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Isomorphic groupoid C∗-algebras associated with
different Haar systems

Mădălina Roxana Buneci

Abstract. We shall consider a locally compact groupoid endowed with a Haar
system ν and having proper orbit space. We shall associate to each appropriate
cross section σ : G(0) → GF for dF : GF → G(0) (where F is a Borel subset of

G(0) meeting each orbit exactly once) a C∗-algebra M∗
σ(G, ν). We shall prove

that the C∗-algebras associated with different Haar systems are ∗-isomorphic.
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1. Introduction

The reader is referred to Section 2 for the basic defintions and notations we shall
use here.

The C∗-algebra of a locally compact groupoid was introduced by J. Renault in
[9]. The construction extends the case of a group: the space of continuous functions
with compact support on the groupoid is made into a ∗-algebra and endowed with
the smallest C∗-norm making its representations continuous. In order to define the
convolution on the groupoid one needs to assume the existence of a Haar system
which is an analogue of Haar measure on a group. Unlike the case for groups,
Haar systems need not be unique. A result of Paul Muhly, Jean Renault and Dana
Williams establishes that the C∗-algebras of G associated with two Haar systems
are strongly Morita equivalent [4, Theorem 2.8, p. 10]. If the groupoid G is transitive
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they have proved that the C∗-algebra of G is isomorphic to C∗(H) ⊗ K(L2(μ)),
where H is the isotropy group Gu

u at any unit u ∈ G(0), μ is an essentially unique
measure on G(0), C∗(H) denotes the group C∗-algebra of H, and K(L2(μ)) denotes
the compact operators on L2(μ) [4, Theorem 3.1, p. 16]. Therefore the C∗-algebras
of a transitive groupoid G associated with two Haar systems are ∗-isomorphic.

In [8] Arlan Ramsay and Martin E. Walter have associated to a locally compact
groupoid G a C∗-algebra denoted M∗(G, ν). They have considered the universal
representation ω of C∗(G, ν) — the usual C∗-algebra associated to a Haar system
ν = {νu, u ∈ G(0)} (constructed as in [9]). Since every cyclic representation of
C∗(G, ν) is the integrated form of a representation of G, it follows that ω can
be also regarded as a representation of Bc(G), the space of compactly supported
bounded Borel functions on G. Arlan Ramsay and Martin E. Walter have used
the notation M∗(G, ν) for the operator norm closure of ω(Bc(G)). Since ω is an
∗-isomorphism on C∗(G, ν), we can regard C∗(G, ν) as a subalgebra of M∗(G, ν).

Definition 1. A locally compact groupoid G is proper if the map

(r, d) : G → G(0) × G(0)

is proper (i.e., the inverse image of each compact subset of G(0) ×G(0) is compact)
[1, Definition 2.1.9].

Throughout this paper we shall assume that G is a second countable locally
compact groupoid for which the orbit space is Hausdorff and the map

(r, d) : G → R, (r, d)(x) = (r(x), d(x))

is open, where R is endowed with the product topology induced from G(0) × G(0).
Therefore R will be a locally compact groupoid. The fact that R is a closed subset
of G(0) × G(0) and that it is endowed with the product topology is equivalent to
the fact R is a proper groupoid.

Throughout this paper by a groupoid with proper orbit space we shall mean a
groupoid G for which the orbit space is Hausdorff and the map

(r, d) : G → R, (r, d)(x) = (r(x), d(x))

is open, where R is endowed with the product topology induced from G(0) × G(0).
Let us give an example of a groupoid with proper orbit space that is not a proper

groupoid. First let us make some remarks. Any locally compact principal groupoid
can be viewed as an equivalence relation on a locally compact space X having its
graph E ⊂ X × X endowed with a locally compact topology compatible with the
groupoid structure. This topology can be finer than the product topology induced
from X ×X. E is proper if and only if E is endowed with the product topology and
E is closed in X × X. Let E ⊂ X × X be a proper principal groupoid and let Γ be
a locally compact group. Then E ×Γ is a groupoid under the following operations:

(u, v, x)−1 = (v, u, x−1)

(u, v, x)(v, w, y) = (u, w, xy).

It is easy to see that E × Γ is a groupoid with proper orbit space. If Γ is not a
compact group, then E × Γ is not a proper groupoid.

We shall assume that the orbit space of the groupoid G is proper and we shall
choose a Borel subset F of G(0) meeting each orbit exactly once and such that F∩[K]
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has a compact closure for each compact subset K of G(0). For each appropriate
cross section σ : G(0) → GF for dF : GF → G(0), dF (x) = d(x), we shall construct
a C∗-algebra M∗

σ(G, ν) which can be viewed as a subalgebra of M∗(G, ν). Given
two Haar system ν1 = {νu

1 , u ∈ G(0)} and ν2 = {νu
2 , u ∈ G(0)} on G, we shall prove

that the C∗-algebras M∗
σ(G, ν1) and M∗

σ(G, ν2) are ∗-isomorphic.
For a transitive (or more generally, a locally transitive) groupoid G we shall

prove that the C∗-algebras C∗(G, ν), M∗(G, ν) and M∗
σ(G, ν) coincide.

If G is a locally transitive groupoid endowed with a Haar system {νu, u ∈ G(0)},
then it is the topological disjoint union of its transitivity components G|[u], and
C∗(G, ν) is the direct sum of the C∗(G|[u], ν[u]), where ν[u] = {νs, s ∈ [u]}. This is
a consequence of [2, Theorem 1, p. 10].

For a principal proper groupoid G, we shall prove that

C∗(G, ν) ⊂ M∗
σ(G, ν) ⊂ M∗(G, ν).

