having smooth compact boundary.
Define the operator ∆A[W ] +λ0 to be the self-adjoint operator associated with the
quadratic form

qA(α, β) = 〈∇α,∇β〉 + 〈(K +R(DA) + λ0)1/2α, (K +R(DA) + λ0)1/2β〉.
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Here the form domain is the set of sections α that are L2 on the interior ofW and for
which ∇α, taken in the distribution sense on interior(W ), and (K+R(DA)+λ0)1/2α
are L2 on the interior of W . The operator ∆[W ] + 1 is the self-adjoint operator
associated with the quadratic form

q(α, β) = 〈∇α,∇β〉 + 〈α, β〉,
where ∇ is interpreted as above and where the form domain is as above with
the condition involving K + R(DA) + λ0 omitted. Similarly ∆[W ] arises from the
quadratic form 〈∇α,∇β〉, with ∇ as above. In all cases the notation 〈−,−〉 refers
to the L2 inner product.

Theorem 4.5 ([9]). Suppose that a smooth compact hypersurface divides M into
M1 and M2. Then, in the sense of Section XIII.15 of [15],

(∆A[M1] + λ0) ⊕ (∆A[M2] + λ0) ≤ ∆A + λ0

and thus

N(∆A + λ0;L) ≤ N(∆A[M1] + λ0;L) +N(∆A[M2] + λ0;L).

Proof. By [6] the operator ∆A + λ0 defined on smooth compactly supported sec-
tions is essentially self-adjoint. Thus its closure, whose spectrum N(∆A + λ0;L)
describes, equals its Friedrichs extension. (See, e.g., Section X.3 of [15].) On smooth
compactly supported sections the quadratic form defining the Friedrichs extension
equals the form qA of Definition 4.4. The conclusions of this theorem follow from the
discussion of Neumann comparison represented by Propositions 3 and 4 in Section
XIII.15 of [15] and by the discussion surrounding those propositions. �

Theorem 4.6 ([9]). Let W and λ0 be as in Definition 4.4. If W is compact, there
is a constant C, depending on W , E, and the Dirac operator, such that

N(∆A[W ] + λ0;L) ≤ N(∆[W ] + 1;L) ≤ C · Lm/2.

Regardless of whether W is compact, if there is L1 > L such that ∀x ∈W ,

K +R(DA)(x) + λ0 ≥ L1,

then N(∆A[W ] + λ0;L) = 0.

Proof. The inequality involving Lm/2 is a direct consequence of Weyl’s theorem,
and the other statements follow directly from the definitions of the operators in-
volved. A detailed proof appears in [9]. �

Natural assumptions on the auxiliary vector bundle and the perturbation per-
mit the application of the preceding theorem to show that the spectrum of ∆A

has polynomial growth on manifolds with cylindrical or linearly expanding ends.
Detailed calculations appear in [9]. We summarize the results here. In each case
the calculations are based on breaking the manifold into a compact piece and the
end, which is itself broken into infinitely many compact pieces. By Assumption 4.1
and the last statement of the preceding theorem, for any given L, only finitely
many compact pieces contribute to N(∆A;L). In the cylindrical case the pieces
are isometric, and the contribution of each is bounded by a constant multiple of
Lm/2. In the linearly expanding case each piece is a scaled version of the preceding
piece, with a scale factor of 2. In either case suppose that, on the end, the auxiliary
vector bundle is pulled back from a vector bundle on the end’s cross-section Y and
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all of the vector bundle’s structure is constant in the r-direction. Suppose that for
(r, y) ∈ [r0,∞) × Y , µ(R(DA))(r, y) ≥ r. This assumption holds for sufficiently
large r if the perturbation takes the form discussed in the paragraph following
Lemma 4.2 and if j(r) = rn for n > 1/2. Then on a manifold with cylindrical
end, N(∆A;L) satisfies a growth bound of the form L(m/2)+1. On a manifold with
linearly expanding end, the growth bound can be taken to be of the form L(3m+1)/2.

5. Domains of powers

Many of the estimates in this paper depend on having the operator ∆A on
the double of the manifold M satisfy the following assumption involving L2 inner
products.

Assumption 5.1. For each positive integer k there is a positive constant Ck such
that for every w ∈ domain((∆A)k)

〈(∆A)kw, (∆A)kw〉 + 〈w,w〉 ≥ Ck(〈D2kw,D2kw〉 + 〈A2kw,A2kw〉).
Section 6 of [9] establishes one way to prove that such an estimate holds and

uses that approach to show that the estimate holds for a natural class of perturbed
Dirac operators on manifolds with cylindrical or linearly expanding ends. For com-
pleteness we summarize the general arguments here, and we give a discussion of
their application on manifolds with cylindrical or linearly expanding ends that is
more detailed than the discussion in [9]. Because the discussion applies equally to
even-dimensional and odd-dimensional manifolds, we denote the manifold by M.

Notation 5.2. For G a vector-bundle map on a manifold M and for x ∈ M, let
s[G](x) denote the supremum of the spectrum of (G∗G)1/2(x) and let i[G](x) denote
the infimum of the spectrum of (G∗G)1/2(x). If G1 and G2 are vector-bundle maps,
we write G1 = o(G2) if s[G1](x)/i[G2](x) → 0 as x→ ∞ in M.

The following proposition suggests what terms should be grouped in proving the
estimate we desire for (∆A)k. In the proposition the inner products are L2 inner
products on vector-bundle sections over M, and expressions of the form [T1, T2]
refer to commutators.

Proposition 5.3 ([9]). Suppose that ∆A has empty essential spectrum. Assume
that DA+AD is o(A2), with M′ a compact subset of M off of which

s[DA+AD]/i[A2] ≤ 1/4.

Supppose that off some compact subset M′′ of M, A is the product of a scalar-
valued function and a unitary-valued vector-bundle map. Finally assume that for
each positive integer k there is a compact subset Mk of M containing M′⋃M′′

and satisfying the following condition: for each smooth section w with compact
support in M\Mk,

2〈D2k−1R(DA)D2k−1w,w〉 + 〈R(DA)D4(k−1)R(DA)w,w〉
+ (1/3)〈R(DA)A4(k−1)R(DA)w,w〉 + 〈[D2k−1, [D2k−1, R(DA)]]w,w〉 ≥ 0,

and

2〈DA2(k−1)R(DA)A2(k−1)Dw,w〉 + (1/3)〈R(DA)A4(k−1)R(DA)w,w〉
+ (1/3)〈D2A4(k−1)D2w,w〉 + 〈[D, [D,A2(k−1)R(DA)A2(k−1)]]w,w〉 ≥ 0.
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Then for each positive integer k there is a positive constant C ′
k such that for all

smooth sections w compactly supported in M\Mk,

〈(∆A)kw, (∆A)kw〉 + 〈w,w〉 ≥ C ′
k(〈D2kw,D2kw〉 + 〈A2kw,A2kw〉).

Proof. The proof, which is given in [9], is largely a straightforward calculation
involving induction on k. Among the roles played by the proposition’s hypotheses
are the following. The hypothesis on the spectrum of ∆A permits the decomposition
(respecting domains of other operators) of the Hilbert space into a subspace where
‖(∆A)k∆Av‖ ≥ ‖∆Av‖ and a subspace where ‖v‖ ≥ ‖∆Av‖. This decomposition
permits the passage from an estimate of the form

〈(∆A)k∆Aw, (∆A)k∆Aw〉+〈∆Aw,∆Aw〉 ≥
C ′

k(〈D2k∆Aw,D
2k∆Aw〉 + 〈A2k∆Aw,A

2k∆Aw〉)
for w with compact support in the complement of Mk (the inductive hypothesis
applied to the value k and ∆Aw) to an estimate of the form

〈(∆A)k∆Aw, (∆A)k∆Aw〉+〈w,w〉 ≥
C(〈D2k∆Aw,D

2k∆Aw〉 + 〈A2k∆Aw,A
2k∆Aw〉).

The hypotheses involving commutators and inequalities permit the transformation
of the right side of this inequality into a form more closely related to the proposi-
tion’s conclusion (for the power k + 1). The hypothesis on the structure of A lets
us commute scalar-valued even powers of A past the vector-bundle map R(DA).
Because DA + AD is o(A2), 〈R(DA)A4kR(DA)w,w〉 is greater than or equal to
some positive constant multiple of ‖A2k+2w‖2. �

The following proposition captures natural assumptions under which Assump-
tion 5.1 holds.

Proposition 5.4 ([9]). Suppose that ∆A has empty essential spectrum and that M
has a collection of compact subsets Mk for which the conclusion of Proposition 5.3
holds. Then for each positive integer k there is a positive constant Ck such that for
all smooth compactly supported sections w over M,

〈(∆A)kw, (∆A)kw〉 + 〈w,w〉 ≥ Ck(〈D2kw,D2kw〉 + 〈A2kw,A2kw〉).
Thus for positive integers k every w ∈ domain((∆A)k) (not necessarily smooth and
compactly supported) satisfies D2kw ∈ L2 and A2kw ∈ L2.