Let π : G(0) → G(0)/G be the quotient map and let

νi =
{

εu × μ
π(u)
i , u ∈ G(0)

}
, i = 1, 2

be two Haar systems on the principal proper groupoid G. We shall also prove that if
the Hilbert bundles determined by the systems of measures {μu̇

i }u̇ have continuous
bases in the sense of Definition 24, then ∗-isomorphism between M∗

σ(G, ν1) and
M∗

σ(G, ν2) can be restricted to a ∗-isomorphism between C∗(G, ν1) and C∗(G, ν2).

2. Basic definitions and notations

For establishing notation, we include some definitions that can be found in several
places (e.g., [9], [5]). A groupoid is a set G endowed with a product map

(x, y) → xy [: G(2) → G]

where G(2) is a subset of G × G called the set of composable pairs, and an inverse
map

x → x−1 [: G → G]

such that the following conditions hold:
(1) If (x, y) ∈ G(2) and (y, z) ∈ G(2), then (xy, z) ∈ G(2), (x, yz) ∈ G(2) and

(xy)z = x(yz).
(2) (x−1)−1 = x for all x ∈ G.
(3) For all x ∈ G, (x, x−1) ∈ G(2), and if (z, x) ∈ G(2), then (zx)x−1 = z.
(4) For all x ∈ G, (x−1, x) ∈ G(2), and if (x, y) ∈ G(2), then x−1(xy) = y.
The maps r and d on G, defined by the formulae r(x) = xx−1 and d(x) = x−1x,

are called the range and the source maps. It follows easily from the definition that
they have a common image called the unit space of G, which is denoted G(0). Its
elements are units in the sense that xd(x) = r(x)x = x. Units will usually be
denoted by letters as u, v, w while arbitrary elements will be denoted by x, y, z. It
is useful to note that a pair (x, y) lies in G(2) precisely when d(x) = r(y), and that
the cancellation laws hold (e.g., xy = xz iff y = z). The fibres of the range and the
source maps are denoted Gu = r−1({u}) and Gv = d−1({v}), respectively. More
generally, given the subsets A, B ⊂ G(0), we define GA = r−1(A), GB = d−1(B) and
GA

B = r−1(A)∩d−1(B). The reduction of G to A ⊂ G(0) is G|A = GA
A. The relation
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u ∼ v iff Gu
v 	= φ is an equivalence relation on G(0). Its equivalence classes are called

orbits and the orbit of a unit u is denoted [u]. A groupoid is called transitive iff
it has a single orbit. The quotient space for this equivalence relation is called the
orbit space of G and denoted G(0)/G. We denote by π : G(0) → G(0)/G, π(u) = u̇
the quotient map. A subset of G(0) is said saturated if it contains the orbits of its
elements. For any subset A of G(0), we denote by [A] the union of the orbits [u] for
all u ∈ A.

A topological groupoid consists of a groupoid G and a topology compatible with
the groupoid structure. This means that:

(1) x → x−1 [: G → G] is continuous.
(2) (x, y) → xy [: G(2) → G] is continuous where G(2) has the induced topology

from G × G.
We are exclusively concerned with topological groupoids which are second count-

able, locally compact Hausdorff. It was shown in [7] that measured groupoids may
be assume to have locally compact topologies, with no loss in generality.

If X is a locally compact space, Cc(X) denotes the space of complex-valuated
continuous functions with compact support. The Borel sets of a topological space
are taken to be the σ-algebra generated by the open sets. The space of compactly
supported bounded Borel functions on X is denoted by Bc(X).

For a locally compact groupoid G, we denote by

G′ = {x ∈ G : r(x) = d(x)}
the isotropy group bundle of G. It is closed in G.

Let G be a locally compact second countable groupoid equipped with a Haar
system, i.e., a family of positive Radon measures on G, {νu, u ∈ G(0)}, such that:

(1) For all u ∈ G(0), supp(νu) = Gu.
(2) For all f ∈ Cc(G),

u →
∫

f(x)dνu(x) [: G(0) → C]

is continuous.
(3) For all f ∈ Cc(G) and all x ∈ G,∫

f(y)dνr(x)(y) =
∫

f(xy)dνd(x)(y).

As a consequence of the existence of continuous Haar systems, r, d : G → G(0) are
open maps ([11]). Therefore, in this paper we shall always assume that r : G → G(0)

is an open map
If μ is a measure on G(0), then the measure ν =

∫
νudμ(u), defined by∫

f(y)dν(y) =
∫ (∫

f(y)dνu(y)
)

dμ(u), f ≥ 0 Borel

is called the measure on G induced by μ. The image of ν by the inverse map
x → x−1 is denoted ν−1. μ is said to be quasi-invariant if its induced measure ν is
equivalent to its inverse, ν−1. A measure belongings to the class of a quasi-invariant
measure is also quasi-invariant. We say that the class is invariant.

If μ is a quasi-invariant measure on G(0) and ν is the measure induced on G,
then the Radon–Nikodym derivative Δ = dν

dν−1 is called the modular function of μ.
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In order to define the C∗-algebra of a groupoid G, the space Cc(G) of continuous
functions with compact support on G, endowed with the inductive limit topology,
is made into a topological ∗-algebra and is given the smallest C∗-norm making
its representations continuous. In somewhat more detail, for f , g ∈ Cc(G) the
convolution is defined by:

f ∗ g(x) =
∫

f(xy)g(y−1)dνd(x)(y)

and the involution by

f∗(x) = f(x−1).

Under these operations, Cc(G) becomes a topological ∗-algebra.
A representation of Cc(G) is a ∗-homomorphism from Cc(G) into B(H), for some

Hilbert space H, that is continuous with respect to the inductive limit topology on
Cc(G) and the weak operator topology on B(H). The full C∗-algebra C∗(G) is
defined as the completion of the involutive algebra Cc(G) with respect to the full
C∗-norm

‖f‖ = sup ‖L(f)‖
where L runs over all nondegenerate representations of Cc(G) which are continuous
for the inductive limit topology.

Every representation (μ, G(0) ∗ H, L) [5, Definition 3.20/p. 68] of G can be in-
tegrated into a representation, still denoted by L, of Cc(G). The relation between
the two representation is:

〈L(f)ξ1, ξ2〉 =
∫

f(x)〈L(x)ξ1(d(x)), ξ2(r(x))〉Δ− 1
2 (x)dνu(x)dμ(u)

where f ∈ Cc(G), ξ1, ξ2 ∈ ∫ ⊕
G(0) H(u)dμ(u).

Conversely, every nondegenerate ∗-representation of Cc(G) is obtained in this
fashion (see [9] or [5]).

3. The decomposition of a Haar system over the principal
groupoid

First we present some results on the structure of the Haar systems, as developed
by J. Renault in Section 1 of [10] and also by A. Ramsay and M.E. Walter in
Section 2 of [8].

In Section 1 of [10] Jean Renault constructs a Borel Haar system for G′. One
way to do this is to choose a function F0 continuous with conditionally compact
support which is nonnegative and equal to 1 at each u ∈ G(0). Then for each
u ∈ G(0) choose a left Haar measure βu

u on Gu
u so the integral of F0 with respect to

βu
u is 1.
Renault defines βu

v = xβv
v if x ∈ Gu

v (where xβv
v (f) =

∫
f(xy)dβv

v (y) as usual).
If z is another element in Gu

v , then x−1z ∈ Gv
v, and since βv

v is a left Haar measure
on Gv

v, it follows that βu
v is independent of the choice of x. If K is a compact subset

of G, then sup
u,v

βu
v (K) < ∞. Renault also defines a 1-cocycle δ on G such that for

every u ∈ G(0), δ|Gu
u

is the modular function for βu
u . δ and δ−1 = 1/δ are bounded

on compact sets in G.
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Let

R = (r, d)(G) = {(r(x), d(x)), x ∈ G}
be the graph of the equivalence relation induced on G(0). This R is the image of G
under the homomorphism (r, d), so it is a σ-compact groupoid. With this apparatus
in place, Renault describes a decomposition of the Haar system {νu, u ∈ G(0)} for
G over the equivalence relation R (the principal groupoid associated to G). He
proves that there is a unique Borel Haar system α for R with the property that

νu =
∫

βs
t dαu(s, t) for all u ∈ G(0).

In Section 2 of [8] A. Ramsay and M.E. Walter prove that

sup
u

αu((r, d)(K)) < ∞, for all compact K ⊂ G

For each u ∈ G(0) the measure αu is concentrated on {u} × [u]. Therefore there
is a measure μu concentrated on [u] such that αu = εu × μu, where εu is the unit
point mass at u. Since {αu, u ∈ G(0)} is a Haar system, we have μu = μv for all
(u, v) ∈ R, and the function

u →
∫

f(s)μu(s)

is Borel for all f ≥ 0 Borel on G(0). For each u the measure μu is quasi-invariant
(see Section 2 of [8]). Therefore μu is equivalent to d∗(vu) [6, Lemma 4.5/p. 277].

If η is a quasi-invariant measure for {νu, u ∈ G(0)}, then η is a quasi-invariant
measure for {αu, u ∈ G(0)}. Also if ΔR is the modular function associated to
{αu, u ∈ G(0)} and η, then Δ = δΔR ◦ (r, d) can serve as the modular function
associated to {νu, u ∈ G(0)} and η.

Since μu = μv for all (u, v) ∈ R, the system of measures {μu}u may be indexed
by the elements of the orbit space G(0)/G.

Definition 2. We shall call the pair of systems of measures

({βu
v }(u,v)∈R, {μu̇}u̇∈G(0)/G)

(described above) the decomposition of the Haar system {νu, u ∈ G(0)} over the
principal groupoid associated to G. Also we shall call δ the 1-cocycle associated to
the decomposition.

Remark 3. Let us note that up to trivial changes in normalization, the system of
measures {βu

v } and the 1-cocycle in the preceding definition are unique. They do
not depend on the Haar system, but only on the continuous function F0.

Lemma 4. Let G be a locally compact second countable groupoid such that the
bundle map r|G′ of G′ is open. Let {νu, u ∈ G(0)} be a Haar system on G and let
({βu

v }, {μu̇}) be its decomposition over the principal groupoid associated to G. Then
for each f ∈ Cc(G) the function

x →
∫

f(y)dβ
r(x)
d(x)(y)

is continuous on G.
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Proof. By Lemma 1.3/p. 6 of [10], for each f ∈ Cc(G) the function

u →
∫

f(y)dβu
u(y)

is continuous.
Let x ∈ G and (xi)i be a sequence in G converging to x. Let f ∈ Cc(G) and

let g be a continuous extension on G of y → f(xy) [: Gd(x) → C]. Let K be the
compact set

({x, xi, i = 1, 2, . . . }−1supp(f) ∪ supp(g)) ∩ r−1({d(x), d(xi), i = 1, 2, . . . }).
We have∣∣∣∣∫ f(y)dβ

r(x)
d(x)(y) −

∫
f(y)dβ

r(xi)
d(xi)

(y)
∣∣∣∣ = ∣∣∣∣∫ f(xy)dβ

d(x)
d(x)(y) −

∫
f(xiy)dβ

d(xi)
d(xi)

(y)
∣∣∣∣

=
∣∣∣∣∫ g(y)dβ

d(x)
d(x)(y) −

∫
f(xiy)dβ

d(xi)
d(xi)

(y)
∣∣∣∣

≤
∣∣∣∣∫ g(y)dβ

d(x)
d(x)(y) −

∫
g(y)dβ

d(xi)
d(xi)

(y)
∣∣∣∣

+
∣∣∣∣∫ g(y)dβ

d(xi)
d(xi)

(y) −
∫

f(xiy)dβ
d(xi)
d(xi)

(y)
∣∣∣∣

≤
∣∣∣∣∫ g(y)dβ

d(x)
d(x)(y) −

∫
g(y)dβ

d(xi)
d(xi)

(y)
∣∣∣∣

+ sup
y∈G

d(xi)
d(xi)

|g(y) − f(xiy)|βd(xi)
d(xi)

(K).