Proof. The proof is given in detail in Section 6 of [9]. The last statement in the
proposition is a consequence of the estimate in the proposition and the theorem [6]
that smooth compactly supported sections form a core for (∆A)k. The proof of the
inequality is again by induction on k. The arguments are more involved than those
used in the proof of Proposition 5.3, but in essence they are the following. Form a
cover by two open sets, one of which has compact closure and the other of which
has closure contained in the complement of Mk. With the use of an appropriate
partition of unity subordinate to this cover, we can separate terms to which the
estimate of Proposition 5.3 applies from the remaining terms, which are supported
on some fixed compact set that depends on only the open cover and partition of
unity. Covering this open set by a finite collection of normal neighborhoods and
applying a partition of unity subordinate to this cover, we can use estimates related
to G̊arding’s inequality to complete the argument. �
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Example 5.5. We end this section with an outline of the arguments showing that
the hypotheses of Proposition 5.3 are satisfied for appropriate A on a manifold M
with cylindrical or linearly expanding end. We focus our comments and calculations
on the end. Let r denote the end’s “longitudinal variable” associated with the
direction orthogonal to the end’s compact cross-section. Suppose that A is the
product of rp, for some p > 1/2, with the pullback from the cross-section to the end
of a unitary-valued vector-bundle map. Note that this second factor is independent
of r and that, for the A associated with this A, A2 is a scalar-valued function. The
vector-bundle map AD+DA is o(A2) because d

dr r
p is o(r2p) and because the factor

of A that is independent of r is the pullback from the cross-section to the end, in
which the cross-section has constant size or expands as r grows. The reasoning in
Section 4 shows that ∆A has empty essential spectrum.

The other hypotheses of Proposition 5.3 involve commutators of higher powers
of terms of ∆A. We show that these hypotheses are satisfied in our examples by
choosing appropriate families of coordinate neighborhoods and using G̊arding’s in-
equality. We choose a periodic open cover and periodic subordinate partition of
unity for the r-half-line. (By periodic we mean that the open cover and partition
of unity arise by choosing a finite open cover of the circle by sets diffeomorphic to
intervals, choosing a partition of unity subordinate to this cover, choosing a cover-
ing map from the line to the circle, and then using the components of preimages
of the circle’s open sets to create the open cover of the half-line, with subordinate
partition of unity formed analogously using the pullback of functions.) We also
choose a finite cover of the cross-section by normal neighborhoods (chosen so that
the coordinates and transition maps extend smoothly to the neighborhoods’ clo-
sures), and we choose a partition of unity subordinate to this cover. The natural
diffeomorphism between the end and the product of the half-line with the cross-
section determines a cover of the end by open sets diffeomorphic to sets of the form
I ×W , where I runs through the intervals we are using to cover the half-line and
W runs through the open subsets of the cross-section that we are using. Similarly
the products of functions from the partitions of unity form a partition of unity
subordinate to this cover.

In the case of a cylindrical end, we assign coordinates in each of these open
sets I ×W by combining the standard coordinate r of R with normal coordinates
for W . The linearly expanding case requires somewhat more care. For the copy
Wr of W in the cross-section at r ∈ R, there is an open subset W̃r of Euclidean
space that provides normal coordinates via the exponential map expr : W̃r → Wr.
Note that {�x : �x ∈ W̃r} = { r

s�y : �y ∈ W̃s}. For each pair (I,W ) we choose r0 ∈ I
(for concreteness let r0 be the midpoint of I) and assign coordinates r ∈ I and
�x ∈ W̃r0 to the open set {(r, v) : r ∈ I and v ∈ Wr} via the map I × W̃r0 →
{(r, v) : r ∈ I and v ∈ Wr} defined by (r, �x) 
→ (r, expr(

r
r0
�x)). On each chart we

also need coordinates on our vector bundles. These coordinates arise from choosing
an orthonormal basis for the fiber over (r0,�0), using parallel translation along rays
from the origin to provide bases in each fiber over {(r0, �x) : �x ∈ W̃r0}, and pulling
these bases back under the projection from (r, �x) to (r0, �x).

Each I × W̃r0 that arises is a bounded Euclidean domain with the k-extension
property (terminology as in [16]). Although there is no upper bound on the diam-
eters of the I × W̃r0 that arise, there is a uniform upper bound on the distortion
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(terminology as in [19]) associated with our coordinate map. One consequence is
that, for each power of of our manifold’s Dirac operator, when the power is written
in the coordinates described above, there is a constant of uniform ellipticity that is
independent of the coordinate neighborhood.

Because our neighborhoods have uniformly bounded length in the r-direction,
powers of r satisfy a strong o-property: if k < 	, the supremum of rk over a given
neighborhood divided by the infimum of r� over the same neighborhood goes to
zero as the neighborhood “goes to infinity in our collection of neighborhoods” via
r-translation. Powers of A satisfy an analogous property. The same result is true if
we replace the single neighborhood by a finite set of neighborhoods and translate
that set of neighborhoods to infinity through our collection of neighborhoods.

For Ω a bounded open subset of Euclidean space with the k-extension property
let Hk

0 (Ω) denote the closure, in the Fourier-transform-defined order-k Sobolev
norm, of the set of smooth vector-bundle sections with compact support in Ω. We
denote this norm by ‖w‖0,k for k > 0 and by ‖w‖ for k = 0. For 0 ≤ k < 	, and for
arbitrary ε > 0, there exists a Cε such that for all smooth compactly supported w

‖w‖2
0,k ≤ ε‖w‖2

0,� + Cε‖w‖2.

The Cε response to ε arises from choosing a large enough ball in the space associated
with the Fourier transform variable, and thus the Cε response to ε can be chosen
to be independent of Ω.

For us Ω will be the Euclidean open set identified by the coordinate map with
one of our neighborhoods. Let D denote the manifold’s Dirac operator, expressed
in these coordinates. G̊arding’s inequality (or the elliptic estimate) states that for
each k and each bounded Ω there exist constants c1 and c2 such that

‖Dkw‖2 + c1‖w‖2 ≥ c2‖w‖2
0,k

for all w ∈ Hk
0 (Ω). The independence of Ω discussed previously helps show that

these constants can be chosen to be independent of Ω. (See, e.g., Section 8.2.3 of
[16] for a statement and proof of G̊arding’s inequality. In addition to the use of
a constant of uniform ellipticity and a Cε response to ε that are independent of
Ω, we note the following step in making the estimates in the proof independent
of Ω. The proof uses approximation of the highest order operators by constant
coefficient operators. Done on sets that are “small enough,” this approximation is
“good enough.” As Ω is scaled in the cross-section direction, the estimates remain
“good enough” as the “small enough” sets are scaled by the same factor in the
cross-section direction.)

To reduce our analysis of the expressions in Proposition 5.3 to analysis on
domains Ω, we use our partition of unity {ψi} in the following way. Let ρi =
(ψ2

i /
∑

j ψ
2
j )1/2. Note that 0 ≤ ρi ≤ 1, that

∑
i ρ

2
i = 1, and that for each k there

is a bound independent of i on the pointwise norms of all partial derivatives of ρi

having order ≤ k. Here the partial derivatives are calculated in the coordinates of
any neighborhood Ωj having nonempty intersection with the support of ρi. The ρi

provide the following decomposition of the fiberwise inner product on vector-bundle
sections over M:

〈α, β〉x =
∑

i

ρ2
i (x)〈α, β〉x =

∑
i

〈ρiα, ρiβ〉x.
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Consider the first expression that Proposition 5.3 assumes is nonnegative. Noting
that the second term on the left of the inequality is nonnegative, we focus on the
remaining terms, which we rewrite

2〈R(DA)D2k−1w,D2k−1w〉 + (1/3)〈A2(k−1)R(DA)w,A2(k−1)R(DA)w〉
+ 〈[D2k−1, R(DA)]w,D2k−1w〉 + 〈D2k−1w, [D2k−1, R(DA)]w〉.

Applying
∑

i ρ
2
i , we get∑

i

(2〈R(DA)D2k−1ρiw,D
2k−1ρiw〉 + (1/3)〈A2k−1R(DA)ρiw,A

2k−1R(DA)ρiw〉

+ 〈[D2k−1, R(DA)]ρiw,D
2k−1ρiw〉 + 〈D2k−1ρiw, [D2k−1, R(DA)]ρiw〉)

plus∑
i

(2〈[ρi, R(DA)D2k−1]w, [ρi, D
2k−1]w〉

+ 〈[ρi, [D2k−1, R(DA)]]w, [ρi, D
2k−1]w〉 + 〈[ρi, D

2k−1]w, [ρi, [D2k−1, R(DA)]]w〉)
plus∑

i

(2〈[ρi, R(DA)D2k−1]w,D2k−1ρiw〉

+ 〈[ρi, [D2k−1, R(DA)]]w,D2k−1ρiw〉 + 〈[ρi, D
2k−1]w, [D2k−1, R(DA)]ρiw〉)

plus∑
i

(2〈R(DA)D2k−1ρiw, [ρi, D
2k−1]w〉

+ 〈[D2k−1, R(DA)]ρiw, [ρi, D
2k−1]w〉 + 〈D2k−1ρiw, [ρi, [D2k−1, R(DA)]]w〉).

In the last three sums, for each w that is not immediately preceded by a ρi, we
replace w by

∑
j ρ

2
jw. In every case we get an expression of the form S

∑
j ρ

2
jw,

where S is an operator. We replace each of these expressions by
∑

j(ρjSρjw +
[S, ρj ]ρjw). These steps affect the preceding sum in the following way: the first
summation over i does not change; each term in the second summation over i
changes to have the form

∑
j,�〈Tρjw,Qρ�w〉; each term in the third summation over

i takes the form
∑

j〈Tρjw,Qρiw〉; and each term in the final summation over i takes
the form

∑
�〈Tρiw,Qρ�w〉. (In these expressions T and Q represent operators.)

Note that there is a bound, independent of i, on the number of neighborhoods that
intersect the neighborhood associated with ρi, and so there is a bound, independent
of i, on the number of terms indexed by j and/or 	 that make a nonzero contribution
to a term in which ρi appears (possibly within the operator). (Our notation for an
individual term 〈Tρjw,Qρ�w〉 includes the cases where j and/or 	 equals the value
of i that was the original index for the term.)

To each of the inner products 〈Tρjw,Qρ�w〉 involving operators T and Q orig-
inally associated with neighborhood i, we associate a growth factor ai(T,Q) de-
termined (up to a uniformly bounded factor) by the following conditions. In the
neighborhood i that we are working in, the operator T (whether it is a vector-bundle
map or a higher-order differential operator) is a constant multiple of an operator T ′

chosen as follows. Working in neighborhood i’s coordinates, we choose T ′ so that
the pointwise sup of the operator norm of each of its nonzero coefficient matrices
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is ≤ 1 and so that at least one of these sup’s is at least 1/2. We use the same
conventions to relate Q and Q′. The growth factor ai(T,Q) is then determined (up
to a uniformly bounded factor) by the equation

〈Tρjw,Qρ�w〉 = ai(T,Q)〈T ′ρjw,Q
′ρ�w〉.

We proceed similarly in j and 	 coordinates to define aj(T,Q) and a�(T,Q). (If
any operator has all coefficients zero in a coordinate system, we simply ignore that
term.) Finally we let ai,j,�(T,Q) be the largest of the three growth factors so
defined.

Assume that we are far enough out the manifold’s end that the terms of the form
〈R(DA)D2k−1ρiw,D

2k−1ρiw〉 and 〈A2k−1R(DA)ρiw,A
2k−1R(DA)ρiw〉 are nonneg-

ative. The former involves the operator D2k−1 that is uniformly elliptic of order
2k − 1 and a growth factor that grows as A2. The latter involves the square of
the L2 norm of ρiw and a growth factor that grows as A4k+2. In every other inner
product: every differential operator that appears is of order no greater than 2k−1;
if both differential operators in an inner product are of order 2k − 1, the growth
factor is o(A2) in the strong sense; and regardless of the orders of the operators,
there is a uniform constant α so that each ai is no greater than the product of
α with the infimum of the spectrum of A2 on the ith neighborhood. The proofs
of these assertions rely on standard results about commutators of the functions ρi

with differential operators and on two other observations. One is that although
[D2k−1, DA+AD] may have order 2k − 1, DA+AD is o(A2) in the strong sense.
The other is that for r large enough that A2 represents multiplication by a scalar-
valued function of r, [D2k−1, A2] has order 2k − 2 with coefficients that are o(A2)
in the strong sense.

We need to show that with one-third of each term of the sum of nonnegative
terms∑

i

(2〈R(DA)D2k−1ρiw,D
2k−1ρiw〉 + (1/3)〈A2k−1R(DA)ρiw,A

2k−1R(DA)ρiw〉)

set aside, what remains of these terms exceeds the sum of the absolute values of
all the other terms once we are in neighborhoods far enough out the manifold’s
end. Consider first the terms of the form 〈Tρjw,Qρ�w〉, where each of T and Q is
a differential operator of order 2k − 1. Up to a uniform constant possibly arising
from ambiguity in the convention used to define the Sobolev norm, for a term
〈Tρjw,Qρ�w〉 originally associated with index i,

|〈Tρjw,Qρ�w〉| ≤ ai,j,�(T,Q) ‖ρjw‖0,2k−1 ‖ρ�w‖0,2k−1,

where the last two factors are calculated in j and 	 coordinates respectively. Because
of the way our neighborhoods intersect, there is a bound, independent of w, on the
number of such nonzero terms in which any ρj or ρ� appears. Because the terms
in which both differential operators are of order 2k − 1 have growth factors that
are o(A2) in the strong sense, by G̊arding’s inequality the sum of one-third of our
nonnegative terms exceeds the sum of the absolute values of terms of this type.

Finally consider terms of the form 〈Tρjw,Qρ�w〉, where T is of order ≤ 2k − 2
and Q is of order ≤ 2k − 1 (as well as terms where the orders of the operators are
the reverse, but our notation will reflect only the first case explicitly). Proceeding
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as before, we get

|〈Tρjw,Qρ�w〉| ≤ ai,j,�(T,Q) ‖ρjw‖0,2k−2 ‖ρ�w‖0,2k−1.

Supressing reference to the growth factor, which is bounded by a constant multiple
of A2, we note that for each δ > 0

‖ρjw‖0,2k−2 ‖ρ�w‖0,2k−1 ≤ δ‖ρ�w‖2
0,2k−1 + (1/4δ)‖ρjw‖2

0,2k−2.

By the relationships among Sobolev norms, for any ε > 0 there is a Cε for which

δ‖ρ�w‖2
0,2k−1 + (1/4δ)‖ρjw‖2

0,2k−2

≤ δ‖ρ�w‖2
0,2k−1 + (1/4δ)(ε‖ρjw‖2

0,2k−1 + Cε‖ρjw‖2).

Using the bound on the number of intersecting neighborhoods and the observation
that the terms we have just been analyzing have growth factors that are bounded
by a constant multiple of A2, we see that we can choose δ small enough and, taking
1/4δ into account, ε small enough that by G̊arding’s inequality,

(1/3)
∑

i

2〈R(DA)D2k−1ρiw,D
2k−1ρiw〉

plus some constant multiple of
∑

i〈A2ρiw, ρiw〉 dominates the terms giving rise to
the product of their growth factors with

δ‖ρ�w‖2
0,2k−1 + (1/4δ)(ε‖ρjw‖2

0,2k−1 + Cε‖ρjw‖2)

eventually in r. The needed constant multiple of
∑

i〈A2ρiw, ρiw〉 is provided,
eventually in r, by the more rapidly growing

(1/3)
∑

i

(1/3)〈A2k−1R(DA)ρiw,A
2k−1R(DA)ρiw〉.

The proof that the other nonnegativity hypothesis of Proposition 5.3 is satisfied
is analogous. This time the third nonnegative term on the left side of the inequality
plays no role. The first term provides 〈Dρiw,Dρiw〉 with a growth factor of the
order of A4k−2, the second term has growth of the order of A4k, and the operator
in the final term has all coefficients bounded by a multiple of A4k−2 and has its
second-order coefficients strongly o(A4k−2).

6. Normal neighborhoods

To provide a setting for estimates in Section 8 we use the bounded geometry of
M∗ and of E⊗S to make some uniform choices of normal neighborhoods of points
in M∗. (Recall that M∗ is the double of the manifold M with boundary that is
the setting for the Atiyah–Patodi–Singer index theorem of Section 9.) A reference
for background material is Section 2 of [19]. Our discussion is largely taken from
Section 5 of [9], where we also provide details of the extension of our operators and
other structures from these normal neighborhoods to Euclidean space.

We start our construction by choosing for each x ∈ M∗ a normal neighborhood
Ux. This is done in such a way that there is a radius R0 so that for each x the open
subset of R

m associated to Ux by the normal coordinate chart contains B(�0, R0)
and has x associated with �0. (Here B(�0, R0) is the closure of the open ball B(�0, R0)
with center the origin and radius R0.) We also assume that R0 ≤ δb/4, where δb is
the uniform width of N ’s collar neighborhood in M . The normal coordinate chart
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at x arises from the exponential mapping at x. We assume all of this has been
done so that the distortion of the normal coordinate system satisfies a bound that
is independent of x and so that the Christoffel symbols of M∗ and of E ⊗ S, as x
ranges over M∗, form a bounded subset of the Fréchet space C∞(B(�0, R0)).

We make a single choice of a smooth function φ : B(�0, R0) → R satisfying 0 ≤
φ ≤ 1, φ ≡ 1 on B(�0, R0/4), and support(φ) ⊂ B(�0, R0/2).

Notation 6.1. For each x we give the name φx to the associated function on Ux,
as well as to its extension by 0 to all of M∗. For each section w of E ⊗ S and each
x ∈M∗, we use the notation wx for φx · w.

Remark 6.2. As discussed in [9] we can use normal coordinates for each Ux and a
uniformly chosen trivialization of E⊗S over each Ux to make sense of extension by
zero of wx to R

m and thus to make sense of the (componentwise) Fourier transform
of wx. We will denote this Fourier transform by ŵx.

Notation 6.3. For x ∈M∗

ax = inf
y∈Ux

|A(y)|.

Some of the calculations later in the paper apply to sets Ux satisfying the fol-
lowing assumption.

Assumption 6.4. On Ux, A is the product of a scalar-valued function and a
unitary-valued vector-bundle map that intertwines the connections on E0 and E1.
The number ax is positive.

Suppose that we are in a normal neighborhood Ux where Assumption 6.4 is
satisfied. In Section 5 of [9], we describe how to use the normal coordinates to
transfer DA,M∗ and ∆A,M∗ from Ux to a subset of Euclidean space and then to use
a partition of unity to extend these transferred operators to operators DA,x and
∆A,x on the entire Euclidean space. The operator ∆A,x takes the form D2

x+a2
x+νx,

where Dx is a Dirac operator and νx a smooth compactly supported vector-bundle
map. (Conjugation by a unitary operator made from A is suppressed in the current
discussion but treated explicitly in [9].) Later, to identify the local expressions
that arise from using the heat equation to prove an index formula, we will use the
following assumption.