A compactness argument shows that sup
y∈G

d(xi)
d(xi)

|g(y) − f(xiy)| converges to

0. Also
∣∣∣∫ g(y)dβ

d(x)
d(x)(y) − ∫ g(y)dβ

d(xi)
d(xi)

(y)
∣∣∣ converges to 0 because the function

u → ∫
f(y)dβu

u(y) is continuous. Hence∣∣∣∣∫ f(y)dβ
r(x)
d(x)(y) −

∫
f(y)dβ

r(xi)
d(xi)

(y)
∣∣∣∣

converges to 0. �

Proposition 5. Let G be a second countable locally compact groupoid with proper
orbit space. Let {νu, u ∈ G(0)} be a Haar system on G and let ({βu

v }, {μu̇}) be
its decomposition over the principal groupoid associated to G. Then for each g ∈
Cc(G(0)), the map

u →
∫

g(v)dμπ(u)(v)

is continuous.

Proof. Let g ∈ Cc(G(0)) and u0 ∈ G(0). Let K1 be a compact neighborhood of
u0 and K2 be the support of g. Since G is locally compact and (r, d) is open
from G to (r, d)(G), there is a compact subset K of G such that (r, d)(K) contains
(K1 × K2) ∩ (r, d)(G). Let F1 ∈ Cc(G) be a nonnegative function equal to 1 on a
compact neighborhood U of K. Let F2 ∈ Cc(G) be a function which extends to G
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the function x → F1(x)/
∫

F1(y)dβ
r(x)
d(x)(y), x ∈ U . We have

∫
F2(y)dβu

v (y) = 1 for
all (u, v) ∈ (r, d)(K). Since for all u ∈ K1,∫

g(v)dμπ(u)(v) =
∫

g(v)
∫

F2(y)dβu
v (y)dμπ(u)(v)

=
∫

g(d(y))F2(y)dνu(y),

it follows that u → ∫
g(v)dμπ(u)(v) is continuous at u0. �

Remark 6. Let G be a locally compact second countable groupoid with proper
orbit space. Let {νu, u ∈ G(0)}be a Haar system on G and ({βu

v }, {μu̇}) be its
decomposition over the associated principal groupoid. If μ is a quasi-invariant
probability measure for the Haar system, then μ1 =

∫
μπ(u)dμ(u) is a Radon mea-

sure which is equivalent to μ. Indeed, let f ≥ 0 Borel on G(0) such that μ(f) = 0.
Since μ is quasi-invariant, it follows that for μ a.a. u, νu(f ◦d) = 0, and since μπ(u)

is equivalent to d∗(vu), it follows that μπ(u)(f) = 0 for μ a.a. u. Conversely, if
μ1(f) = 0, then μπ(u)(f) = 0 for μ a.a. u, and therefore νu(f ◦ d) = 0. Thus the
quasi-invariance of μ implies μ(f) = 0. Thus each Radon quasi-invariant measure
is equivalent to a Radon measure of the form

∫
μu̇dμ̃(u̇), where μ̃ is a probability

measure on the orbit space G/G(0).

4. A C∗-algebra associated to a locally compact groupoid
with proper orbit space

Let G be a locally compact second countable groupoid with proper orbit space.
Let

π : G(0) → G(0)/G

be the quotient map. Since the quotient space is proper, G(0)/G is Hausdorff.
As we mentioned at the outset, our standing hypothesis that G has a Haar

system guarantees that r is open. Consequently, so is the map π.
Applying Lemma 1.1 of [3] to the locally compact second countable spaces G(0)

and G(0)/G and to the continuous open surjection π : G(0) → G(0)/G, it follows
that there is a Borel set F in G(0) such that:

(1) F contains exactly one element in each orbit [u] = π−1(π(u)).
(2) For each compact subset K of G(0), F ∩ [K] = F ∩π−1(π(K)) has a compact

closure.
For each unit u let us define e(u) to be the unique element in the orbit of u

that is contained in F , i.e., {e(u)} = F ∩ [u]. For each Borel subset B of G(0),
π is continuous and one-to-one on B ∩ F and hence π(B ∩ F ) is Borel in G(0)/G.
Therefore the map e : G(0) → G(0) is Borel (for each Borel subset B of G(0),
e−1(B) = [B ∩F ] = π−1(π(B ∩F )) is Borel in G(0)). Also for each compact subset
K of G(0), e(K) has a compact closure because e(K) ⊂ F ∩ [K].

Since the orbit space G(0)/G is proper the map

(r, d) : G → R, (r, d)(x) = (r(x), d(x))

is open and R is closed in G(0) × G(0). Applying Lemma 1.1 of [3] to the locally
compact second countable spaces G and R and to the continuous open surjection
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(r, d) : G → R, it follows that there is a regular cross section σ0 : R → G. This
means that σ0 is Borel, (r, d)(σ0(u, v)) = (u, v) for all (u, v) ∈ R, and σ0(K) is
relatively compact in G for each compact subset K of R.

Let us define σ : G(0) → GF by σ(u) = σ0(e(u), u) for all u. It is easy to note
that σ is a cross section for d : GF → G(0) and σ(K) is relatively compact in G for
all compact K ⊂ G(0). If F is closed, then σ is regular.

Replacing σ by

v → σ(e(v))−1σ(v)

we may assume that σ(e(v)) = e(v) for all v. Let us define q : G → GF
F by

q(x) = σ(r(x))xσ(d(x))−1, x ∈ G.

Let ν = {νu : u ∈ G(0)} be a Haar system on G and let ({βu
v }, {μu̇}) be its

decompositions over the principal groupoid . Let δ be the 1-cocycle associated to
the decomposition.