Assumption 6.5. For each n and x let Bn,x denote the supremum of the pointwise
norms of entries of νx and of all of these entries’ partial derivatives of order no
greater than 4n. Then for each n, as x→ ∞ in M∗, Bn,x/a

2
x → 0.

Remark 6.6. Our discussions of manifolds with cylindrical and linearly expanding
ends provide examples that satisfy Assumptions 6.4 and 6.5.

7. Operators with boundary conditions

The operator whose index theory we study (under assumptions that make this
index theory accessible) is the operator D̃A on the manifold M with boundary. At
this point we must specify the domain of D̃A more carefully. The operator D̃A that
we use is the closure of the operator D̃A defined on a domain consisting of sections
satisfying two conditions. First these sections w must be smooth and in L2 with
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D̃Aw ∈ L2 as well. Second these sections must satisfy the Atiyah–Patodi–Singer
boundary condition, which is defined as follows. Let DA be the operator defined
on N and described in Section 3. (Because [6] tells us that, defined on smooth
compactly supported sections, DA is essentially self-adjoint, there is no ambiguity
about the self-adjoint extension to which we refer.) We assume that we are in a
setting in which the operator DA on N has empty essential spectrum. Let P be the
projection onto the subspace of L2(E0⊗S⊕E1⊗S) spanned by the eigenvectors of
DA with nonnegative eigenvalues. The Atiyah–Patodi–Singer boundary condition
states that w is in the domain of D̃A if w’s restriction to N is in the kernel of P .

Having taken this care in defining the operator D̃A on M , we wish to take
corresponding care in the description of its adjoint (D̃A)∗, used in the construction
of

DA =

(
0 (D̃A)∗

D̃A 0

)
.

The following proposition will identify the adjoint (D̃A)∗ and hence the operators
DA and ∆A on M . First we introduce some notation.

Notation 7.1. Recall from Remark 3.6 the construction of the double M∗ of M
and of the extension of the operator D̃A (without boundary conditions) to M∗.
Because M∗ is complete without boundary, the passage from D̃A on M∗ to DA,
and hence to ∆A, on M∗ is without ambiguity. When our discussion makes clear
the underlying manifold, we will omit it from the notation, but when there is a
chance of confusion, we will include the underlying manifold in the notation, as in
D̃A,M , DA,N , or ∆A,M∗ .

Proposition 7.2. Let T̃ denote the differential operator on M whose expression
in local coordinates (including at boundary points) agrees with that of (D̃A,M∗)∗.
Apply T̃ first to the set of sections w that are smooth and L2 on M , whose images
under T̃ are L2, and that satisfy the boundary condition (1 − P )(w|N ) = 0 adjoint
to the Atiyah–Patodi–Singer boundary condition. Let T be the closure, as a map
from L2 sections on M to L2 sections on M , of this operator. Then T = (D̃A,M )∗.

Proof. Suppose that w has support in N× [0, 5δb/6], “within the boundary’s collar
neighborhood.” Because any inner product involving w or T (w) may be calculated
on N × [0, δb), it is a consequence of the reasoning used to prove Proposition 2.12
of Part I of [1] that w is in the domain of T if and only if w is in the domain of
(D̃A,M )∗. Proposition 2.12 of Part I of [1] relies on parts of Proposition 2.5 of the
same paper. The calculations that use separation of variables on the cylinder extend
to our setting, although in doing them we must replace the smooth compactly
supported sections of [1] by smooth sections with supports that are compact in the
direction orthogonal to N . Note that the reasoning outlined here shows that for
w supported within the boundary’s collar neighborhood and in the domain of T ,
T (w) = (D̃A,M )∗(w).

Let h1 be a smooth nonnegative function of u satisfying 0 ≤ h1 ≤ 1, h1(u) = 1
for u ∈ [0, δb/3], and support(h1) ⊂ [0, δb/2]. We use h1 to define a function, also
called h1, on N × [0, δb], and, still using the name h1, we extend this function by
0 to the rest of M and by 1 to what remains of M∗. We proceed similarly with a
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function h2 that shares the properties of h1 except that h2(u) = 1 for u ∈ [0, 2δb/3]
and support(h2) ⊂ [0, 5δb/6].

Suppose that w is in the original domain of T̃ . Because h2w is also in this
domain, and h2w has support in the boundary’s collar neighborhood of width
5δb/6, h2w ∈ domain((D̃A,M )∗) with (D̃A,M )∗(h2w) = T (h2w). To show that
w ∈ domain((D̃A,M )∗), we show that (1 − h2)w ∈ domain((D̃A,M )∗). (In the pro-
cess we show that (D̃A,M )∗((1−h2)w) = T ((1−h2)w).) If v is an arbitrary smooth
element of domain((D̃A,M )),

〈D̃A,Mv, (1 − h2)w〉 = 〈D̃A,M ((1 − h1)v), (1 − h2)w〉 = 〈(1 − h1)v, T ((1 − h2)w)〉
= 〈v, T ((1 − h2)w)〉.

Here the first and last equalities arise from the supports of the sections that appear
in the expressions. The middle equality follows from the definition of T and the
observation that (1−h1)v and (1−h2)w extend smoothly by zero to M∗. Because
(D̃A,M )∗ is a closed operator, showing that any w in the original domain of T̃ is
in domain((D̃A,M )∗), with T and (D̃A,M )∗ agreeing on w, shows that any w ∈
domain(T ) is in domain((D̃A,M )∗), with the operators agreeing on such w.

Suppose w ∈ domain((D̃A,M )∗). To show that h2w is in domain((D̃A,M )∗), note
that h2 and ∂h2/∂u are bounded real-valued functions and that multiplication by
h2 takes domain(D̃A,M ) to itself, and calculate that, for v ∈ domain(D̃A,M ),

〈h2w, D̃A,Mv〉 = 〈w, h2D̃A,Mv〉 = 〈w, (−∂h2/∂u)v + D̃A,M (h2v)〉
= 〈(−∂h2/∂u+ h2(D̃A,M )∗)w, v〉.

By showing that h2w ∈ domain((D̃A,M )∗), we have shown also that (1 − h2)w ∈
domain((D̃A,M )∗) and, by the first paragraph of this proof, that h2w ∈ domain(T ).

Let v be an arbitrary smooth element of domain(D̃A,M∗). The section (1−h1)v
is in both domain(D̃A,M∗) and domain(D̃A,M ). By support considerations

〈D̃A,M∗v, (1 − h2)w〉 = 〈D̃A,M∗((1 − h1)v), (1 − h2)w〉
= 〈D̃A,M ((1 − h1)v), (1 − h2)w〉
= 〈(1 − h1)v, (D̃A,M )∗((1 − h2)w)〉
= 〈v, (D̃A,M )∗((1 − h2)w)〉.

It follows that (1−h2)w ∈ domain((D̃A,M∗)∗). By [6] there is a sequence of smooth
sections wj converging to (1 − h2)w in the norm

(〈wj , wj〉 + 〈(D̃A,M∗)∗wj , (D̃A,M∗)∗wj〉)1/2,

where the inner products are on M∗. The sequence of sections (1 − h1)wj also
converges to (1 − h2)w in this norm, and the sections in this sequence satisfy the
conditions defining domain(T ). Hence for w ∈ domain((D̃A,M )∗), (1 − h2)w ∈
domain(T ). Combining (1 − h2)w ∈ domain(T ) with h2w ∈ domain(T ), we see
that w ∈ domain(T ). �

Estimates in the next section will depend on the following proposition.
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Proposition 7.3. Assume that DA,N has empty essential spectrum. Then for each
positive integer k there is a positive constant Γk that makes the following true: for
every w ∈ domain(Dk

A,M ) having support contained in some proper subset N×[0, δ′]
of the boundary’s open collar neighborhood N × [0, δb), there is a section w∗ ∈
domain(Dk

A,M∗) having support in N × [−δ′, δ′] and satisfying the inequality

k∑
j=0

〈Dj
A,M∗w

∗, Dj
A,M∗w

∗〉 ≤ Γk

k∑
j=0

〈Dj
A,Mw,Dj

A,Mw〉.

Proof. Use an orthonormal L2-basis of eigenvectors {Φλ} for DA,N (with λ rep-
resenting the associated eigenvalues, and with the notational ambiguity caused by
multiplicity introducing no confusion) to write w =

∑
λ fλΦλ, where each fλ is a

function defined on [0,∞) with support contained in [0, δ′]. Assume for the moment
that each fλ is in the Sobolev space Hk([0, δb)). As discussed, e.g., in [7], there are
numbers ct for t = 1, . . . , k+1 that satisfy the system of equations

∑k+1
t=1 (−t)mct = 1

indexed by m = 0, . . . , k. With these numbers we can extend each fλ to u < 0 by
defining f∗λ(u) =

∑k+1
t=1 ctfλ(−tu) for u ≤ 0. We denote the extended function by

f∗λ . One can calculate directly from the construction that f∗λ is well-defined at 0,
as are all derivatives of f∗λ through order k. One can also calculate that there is
a constant α0 for which the L2 norms satisfy ‖f∗λ‖ ≤ α0‖fλ‖, and for each 	 ≤ k
there is a constant α� for which∥∥∥∥ d�

du�
f∗λ

∥∥∥∥ ≤ α�

∥∥∥∥ d�

du�
fλ

∥∥∥∥ .
In these inequalities the derivatives and L2 norms are calculated in (−δb, δb) for f∗λ
and in [0, δb) for fλ. All of the constants are independent of fλ.

For w =
∑
fλΦλ, define w∗ =

∑
f∗λΦλ. To prove the inequality in the propo-

sition, it suffices to prove that for each j ≤ k there are constants βj , γj , and εj
(independent of λ, fλ, and Φλ) for which

‖Dj
A,M∗f

∗
λΦλ‖ ≤ βj

j∑
�=0

|λ|j−�

∥∥∥∥ d�

du�
f∗λ

∥∥∥∥ ≤ γj

j∑
�=0

|λ|j−�

∥∥∥∥ d�

du�
fλ

∥∥∥∥ ≤ εj‖Dj
A,MfλΦλ‖.

The first inequality in the expression above follows from the observation that
DA,M∗(f∗λΦλ) = ((df∗λ/du) + λ)Φλ and from the triangle inequality. The sec-
ond inequality follows from the relationship between fλ and f∗λ . The third in-
equality follows from the observation that DA,M (fλΦλ) = ((dfλ/du) + λ)Φλ and
from the following lemma. Note that this lemma also establishes that for w =∑

λ fλΦλ ∈ domain(Dk
A,M ), satisfying the support condition we are assuming, each

fλ ∈ Hk([0, δb)). �

Lemma 7.4. For each natural number k and each j ∈ {0, . . . , k}, there exists a
constant ζj,k for which Dk

A,M (fλΦλ) = gλΦλ implies that

|λ|k−j

∥∥∥∥djfλ

duj

∥∥∥∥ ≤ ζj,k‖gλ‖ and
∥∥∥∥dkfλ

duk

∥∥∥∥ ≤ ζk,k‖gλ‖.

Here ‖ ‖ denotes the norm on L2([0,∞)).
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Proof. The case λ = 0 follows directly from the observation that DA,M (f0Φ0) =
df0/du. For other values of λ the proof is by induction on k. For k = 1 the
arguments in the proof of Proposition 2.5 of Part I of [1] extend to show that
|λ|‖fλ‖ ≤ 2‖gλ‖ and ‖dfλ/du‖ ≤ 3‖gλ‖. Suppose that the result is true for
k = n. To prove it for k = n + 1, note that for Dn+1

A,M (fλΦλ) = gλΦλ, we can set
DA,M (fλΦλ) = FλΦλ and use the inductive hypothesis in the form |λ|‖fλ‖ ≤ 2‖Fλ‖
and |λ|n‖Fλ‖ ≤ ζ0,n‖gλ‖ to conclude that |λ|n+1‖fλ‖ ≤ 2ζ0,n‖gλ‖. It then follows
from (dfλ/du)+λfλ = Fλ that ‖dfλ/du‖ ≤ |λ|‖fλ‖+‖Fλ‖ and hence by the preced-
ing conclusion that |λ|n‖dfλ/du‖ ≤ |λ|n+1‖fλ‖+|λ|n‖Fλ‖ ≤ (2ζ0,n+ζ0,n)‖gλ‖. The
proof concludes by induction on the order of fλ’s derivative. We illustrate this with
the next step: because (d2fλ/du

2) + λ(dfλ/du) = dFλ/du (and previous reasoning
puts the second and third terms in L2), ‖d2fλ/du

2‖ ≤ |λ|‖dfλ/du‖+‖dFλ/du‖ and
so |λ|n−1‖d2fλ/du

2‖ ≤ |λ|n‖dfλ/du‖ + |λ|n−1‖dFλ/du‖ ≤ (3ζ0,n + ζ1,n)‖gλ‖. �

8. Heat kernels

At the heart of a proof of an Atiyah–Patodi–Singer index theorem for a perturbed
Dirac operator D̃A,M is analysis of the associated heat operator exp(−t∆A,M ). By
identifying conditions under which this heat operator is trace class, we provide
a way to prove that D̃A,M is Fredholm. These conditions let us represent the
heat operator’s supertrace, for t > 0, by the integral along the diagonal of the
pointwise supertrace of the heat kernel. One key to this representation is the decay
of the pointwise trace as (x, x) → ∞ on the diagonal of M ×M . To extract from
this representation an index formula, we need, for the operator’s supertrace, an
asymptotic expansion in which the dominant terms are determined by local data
at points away from the boundary of M and by data from the boundary’s collar
neighborhood at points in some collar neighborhood of the boundary. A standard
tool for getting an asymptotic expansion with such properties is the use of the
Fourier transform and finite propagation speed for solutions of the wave equation
to express the heat operator as the sum of two terms, one of which is determined
by local data. Bounded geometry permits one to make the associated estimates
uniformly in (x, y) ∈M×M [17]. To extract from these estimates asymptotics that
persist after integration over the base manifold, we need to show that the constants
in these estimates decay sufficiently rapidly as x and/or y go to infinity on M . Both
kinds of decay required by this discussion will arise from the observation that the
heat operator is continuous between the domains of any two powers of ∆A, from
the characterization of domains of powers of ∆A given by Assumption 5.1, and from
quantitative versions of Assumption 4.1. This section provides the details behind
this assertion by extending the discussion given in Section 7 of [9].

Throughout this section we use uniform choices of normal neighborhoods Ux

of points x ∈ M∗ and we use the notation introduced in Section 6, in particular
in Notation 6.1, Remark 6.2, and Notation 6.3. We will also need the following
notation.

Notation 8.1. Let ãx denote the larger of 1 and ax.

Throughout this section we assume that Assumption 5.1 holds on M∗.

Notation 8.2. We use the terminology Dirac delta distribution and notation δx
for an element dual to continuous sections of E ⊗ S and defined on a section by
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the application of a linear functional of norm one to the section’s value at x. For
our arguments we do not need to specify the functional and hence the distribution
more precisely. We use this terminology and notation on both M and M∗.

Notation 8.3. For positive integers n let W 2n denote the completion of the set
of smooth sections of E ⊗ S that are in the domains of ∆A, . . . ,∆n

A in the norm
defined by

‖w‖2
2n = 〈w,w〉 +

n∑
k=1

〈(∆A)kw, (∆A)kw〉.

Here the inner products are the L2 inner products. The notation ‖ ‖ without
subscripts refers to the L2 norm. Let W−2n be the dual of W 2n, with norm ‖ ‖−2n

the standard one associated to linear functionals. We use the notation introduced
here either with sections over M , in which case the operator involved is ∆A,M and
the inner products are L2 inner products over M , or with sections over M∗, in
which case the operator involved is ∆A,M∗ and the inner products are L2 inner
products over M∗. We let context or explicit comment identify the sense in which
to interpret each use of this notation.

Remark 8.4. We use the expression uniform constant to refer to a constant that
may depend on our given data (M , E, S, D, and A), on general choices (such as Ux

and φx chosen as in Section 6), and on algebraic identities, but that is independent
of other data (such as a vector-bundle section or point in M) appearing in the
expression in which the constant appears.

Lemma 8.5. Assume that Assumption 5.1 holds on M∗. Choose an arbitary nat-
ural number n and x ∈ M∗. If w ∈ W 2n, then wx ∈ W 2n. Moreover there is a
uniform constant K such that

‖(D2n + ã2n
x )wx‖ ≤ K‖w‖2n.

Here the sections, norms, and domains are over M∗.

Proof. The assertion that wx ∈ W 2n is purely local. By Assumption 5.1 it de-
pends only on the degree of differentiability of w and of wx. This is unaffected by
multiplication of w by the smooth φx.

To prove the inequality we first apply Assumption 5.1 to the terms in the def-
inition of ‖w‖2n. Then we note that, by the product rule, ‖D2nwx‖2 is bounded
by a sum of terms, each of which is bounded by a product of two sup norms of
partial derivatives (of degree ≤ 2n) of φx times a product of factors of total degree
2 in expressions of the form ‖D2kw‖ for nonnegative integers k ≤ n. This last
assertion follows from repeated application of the Cauchy–Schwarz inequality and
self-adjointness. For example in the hardest case

|〈D2r+1w,D2sw〉| ≤ ‖D2r+1w‖ · ‖D2sw‖
with

〈D2r+1w,D2r+1w〉1/2 = 〈D2r+2w,D2rw〉1/2 ≤ ‖D2r+2w‖1/2‖D2rw‖1/2. �

Proposition 8.6. Assume that ∆A,M∗ satisfies Assumption 5.1. If 2n > m/2 and,
over M∗, w ∈W 2n, then w is a continuous section of E ⊗S. For each n such that
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2n > m/2 there is a uniform constant C such that for every x ∈M∗,

sup
y∈Ux

|wx(y)| ≤ C · ã(m/2)−2n
x · ‖w‖2n.

The same conclusions, but involving norms over M , apply to sections w over M .

Proof. The continuity statement follows from W 2n ⊂ domain(D2n), the ellipticity
of D, and the standard Sobolev imbedding theorem. The bound on the pointwise
norm of wx follows from a bound on the L1 norm of ŵx. By the Hölder inequality(∫

Rm

|ŵx(ξ)| dξ
)2

≤
(∫

Rm

|ŵx(ξ)|2(ã2n
x + |ξ|2n)2 dξ

)(∫
Rm

(ã2n
x + |ξ|2n)−2 dξ

)
.