Let us denote by Bσ(G) the linear span of the functions of the form

x → g1(r(x))g(q(x))g2(d(x))

where g1, g2 are compactly supported bounded Borel functions on G(0) and g is a
bounded Borel function on GF

F such that if S is the support of g, then the closure of
S is compact in G. Bσ(G) is a subspace of Bc(G), the space of compactly supported
bounded Borel functions on G.

If f1, f2 ∈ Bσ(G) are defined by

f1(x) = g1(r(x))g(q(x))g2(d(x))

f2(x) = h1(r(x))h(q(x))h2(d(x))

then

f1 ∗ f2(x) = g ∗ h(q(x))g1(r(x))h2(d(x))〈g2, h1〉π(r(x))

f∗
1 (x) = g2(r(x))g(q(x)−1)g1(d(x)).

Thus Bσ(G) is closed under convolution and involution.
Let ω be the universal representation of C∗(G, ν) the usual C∗-algebra associated

to a Haar system ν = {νu, u ∈ G(0)} (constructed as in [9]). Since every cyclic
representation of C∗(G, ν) is the integrated form of a representation of G, it follows
that ω can be also regarded as a representation of Bc(G), the space of compactly
supported bounded Borel functions on G. Arlan Ramsay and Martin E. Walter
have used the notation M∗(G, ν) for the operator norm closure of ω(Bc(G)). Since
ω is an ∗-isomorphism on C∗(G, ν), we can regarded C∗(G, ν) as a subalgebra of
M∗(G, ν).

Definition 7. We denote by M∗
σ(G, ν) the operator norm closure of ω(Bσ(G)).

Lemma 8. Let {μu̇
1}u̇ and {μu̇

2}u̇ be two systems of measures on G(0) satisfying:
(1) supp(μu̇

i ) = [u] for all u̇, i = 1, 2.
(2) For all compactly supported bounded Borel functions f on G(0) the function

u →
∫

f(v)μπ(u)
i (v)

is bounded and Borel.
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Then there is a family {Uu̇}u̇ of unitary operators with the following properties:
(1) Uu̇ : L2(μu̇

1 ) → L2(μu̇
2 ) is a unitary operator for each u̇ ∈ G(0)/G.

(2) For all bounded Borel functions f on G(0),

u → Uπ(u)(f)

is a bounded Borel function with compact support.
(3) For all bounded Borel functions f on G(0),

Uπ(u)(f) = Uπ(u)(f).

Proof. Using the same argument as in [7] (p. 323) we can construct a sequence
f1, f2, . . . of real valued bounded Borel function on G(0) such that dim(L2(μu̇

1 )) = ∞
if and only if ‖fn‖2 = 1 in L2(μu̇

1 ) for n = 1, 2, . . . and then {f1, f2, . . . } gives an
orthonormal basis of L2(μu̇

1 ), while dim(L2(μu̇
1 )) = k < ∞ if and only if ‖fn‖2 = 1

for n ≤ k, and ‖fn‖2 = 0 for n > k and then {f1, f2, . . . , fk} gives an orthonormal
basis of L2(μu̇

1 ). Let g1, g2, . . . be a sequence with the same properties as f1, f2, . . .
corresponding to {μu̇

2}u̇. Let us define Uu̇ : L2(μu̇
1 ) → L2(μu̇

2 ) by

Uu̇(fn) = gn for all n

Then the family {Uu̇}u̇ has the required properties. �

Theorem 9. Let G be a locally compact second countable groupoid with proper
orbit space. Let {νu

i , u ∈ G(0)}, i = 1, 2 be two Haar systems on G. Let F be
a Borel subset of G(0) containing only one element e(u) in each orbit [u]. Let
σ : G(0) → GF be a cross section for d : GF → G(0) with σ(e(v)) = e(v) for all
v ∈ G(0) and such that σ(K) is relatively compact in G for all compact K ⊂ G(0).
Then the C∗-algebras M∗

σ(G, ν1) and M∗
σ(G, ν2) are ∗-isomorphic.

Proof. Let ({βu
v }, {μu̇

i }) be the decompositions of the Haar systems over the prin-
cipal groupoid. Let δ be the 1-cocycle associated to the decompositions, i = 1, 2.

We shall denote by 〈·, ·〉i,u̇ the inner product of (L2(G(0), δ(σ(·))μu̇
i )), i = 1, 2.

Let us define q : G → GF
F by

q(x) = σ(r(x))xσ(d(x))−1, x ∈ G.

We shall define a ∗-homomorphism Φ from Bσ(G) to Bσ(G). It suffices to define
Φ on the set of functions on G of the form

x → g1(r(x))g(q(x))g2(d(x))

Let {Uu̇}u̇ be the family of unitary operators with the properties stated in Lemma 8,
associated to the systems of measures {δ(σ(·))μu̇

i }u̇, i = 1, 2.
Let us define Φ by

Φ(f) = (x → Uπ(r(x))(g1)(r(x))g(q(x))Uπ(d(x))(g2)(d(x)))

where f is defined by

f(x) = g1(r(x))g(q(x))g2(d(x)).

If f1 and f2 are defined by

f1(x) = g1(r(x))g(q(x))g2(d(x))

f2(x) = h1(r(x))h(q(x))h2(d(x))
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then

f1 ∗ f2(x) = g ∗ h(q(x))g1(r(x))h2(d(x))〈g2, h1〉1,π(r(x))

and consequently

Φ(f1 ∗ f2) = g ∗ h(q(x))Uπ(r(x))(g1)(r(x))Uπ(r(x))(h2)(d(x))〈g2, h1〉1,π(r(x))

= Φ(f1) ∗ Φ(f2).

Let η̃ be a probability measure on G(0)/G and ηi =
∫

μu̇
i dη̃(u̇), i = 1, 2. Let L1

be the integrated form of a representation (L,H∗G(0), η1) and L2 be the integrated
form of (L,H ∗ G(0), η2). Let B be the Borel function defined by

B(u) = L(σ(u))

and W :
∫ ⊕

G(0) H(u)dη1(u) → ∫ ⊕
G(0) H(e(u))dη1(u) be defined by

W (ζ) = (u → B(u)(ζ(u))).

Since every element of L2(G(0), δ(σ(·))μẇ
1 ,H(e(w))) is a limit of linear combina-

tions of elements u → a(u)ξ with a ∈ L2(G(0), δ(σ(·))μẇ
1 ) and ξ ∈ H(e(w)), we can

define a unitary operator

Vẇ : L2(G(0), δ(σ(·))μẇ
1 ,H(e(w))) → L2(G(0), δ(σ(·))μẇ

2 ,H(e(w)))

by

Vẇ(u → a(u)ξ) = Uẇ(a)ξ.

Let V :
∫ ⊕

G(0) H(e(u))dη1(u) → ∫ ⊕
G(0) H(e(u))dη2(u) be defined by

V (ζ) = (u → Vu̇(ζ(u))).

If ζ1, ζ2 ∈ ∫ ⊕
G(0) H(e(u))dη1(u) and f is of the form

f(x) = g1(r(x))g(q(x))g2(d(x)),

we have

〈WL1(f)W ∗ζ1, ζ2〉 =
∫ ∫

g(x)δ(x)
−1
2 〈L(x)A1(ẇ), B1(ẇ)〉dβ

e(w)
e(w)(x)dη̃(ẇ)

where

A1(ẇ) =
∫

g2(v)ζ1(v)δ(σ(v))
1
2 dμẇ

1 (v)

B1(ẇ) =
∫

g1(u)ζ2(u)δ(σ(u))
1
2 dμẇ

1 (u).

Moreover, if f is of the form f(x) = g1(r(x))g(q(x)g2(d(x)) and ζ1, ζ2 ∈ ∫ ⊕
G(0)

H(e(u))dη2(u), then

〈V WL1(f)W ∗V ∗ζ1, ζ2〉 =
∫ ∫

g(x)δ(x)
−1
2 〈L(x)A2(ẇ), B2(ẇ)〉dβ

e(u)
e(u)(x)dη̃(ẇ)

= 〈WL2(Φ(f))W ∗ζ1, ζ2〉
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where

A2(ẇ) =
∫

g2(v)V ∗ζ1(v)δ(σ(v))
1
2 dμẇ

1 (v)

=
∫

Uv̇(g2)(v)ζ1(v)δ(σ(v))
1
2 dμẇ

2 (v)

B2(ẇ) =
∫

g1(v)V ∗ζ2(v)δ(σ(v))
1
2 dμẇ

1 (v)

=
∫

Uu̇(g1)(u)ζ2(u)δ(σ(u))
1
2 dμẇ

2 (u).

Therefore ‖L1(f)‖ = ‖L2(Φ(f))‖. Consequently we can extend Φ to a ∗-
homomorphism between the M∗

σ(G, ν1) and M∗
σ(G, ν2). It is not hard to see that

Φ is in fact a ∗-isomorphism:

Φ−1(f) = (x → U∗
π(r(x))(g1)(r(x))g(q(x))U∗

π(d(x))(g2)(d(x)))

for each f of the form

f(x) = g1(r(x))g(q(x))g2(d(x)). �

5. The case of locally transitive groupoids

A locally compact locally transitive groupoid G is a groupoid for which all orbits
[u] are open in G(0). We shall prove that if G is a locally compact second countable
locally transitive groupoid endowed with a Haar system ν, then

C∗(G, ν) = M∗(G, ν) = M∗
σ(G, ν)

for any regular cross section σ.

Notation 10. Let {νu, u ∈ G(0)} be a fixed Haar system on G. Let μ be a quasi-
invariant measure, Δ its modular function, ν1 be the measure induced by μ on G
and ν0 = Δ− 1

2 ν1. Let

IIμ(G) = {f ∈ L1(G, ν0) : ‖f‖II,μ < ∞},
where ‖f‖II,μ is defined by

‖f‖II,μ = sup
{∫

|f(x)j(d(x))k(r(x))|dν0(x),
∫

|j|2dμ =
∫

|k|2dμ = 1
}

.

If μ1 and μ2 are two equivalent quasi-invariant measures, then

‖f‖II,μ1 = ‖f‖II,μ2 ,

because ‖f‖II,μ = ‖IIμ(|f |)‖ for each quasi-invariant measure μ, where IIμ is the
one-dimensional trivial representation on μ.

Define

‖f‖II = sup
{
‖f‖II,μ: μ quasi-invariant Radon measure on G(0)

}
.

The supremum can be taken over the classes of quasi-invariant measures.
If ‖·‖ is the full C∗-norm on Cc(G), then (see [8])

‖f‖ ≤ ‖f‖II for all f .
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Lemma 11. Let G be a locally compact second countable groupoid with proper orbit
space. Let {νu, u ∈ G(0)} be a Haar system on G, let ({βu

v }, {μu̇}) its decomposition
over the principal groupoid associated to G and let δ the associated 1-cocycle. If f
is a universally measurable function on G, then

‖f‖II ≤ sup
ẇ

(∫ ∫ (∫
|f(x)|δ(x)−

1
2 dβu

v (x)
)2

dμẇ(v)dμẇ(u)

) 1
2

.

Proof. Each Radon quasi-invariant measure is equivalent with a Radon measure
of the form

∫
μu̇dμ̃(u̇), where μ̃ is a probability measure on the orbit space G/G(0).