The left side of the inequality is the square of the L1 norm of ŵx. By Lemma 8.5
the first integral on the right side is bounded by a uniform constant multiple of
‖w‖2

2n. Switching to spherical coordinates, we can replace the second integral on the
right by a constant (volume of a unit sphere) multiple of

∫∞
0

(ã2n
x + ρ2n)−2ρm−1 dρ.

Factoring out ã−4n
x and changing variables by v = ρ/ãx, we get for this integral

ãm−4n
x

∫∞
0

(1 + v2n)−2vm−1 dv, which is finite for 2n > m/2. The transition from
M∗ to M follows from Proposition 7.3, which permits the extension of sections
from M to M∗ and provides an accompanying norm inequality. �

Corollary 8.7. Let δx be a Dirac delta distribution at x ∈ M∗. For 2n > m/2,
δx ∈ W−2n. If Assumption 5.1 holds, then for n such that 2n > m/2, there is a
uniform constant C ′ such that

‖δx‖−2n ≤ C ′ · ã(m/2)−2n
x .

The same statements are true on M .

Proof. Because all elements of W 2n are continuous, δx ∈ W−2n. The norm esti-
mate on δx follows from the bound on the sup norm given by Proposition 8.6. �

Lemma 8.8. Let f be a Schwartz function on R and choose an integer n for which
2n > m/2. Then f(DA) is a continuous map W−2n →W 2n, and the norm of this
linear map is bounded above by sup{(1 + |x|4n)|f(x)| : x ∈ R} times a constant that
depends only on n. These statements are true for either DA,M∗ on M∗ or DA,M

on M .

Proof. This is a consequence of the definitions of W 2n and W−2n and of algebraic
identities. �

Notation 8.9. For f as in the preceding lemma, let f̂ denote its Fourier transform.
The L1

4n norm of f̂ is
∑4n

i=0

∫
R
|(d/dξ)if̂(ξ)| dξ.

Lemma 8.10. In the setting of the preceding lemma, the norm of f(DA) : W−2n →
W 2n is bounded by a uniform constant times the L1

4n norm of f̂ . Again the assertion
does not depend on whether the spaces of sections are defined over M∗ or M .

Proof. This proof follows from the preceding lemma, the Fourier transform’s treat-
ment of multiplication and differentiation, and algebraic identities. �
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Lemma 8.11. Choose a positive integer n. Let g be a Schwartz function on R,
and let θ be a smooth compactly supported function on R that is identically one in
some neighborhood of 0. For real τ , let G(λ) = g(λ)(1 − θ(τλ)). Then for τ in
some neighborhood of 0, for each N there is a constant KN such that the L1

4n norm
of G(λ) is bounded above by KNτ

N .

Proof. This lemma follows from the product rule and the rapid decay of g and its
derivatives. �

Lemma 8.12. Let f be a Schwartz function on R. Then the kernel k[f ] of f(DA)
is smooth. Again the assertion is true for both f(DA,M∗) and f(DA,M ).

Proof. By Lemma 8.5, the ellipticity of D, and the standard Sobolev imbedding
theorem, a section over M∗ that is in the domain of Dk

A,M∗ for all k is smooth. By
Proposition 7.3 the same is true over M . By Lemma 8.8 f(DA) is a continuous
map from the space of L2 sections to the domain of any power of DA. Hence as in,
e.g., Proposition 5.8 of [18], k[f ] is smooth. �

Lemma 8.13. Let f and k[f ] be as in Lemma 8.12. Assume that Assumption 5.1
holds. Suppose that 2n > m/2 and that the L1

4n norm of f̂ is bounded above by a
constant B. Then there is a uniform constant c such that

|k[f ](x, y)| ≤ c ·B · ã(m/2)−2n
x · ã(m/2)−2n

y .

Again the assertion is true for both f(DA,M∗) and f(DA,M ).

Proof. The linear map k[f ](x, y) is defined by a sum of terms of the form f(DA)(δy)
with the linear functionals defining δy ranging over a basis of the dual space of
(E ⊗ S)y. By Corollary 8.7, ‖δy‖−2n is bounded by a uniform constant times
ã
(m/2)−2n
y . By Lemma 8.10, ‖f(DA)(δy)‖2n ≤ B · ã(m/2)−2n

y times a uniform con-
stant. By Proposition 8.6, |f(DA)(δy)(x)| ≤ ã

(m/2)−2n
x · B · ã(m/2)−2n

y times a
uniform constant. �

Proposition 8.14. Assume that Assumption 5.1 holds. Suppose that on M there
is a nonnegative smooth function F (x) whose integral over M is finite and for
which ãm−4n

x ≤ F (x). Then for a Schwartz function f , f(DA) is a Hilbert–Schmidt
operator.

Proof. By the characterization of k[f ] given in Lemma 8.13, our assumption makes
the kernel square integrable on M ×M . �

Theorem 8.15. Under the assumptions of Proposition 8.14, for t > 0, the operator
exp(−t∆A,M ) is trace class with a smooth kernel, the integral of whose pointwise
trace on the diagonal gives the operator’s trace. Also the integral of the kernel’s
pointwise supertrace along the diagonal gives the operator’s supertrace.

Proof. By Lemma 8.12 the operator exp(−(t/2)∆A,M ) is represented by a smooth
kernel. By Proposition 8.14 exp(−(t/2)∆A,M ) is Hilbert–Schmidt. As the com-
position of a pair of Hilbert–Schmidt operators, exp(−t∆A,M ) is trace class with
trace given by integrating the pointwise trace of its kernel along the diagonal. (See,
e.g., the proof of Theorem 6.10 of [18].) The assertion about the supertrace merely
involves introducing the appropriate signs. �
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Corollary 8.16. Under the assumptions of Proposition 8.14, the operator D̃A,M is
Fredholm. Its Fredholm index equals the integral along the diagonal of the pointwise
supertrace of the operator exp(−t∆A,M )’s kernel for any t > 0.

Proof. This result follows directly from the preceding theorem. �

Example 8.17. On a cylindrical end let the perturbation be formed from a power
rp of the radial variable times a unitary-valued vector-bundle map that is inde-
pendent of r. Then the integrability condition in Proposition 8.14 is satisfied for
choices of n and p positive and large enough to ensure p(m− 4n) < −1. On a lin-
early expanding end the considerations are the same except that the cross-section
contributes a factor of rm−1 to the volume. Now the integrability condition requires
of positive n and p that p(m− 4n) +m− 1 < −1, and thus that p(m− 4n) < −m.

Lemma 8.18. Suppose that θ ∈ C∞
c (R) with θ ≡ 1 in some neighborhood of 0.

Then

exp(−t∆A) = (4πt)−1/2

∫
R

exp(−ξ2/4t) exp(iξDA)θ(ξ) dξ

+ (4πt)−1/2

∫
R

exp(−ξ2/4t) exp(iξDA)(1 − θ(ξ)) dξ

for either ∆A,M∗ or ∆A,M .

Proof. ∆A = D2
A. The integrals arise from the Fourier transform of a Gaussian.

�

Lemma 8.19. Choose a positive integer n. There is a deleted neighborhood of
t = 0 in {t ∈ R : t ≥ 0} such that for t in this neighborhood the following estimates
hold: for any N there is a constant CN for which the L1

4n norm of

ξ 
→ exp(−ξ2/4t)(1 − θ(ξ))

is bounded above by CN t
N .

Proof. In the integrals defining the L1
4n norm, use the change of variable λ =

ξ/(2t1/2). Apply Lemma 8.11. �

Lemma 8.20. Suppose that Assumption 5.1 holds for ∆A and that n is such that
2n > m/2. Choose θ ∈ C∞

c (R) with θ ≡ 1 in some neighborhood of 0. Let k1−θ
t be

the kernel of the operator defined by

(4πt)−1/2

∫
R

exp(−ξ2/4t) exp(iξDA)(1 − θ(ξ)) dξ.

Then there is a deleted neighborhood of t = 0 in {t ∈ R : t ≥ 0} such that for t in
this neighborhood the following estimates hold: for any N there is a constant CN

for which |k1−θ
t (x, y)| ≤ CN · tN · ã(m/2)−2n

x · ã(m/2)−2n
y times a uniform constant.

Again the assertion is true for both DA,M∗ and DA,M .

Proof. Apply Lemma 8.19 to replace the B in Lemma 8.13. �

Remark 8.21. As will be discussed in detail in the next section, this lemma pro-
vides the foundation for identifying conditions under which the significant parts of
an asymptotic expansion for the heat kernel depend only on local data.
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9. The index theorem

In this section we prove an Atiyah–Patodi–Singer index theorem for the per-
turbed Dirac operators studied in this paper. Our proof follows the outline of the
proof in [1] but uses estimates proven in the current paper as well as some results
in [9]. Throughout this section we make the following assumptions.

Assumption 9.1. The manifolds, vector bundles, and operators are as described
in Sections 2 and 3. In short we consider perturbed Dirac operators between sec-
tions of vector bundles having bounded geometry over complete oriented Riemann-
ian manifolds with bounded geometry. Recall that we denote the m–dimensional
manifold with boundary by M , its boundary by N , and its double by M∗. Also
we denote by D̃A,M the perturbed Dirac operator on M whose Fredholm index we
study.