Therefore for the computation of ‖.‖II it is enough to consider only the quasi-
invariant measures of the form μ =

∫
μu̇dμ̃(u̇), where μ̃ is a probability measure on

G(0)/G. It is easy to see that the modular function of
∫

μu̇dμ̃(u̇) is Δ = δ.
Let j, k ∈ L2(G(0), μ) with

∫ |j|2dμ =
∫ |k|2dμ = 1. We have∫ ∫ ∫ ∫

|f(x)|δ(x)−
1
2 dβu

v (x)|j(v)||k(u)|dμẇ(v)dμẇ(u)dμ̃(ẇ)

≤
∫ (∫ ∫ (∫

|f(x)|δ(x)−
1
2 dβu

v (x)
)2

dμẇ(v)dμẇ(u)

) 1
2

·
(∫ ∫

|j(v)|2|k(u)|2dμẇ(v)dμẇ(u)
) 1

2

dμ̃(ẇ)

≤ sup
ẇ

(∫ ∫ (∫
|f(x)|δ(x)−

1
2 dβu

v (x)
)2

dμẇ(v)dμẇ(u)

) 1
2

·
∫ (∫

|j(v)|2dμẇ(v))
1
2 (|k(u)|2dμẇ(u)

) 1
2

dμ̃(ẇ)

≤ sup
ẇ

(∫ ∫ (∫
|f(x)|δ(x)−

1
2 dβu

v (x)
)2

dμẇ(v)dμẇ(u)

) 1
2

.

Consequently,

‖f‖II ≤ sup
ẇ

(∫ ∫ (∫
|f(x)|δ(x)−

1
2 dβu

v (x)
)2

dμẇ(v)dμẇ(u)

) 1
2

. �

If G is locally transitive, each orbit [u] is open in G(0). Each measure μu̇ is
supported on [u]. Since ([u]) is a partition of G(0) into open sets, it follows that
there is a unique Radon measure m on G(0) such that the restriction of m at Cc([u])
is μu̇ for each [u].

Corollary 12. Let G be a locally compact second countable locally transitive group-
oid endowed with a Haar system ν = {νu, u ∈ G(0)}. Let f be a universally mea-
surable function such that ‖f‖II < ∞.

(1) If (fn)nis a uniformly bounded sequence of universally measurable functions
supported on a compact set, and if (fn)n converges pointwise to f , then (fn)n

converges to f in the norm of C∗(G, ν).
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(2) If (fn)nis an increasing sequence of universally measurable nonnegative func-
tions on G that converges pointwise to f , then (fn)n converges to f in the
norm of C∗(G, ν).

Proof. Let ({βu
v }, {μu̇}) be the decomposition of the Haar system over the princi-

pal groupoid associated to G and δ the associated 1-cocycle. Let m be the unique
measure such that restriction of m at Cc([u]) is μu̇ for each [u]. Let (fn)nbe a
sequence of universally measurable functions supported on a compact set K. Let

M = sup
u,v

βv
u(K−1)

and let us assume that (fn)n converges pointwise to f . By Lemma 11,

‖f − fn‖II ≤ sup
ẇ

(∫ ∫ (∫
|f(x) − fn(x)|δ(x)−

1
2 dβu

v (x)
)2

dμẇ(v)dμẇ(u)

) 1
2

,

hence

‖f − fn‖II ≤ sup
ẇ

M

(∫ ∫ (∫
|f(x) − fn(x)|2dβu

v (x)
)

dμẇ(v)dμẇ(u)
) 1

2

≤ M

(∫ ∫ (∫
|f(x) − fn(x)|2dβv

u(x)
)

dm(v)dm(u)
) 1

2

.

If ‖·‖ denotes the C∗-norm, then

lim
n

‖f − fn‖ ≤ lim
n

‖f − fn‖II = 0,

because ∫ ∫ (∫
|f(x) − fn(x)|2dβv

u(x)
)

dm(v)dm(u)

converges to zero, by the Dominated Convergence Theorem.
Let (fn)nbe an increasing sequence of universally measurable nonnegative func-

tions that converges pointwise to f . Since

‖f − fn‖II ≤ sup
ẇ

(∫ ∫ (∫
|f(x) − fn(x)|δ(x)−

1
2 dβu

v (x)
)2

dμẇ(v)dμẇ(u)

) 1
2

≤
(∫ ∫ (∫

|f(x) − fn(x)|δ(x)−
1
2 dβu

v (x)
)2

dm(v)dm(u)

) 1
2

it follows that
lim
n

‖f − fn‖II = 0. �

Proposition 13. Let G be a locally compact second countable locally transitive
groupoid endowed with a Haar system ν = {νu, u ∈ G(0)}. Then any function
in Bc(G), the space of compactly supported bounded Borel functions on G, can be
viewed as an element of C∗(G, ν).
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Proof. Let ({βu
v }, {μu̇}) be the decomposition of the Haar system over the princi-

pal groupoid associated to G, and δ the associated 1-cocycle. Let m be the unique
measure such that restriction of m at Cc([u]) is μu̇ for each [u]. Let m be a dominant
for the family {μu̇}. Let ν1 be the measure on G defined by∫

f(x)dν1(x) =
(∫ ∫ (∫

f(x)dβv
u(x)

)
dm(v)dm(u)

)
for all Borel nonnegative functions f . If f ∈ Bc(G), then f is the limit in L2(G, ν1)
of a sequence, (fn)n, in Cc(G) that is supported on some compact set K supporting
f . If we write

M = sup
u,v

βv
u(K−1),

then

‖f − fn‖II ≤ sup
ẇ

M

(∫ ∫ (∫
|f(x) − fn(x)|2dβu

v (x)
)

dμẇ(v)dμẇ(u)
) 1

2

≤ M

(∫ ∫ (∫
|f(x) − fn(x)|2dβv

u(x)
)

dm(v)dm(u)
) 1

2

.

If ‖‖ denotes the C∗-norm, then

lim
n

‖f − fn‖ ≤ lim
n

‖f − fn‖II = 0.

Thus f can be viewed as an element in C∗(G, ν). �

The following is an immediate consequence of Proposition 13:

Proposition 14. If G is a locally compact second countable locally transitive group-
oid endowed with a Haar system {νu, u ∈ G(0)} with bounded decomposition, then

C∗(G, ν) = M∗(G, ν).