We assume that the perturbation’s growth is sufficiently rapid and regular. In
particular we require that Assumption 4.1 be satisfied because i(A)(x) → ∞ as
x→ ∞ on M (or on M∗) and because DA+AD is o(A2). This assumption about
the perturbation on M implies the same assumptions about the perturbation’s
restriction to N and about the perturbation’s natural extension to M∗.

Our more detailed assumptions about the perturbation’s regularity are Assump-
tions 6.4 (applied to x outside some compact subset of M∗) and 6.5. A decay
condition on elements in the domains of powers of ∆A,M∗ is expressed by Assump-
tion 5.1. We assume that the number of values no greater than L in the spectrum
of ∆A,N grows at a rate bounded by some power of L. Finally we assume that
there is an n > m/2 for which the integrability hypothesis of Proposition 8.14 is
satisfied.

Throughout the paper we have discussed examples satisfying these assumptions
on manifolds with cylindrical or linearly expanding ends.

Notation 9.2. We follow [1] in letting η(s) denote the eta function associated with
the operator DA,N .

η(s) =
∑

λ

sign(λ)|λ|−s,

where λ ranges over the nonzero elements of the spectrum of DA,N and these
elements are counted according to multiplicity. By our assumption on the spectrum
of ∆A,N (and hence on the spectrum of DA,N ), this function is holomorphic when
the real part of s is sufficiently large. As in [1] the proof of the index theorem
establishes that η(s) has an analytic continuation to the plane that is holomorphic
in a neighborhood of s = 0. We let η(0) denote the value at 0 of this continuation.

Notation 9.3. We let I(M) denote the index differential form associated with the
operator D. For example if D is the spin Dirac operator, I(M) = Â(M), the Â
differential form expressed in terms of the curvature of M . (There is more than
one convention regarding the differential form. One should choose a convention
consistent with the convention used for the Chern character form introduced below.
See, e.g., [18].)

Notation 9.4. We let ch(E0, E1,A) denote the Chern character differential form
equal to the difference of the Chern character form arising from the connection
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on E0 and the Chern character form arising from the connection on E1. Our
assumption that, off some compact set, these connections are intertwined by A’s
unitary part guarantees that ch(E0, E1,A) is compactly supported.

Notation 9.5. Let h denote the dimension of the kernel of DA,N .

Theorem 9.6. Under the assumptions collected in Assumption 9.1, the perturbed
Dirac operator D̃A,M , with the Atiyah–Patodi–Singer boundary conditions described
at the beginning of Section 7, is Fredholm. Its Fredholm index is given by the formula

index(D̃A,M ) =
∫

M

I(M)ch(E0, E1,A) − h+ η(0)
2

.

Proof. The proof follows the strategy of [1]. The estimates of the previous sections
replace the estimates arising from compactness of the manifold in [1].

Corollary 8.16 establishes that D̃A,M is Fredholm, with index equal to the inte-
gral along the diagonal of the pointwise supertrace of exp(−t∆A,M )’s kernel for any
t > 0. Let {θ, 1 − θ} be a smooth partition of unity on R, with θ an even function
identically equal to 1 on some neighborhood of 0 and with support contained in
(−R0/8, R0/8), where R0 is as in Section 6. Suppose that x is an element of M
with distance at least δb/4 from the boundary of M . Our analysis of the pointwise
supertrace of the kernel of exp(−t∆A) follows the pattern established in Section 8
of [9]. Lemma 8.18 of the present paper decomposes exp(−t∆A) into a sum of two
operators, with the value of the first operator’s kernel at (x, x) completely deter-
mined by local data. We give the name kθ

t (x, x) to the value at (x, x) of this locally
determined operator’s kernel. We use the notation kt(x, x) for the value at (x, x) of
the kernel of exp(−t∆A). The pointwise supertrace of kθ

t (x, x) admits an asymp-
totic expansion via the standard heat equation methods. In particular because the
bundles E0 and E1 have connections that, off some compact set, are intertwined by
the unitary part of A, off some compact set of values of x, trsk

θ
t (x, x) = 0. (See, in

particular, Lemmas 8.7 and 8.8 of [9].) By Lemma 8.20 of the present paper and our
integrability assumption, the integral over the set of x in M with distance at least
δb/4 from M ’s boundary of the pointwise supertrace of kt(x, x) has an asymptotic
expansion agreeing with the asymptotic expansion of the integral over the same set
of the pointwise supertrace of kθ

t (x, x).
It follows that

index(D̃A,M ) =
∫

CN

trskt(z, z) + F (t),

where: trskt(z, z) is the pointwise supertrace of exp(−t∆A,M )’s kernel; the integral
is over the collar neighborhood CN of N having width δb/4; and F (t) is the asymp-
totic expansion in powers of t arising from applying standard local heat equation
techniques to exp(−t∆A,M ) over a compact subset of M .

In an asymptotic expansion for
∫

CN
trskt(z, z), our integrability assumption and

Lemma 8.20 imply we can ignore
∫

CN
trsk

1−θ
t (z, z) and focus on

∫
CN

trsk
θ
t (z, z).

Because all of our structures are product structures over the collar neighborhood
N×[0, δb], we can extend all of the structures to product structures over N×[0,∞),
which we will call IN . On IN we have a perturbed Dirac operator. This perturbed
Dirac operator differs from our standard examples in that its perturbation may fail
to be invertible over a noncompact set, the product of [0,∞) with the compact
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subset of N where invertibility fails. However because our operator has boundary
operator DA,N , we may impose Atiyah–Patodi–Singer boundary conditions, as on
M . Also, because IN is complete, as on M we may use these boundary conditions
and their adjoint boundary conditions to form on IN the self-adjoint first-order
operatorDA,IN and its square ∆A,IN . As in Notation 8.3 there are norms associated
with domains of powers of ∆A,IN . The extension of elements of these domains that
are supported in the interior of N × [0, δb) to sections supported in the interior of
N × (−δb, δb) can be achieved just as in Section 7. For sections with support in
N × (−δb, δb), calculations with positive integer powers of ∆A on the double of IN
are exactly the same as calculations with positive integer powers of ∆A on M∗. In
fact both Proposition 7.3 and Lemma 7.4 can be applied to sections with arbitrary
support in IN . It follows that we can use multiplication by a smooth, compactly
supported, nonnegative function of u (the variable normal to N) to proceed from
a section in the domain of some power of ∆A,IN to a section in the domain of the
same power of ∆A,M∗ in such a way that the sections agree on CN . Furthermore
we can choose a constant, independent of the sections, so that the latter section’s
norm, defined as in Notation 8.3 using the operator ∆A,M∗ , is bounded by that
constant times the former section’s norm, defined as in Notation 8.3 using the
operator ∆A,IN .

Let exp(−t∆A,IN ) be the heat operator associated with our operator on IN . It
has a kernel that we will denote kIN,t(x, y). Section 8’s analysis (Lemmas 8.8, 8.10,
and 8.11) of functions of DA on M and on M ’s double applies equally well on IN
and on IN ’s double. By the comments on N × [0, δb) in the preceding paragraph,
Section 8’s analysis of sections’ sup norms and of delta distributions’ norms extends
without change to sections compactly supported in N × [0, δb). It follows from the
comments at the end of the preceding paragraph that for z ∈ N× [0, δb/4], when we
use our partition of unity {θ, 1 − θ} to write kIN,t(z, z) = kθ

IN,t(z, z) + k1−θ
IN,t(z, z),

our integrability assumption implies that in an asymptotic expansion we can replace∫
CN

trsk
θ
IN,t(z, z) by

∫
CN

trskIN,t(z, z). By the finite propagation speed of solutions
of the wave equation, for z ∈ N × [0, δb/4], kθ

t (z, z) = kθ
IN,t(z, z).

At this point we can rewrite our index formula as

index(D̃A,M ) =
∫

CN

trskIN,t(z, z) + F (t).

Because the estimate on pages 53–54 of Part I of [1] depends only on the rate of
growth of the boundary operator’s spectrum, it applies in our case as well. Thus
as an asymptotic expansion our index formula can be written

index(D̃A,M ) =
∫

IN

trskIN,t(z, z) + F (t).

As in Part I of [1], this index formula provides the asymptotic expansion for the
first term on the right side of the equation, and this asymptotic expansion justifies
replacing

∫
IN

trskIN,t(z, z) by −(h + η(0))/2 and F (t) by
∫

M
I(M)ch(E0, E1,A).

(The discrepancy between
∫

M
and

∫
M\CN

in this last expression is explained by
observing that the collar’s product structure forces

∫
CN

I(M)ch(E0, E1,A) to equal
0.) �
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10. Comments on the eta invariant

In this section we make two comments about the eta invariants of self-adjoint per-
turbed Dirac operators, which appeared in our index theorem for perturbed Dirac
operators satisfying Atiyah–Patodi–Singer boundary conditions. First we note that
the eta invariant is nontrivial, even when restricted to the class of operators we con-
sider. Second we observe that any eta invariant of a self-adjoint perturbed Dirac
operator that appears in the index theorem is equal, modulo Z, to an eta invariant
of a related elliptic operator on the boundary of a related compact manifold with
boundary.

The nontriviality of the eta invariant follows from the observation that our self-
adjoint perturbed Dirac operators can have nontrivial spectral flow and hence non-
trivial continuous variation of their eta invariants. To build an example of a family
of perturbed Dirac operators with nontrivial spectral flow, we start with the stan-
dard example of nontrivial spectral flow for a family of elliptic operators on a com-
pact manifold: the convex combination Xu = (1−u)T+u exp(−2πit)◦T ◦exp(2πit)
where u is the parameter for the spectral flow and T is the Dirac operator on the
circle parametrized by t ∈ [0, 1]. (See, e.g., [11].) As is discussed in Part III of [1],
this spectral flow equals the index of an elliptic operator ∂

∂u + Xu on the Carte-
sian product of the circle parametrized by u with the circle parametrized by t. A
reinterpretation of this assertion is that the spectral flow is the Kasparov product
[X] ⊗C(S1) [i ∂

∂u ] of the class in KK1(C, C(S1)) represented by the family of oper-
ators Xu and of the class in KK1(C(S1),C) represented by the operator i ∂

∂u . The
identification of an integer with this Kasparov product is justified by the observa-
tion that the Kasparov product is an element of KK(C,C), which is isomorphic
to Z under the index map. (See, e.g., [3] for a discussion of G.G. Kasparov’s KK
theory.)

The Kasparov product [X] ⊗C(S1) [i ∂
∂u ] is equal to [H] ⊗C ([X] ⊗C(S1) [i ∂

∂u ]) for
any class [H] ∈ KK(C,C) represented by an operator of index one. The operator
of index one that we choose is a modified version of the operator

d+ d∗ + (xdx ∧ +ydy∧) + (xdx ∧ +ydy∧)∗

from L2 differential forms of even degree to L2 differential forms of odd degree on
R

2. This operator is taken from [12] and is discussed as a perturbed Dirac operator
in [9]. The modification of this operator (and of the spaces of L2 forms that it acts
on) that we make is based on changing the metric on the plane to one having a
cylindrical end. (This will put analysis of the spectrum of an operator we consider
next directly in the framework discussed in Section 4.) We give the name H to the
operator thus constructed on the modified Euclidean space.

By associativity of the Kasparov product, we can also view [H] ⊗C ([X] ⊗C(S1)

[i ∂
∂u ]) as ([H]⊗C [X])⊗C(S1) [i ∂

∂u ]. The observation that [H]⊗C [X] is represented
by a family of self-adjoint Dirac operators on the Cartesian product of the modified
R

2 with the circle identifies the Kasparov product ([H]⊗C [X])⊗C(S1) [i ∂
∂u ] as the

spectral flow of that family and hence shows that the spectral flow of that family
equals the nontrivial spectral flow of the family Xu.

The identification, modulo Z, of the eta invariant of a self-adjoint perturbed
Dirac operator on a boundary, as it appeared in our index theorem, with the eta
invariant of a related operator on a compact boundary arises from observing that
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the two eta invariants appear in boundary contributions of Atiyah–Patodi–Singer
index formulas in which the integrals of the index forms are equal. As in the rest
of the paper, let D̃A be a perturbed Dirac operator satisfying our usual conditions
on a manifold M with boundary N . Choose a compact oriented hypersurface H
in M that has boundary equal to its intersection with M ’s boundary. Choose the
hypersurface so that its boundary has a collar neighborhood equal to its intersection
with N ’s collar neighborhood. Choose the hypersurface so that it is in the interior
of the set U of points in M at which A is the product of a scalar-valued function
and a unitary-valued vector-bundle map that intertwines the connections on E0

and E1. In addition choose the hypersurface so that it separates M into a compact
subset Y and a subset contained in the interior of U . Using deformations supported
in the interior of U , smoothly deform all structures so that the hypersurface H has
a collar neighborhood (extending on both sides of H) over which all structures are
products.

We now make a compact manifold M(Y ) = Y
⋃

H Y with boundary N(Y ) by
gluing two copies of Y via the identity map on the hypersurface H. One copy of
Y takes all structures from the structures on M , after these structures have been
deformed to give H a collar neighborhood. With the exception of the treatment
of the auxiliary vector bundle E, the gluing of structures follows the pattern used
when we doubled M by gluing along N . In particular the second copy of Y receives
a reversed orientation; under the new orientation what was S± becomes S∓; and
the Clifford action of a unit vector field normal to H is used at each point of H
to identify the fiber of the spinor bundle over one copy of Y with the fiber of the
spinor bundle over the other copy. The auxiliary vector bundle over the second
copy of Y is E0 ⊕ E0. Over each point on H, E0 ⊕ E1 is attached to E0 ⊕ E0 via
the map that is the identity on the first summand and is the inverse of A’s unitary
part on the second summand. The vector-bundle map A : E0 → E1 over the first
copy of Y is extended to a map that, over the second copy of Y , can be identified
with multiplication by a nonvanishing scalar-valued function. We may make this
map the identity map E0 → E0 over the complement, in the second copy of Y , of
H’s collar neighborhood.

With Atiyah–Patodi–Singer boundary conditions, the perturbed Dirac operator
D̃A,M(Y ) on the compact M(Y ) defines a Fredholm operator whose index is given
by the formula in [1]. While the indices of D̃A,M(Y ) and D̃A,M may differ, as may
the dimensions of the kernels of DA,N(Y ) and DA,N , the integrals of the differential
forms appearing in the index formulas for D̃A,M(Y ) and D̃A,M are exactly the same.
It follows from these observations and the index formulas that the eta invariants of
DA,N(Y ) and DA,N agree modulo Z.
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[12] L. Hörmander, On the index of pseudodifferential operators, Elliptische Differentialgleichun-
gen, Band II, Schriftenreihe Inst. Math. Deutsch. Akad. Wissensch. Berlin, Reihe A, Heft 8,
Akademie-Verlag, Berlin, 1971, pp. 127–146, MR 0650833 (58 #31292), Zbl 0188.40903.

[13] S. Klimek and A. Lesniewski, Local rings of singularities and N = 2 supersymmetric quan-
tum mechanics, Commun. Math. Phys. 136 (1991), 327–344, MR 1096119 (92i:32037),
Zbl 0724.58066.

[14] H. B. Lawson and M.-L. Michelsohn, Spin geometry, Princeton Mathematical Series, 38,
Princeton Univ. Press, Princeton, 1989, MR 1031992 (91g:53001), Zbl 0688.57001.

[15] M. Reed and B. Simon, Methods of modern mathematical physics IV: Analysis of operators,
Academic Press, New York, 1978, MR 0493421 (58 #12429c), Zbl 0401.47001.

[16] M. Renardy and R. Rogers, An introduction to partial differential equations, Texts in Applied
Mathematics, 13, Springer-Verlag, New York, 1993, MR 1211418 (94c:35001).

[17] J. Roe, Analysis on manifolds, D. Phil. Thesis, Oxford, 1984.
[18] J. Roe, Elliptic operators, topology and asymptotic methods, Pitman Research Notes in Math-

ematics Series, 179, Longman Scientific & Technical, Harlow, Essex, 1988, MR 0960889
(89j:58126), Zbl 0654.58031.

[19] J. Roe, An index theorem on open manifolds. I, J. Differential Geom. 27 (1988), 87–113,
MR 0918459 (89a:58102), Zbl 0657.58041.

Mathematics Department, University of Colorado, Boulder, CO 80309-0395

jfox@euclid.colorado.edu

Mathematics Department, Virginia Tech, Blacksburg, VA 24061-0123

haskell@math.vt.edu

This paper is available via http://nyjm.albany.edu:8000/j/2005/11-15.html.

http://nyjm.albany.edu:8000/j/2005/11-15.html
mailto:haskell@math.vt.edu
mailto:jfox@euclid.colorado.edu
http://www.emis.de/cgi-bin/MATH-item?0657.58041
http://www.ams.org/mathscinet-getitem?mr=0918459
http://www.emis.de/cgi-bin/MATH-item?0654.58031
http://www.ams.org/mathscinet-getitem?mr=0960889
http://www.ams.org/mathscinet-getitem?mr=1211418
http://www.emis.de/cgi-bin/MATH-item?0401.47001
http://www.ams.org/mathscinet-getitem?mr=0493421
http://www.emis.de/cgi-bin/MATH-item?0688.57001
http://www.ams.org/mathscinet-getitem?mr=1031992
http://www.emis.de/cgi-bin/MATH-item?0724.58066
http://www.ams.org/mathscinet-getitem?mr=1096119
http://www.emis.de/cgi-bin/MATH-item?0188.40903
http://www.ams.org/mathscinet-getitem?mr=0650833
http://www.emis.de/cgi-bin/MATH-item?0801.46088
http://www.ams.org/mathscinet-getitem?mr=1231957
http://www.emis.de/cgi-bin/MATH-item?0996.58018
http://www.ams.org/mathscinet-getitem?mr=1695143
http://www.ams.org/mathscinet-getitem?mr=1955511
http://www.emis.de/cgi-bin/MATH-item?0994.58014
http://www.ams.org/mathscinet-getitem?mr=1843915
http://www.emis.de/cgi-bin/MATH-item?0325.35001
http://www.ams.org/mathscinet-getitem?mr=0599578
http://www.emis.de/cgi-bin/MATH-item?0263.35066
http://www.ams.org/mathscinet-getitem?mr=0369890
http://www.emis.de/cgi-bin/MATH-item?0416.58024
http://www.ams.org/mathscinet-getitem?mr=0507780
http://www.ams.org/mathscinet-getitem?mr=1266074
http://www.emis.de/cgi-bin/MATH-item?0597.46072
http://www.ams.org/mathscinet-getitem?mr=0859867