Remark 15. Let G be locally compact locally transitive groupoid. Let F be a
subset of G(0) containing only one element e(u) in each orbit [u]. It is easy to see
that F is a closed subset of G and that F is a discrete space. Let σ : G(0) → GF

be a regular cross section of dF . Let us endow
⋃
[u]

[u]×G
e(u)
e(u) × [u] with the topology

induced from G(0) × GF
F × G(0). The topology of

⋃
[u]

[u] × G
e(u)
e(u) × [u] is locally

compact because
⋃
[u]

[u]×G
e(u)
e(u) × [u] is a closed subset of the locally compact space

G(0) × GF
F × G(0). With the operations

(u, x, v)(v, y, w) = (u, xy, w)

(u, x, v)−1 = (v, x−1, u),⋃
[u]

[u] × G
e(u)
e(u) × [u] becomes a groupoid. Define φ : G → ⋃

[u]

[u] × G
e(u)
e(u) × [u] by

φ(x) = (r(x), σ(r(x))xσ(d(x))−1, d(x))

and note that φ is a Borel isomorphism which carries compact sets to relatively
compact sets.
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Lemma 16. Let G be locally compact second countable locally transitive groupoid.
Let F be a subset of G(0) containing only one element e(u) in each orbit [u]. Let σ :
G(0) → GF be a regular cross section of dF . Then any compactly supported bounded
Borel function on G is the pointwise limit of a uniformly bounded sequence (fn)n of
Borel functions supported on a compact set supporting f , having the property that
each fn is a linear combination of functions of the form

x → g1(r(x))g(σ(r(x))xσ(d(x))−1)g2(d(x))

where g1, g2 are compactly supported bounded Borel functions on G(0) and g is a
compactly supported bounded Borel function on GF

F .

Proof. Endow
⋃
[u]

[u]×G
e(u)
e(u)× [u] with the topology induced from G(0)×GF

F ×G(0)

as in Remark.15. The topology of
⋃
[u]

[u] × G
e(u)
e(u) × [u] is locally compact. Any

compactly supported Borel bounded function on G(0)×GF
F ×G(0) is pointwise limit

of uniformly bounded sequences (fn)n of Borel functions supported on a compact
set, such that each function fn is a linear combination of functions of the form

(u, x, v) → g1(u)g(x)g2(v)

where g1, g2 are compactly supported bounded Borel functions on G(0) and g is a
compactly supported bounded Borel function on GF

F . Consequently, any compactly
supported bounded Borel function on

⋃
[u]

[u]×G
e(u)
e(u)×[u] has the same property. Since

φ : G → ⋃
[u]

[u] × G
e(u)
e(u) × [u] defined by

φ(x) = (r(x), σ(r(x))xσ(d(x))−1, d(x))

is a Borel isomorphism which carries compact sets to relatively compact sets, it
follows that any compactly supported bounded Borel function on G can be repre-
sented as a pointwise limit of a uniformly bounded sequence (fn)n of Borel functions
supported on a compact set supporting f , having the property that each fn is a
linear combination of functions of the form

x → g1(r(x))g(σ(r(x))xσ(d(x))−1)g2(d(x)). �

Corollary 17. Let G be locally compact second countable locally transitive group-
oid. Let F be a subset of G(0) containing only one element e(u) in each orbit [u].
Let σ : G(0) → GF be a regular cross section of dF . Then the linear span of the
functions of the form

x → g1(r(x))g(σ(r(x))xσ(d(x))−1)g2(d(x))

where g1, g2 ∈ Bc(G(0)) and g ∈ Bc(GF
F ), is dense in the full C∗-algebra of G.

Proof. Let f be a function on G, defined by

f(x) = g1(r(x))g(σ(r(x))xσ(d(x))−1)g2(d(x))

where g1, g2 ∈ Bc(G(0)) and g ∈ Bc(GF
F ). Then f lies in Bc(G), and so may be

viewed as an element of the C∗(G, ν), as we note in Proposition 13. Each f ∈ Bc(G)
(in particular in Cc(G)) is the limit (pointwise and consequently in the C∗-norm
according to Corollary 12) of a uniformly bounded sequence (fn)n of Borel functions
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supported on a compact set supporting f , having the property that each fn is a
linear combination of functions of the required form. �

Proposition 18. Let G be a locally compact second countable locally transitive
groupoid endowed with a Haar system {νu, u ∈ G(0)}. Let F be a subset of G(0)

containing only one element e(u) in each orbit [u]. Let σ : G(0) → GF be a regular
cross section of dF . Then

C∗(G, ν) = M∗(G, ν) = M∗
σ(G, ν).

Proof. We have proved that C∗(G, ν) = M∗(G, ν). From the preceding corollary,
it follows that the linear span of the functions of the form

x → g1(r(x))g(σ(r(x))xσ(d(x))−1)g2(d(x))

where g1, g2 ∈ Bc(G(0)) and g ∈ Bc(GF
F ) is dense in C∗(G, ν). But this space is

contained in Bσ(G). Therefore C∗(G, ν) = M∗(G, ν) = M∗
σ(G, ν). �

6. The case of principal proper groupoids

Notation 19. Let G be a locally compact second countable groupoid with proper
orbit space. Let F be a Borel subset of G(0) containing only one element e(u) in each
orbit [u]. Let σ : G(0) → GF be a cross section for dF : GF → G(0), dF (x) = d(x)
with σ(e(v)) = e(v) for all v ∈ G(0) and such that σ(K) is relatively compact in G
for all compact K ⊂ G(0). Let q : G → GF

F be defined by

q(x) = σ(r(x))xσ(d(x))−1

We shall endow GF
F with the quotient topology induced by q. We shall denote by

Cσ(G) the linear span of the functions of the form

x → g1(r(x))g(σ(r(x))xσ(d(x))−1)g2(d(x))

where g1, g2 ∈ Cc(G(0)) and g continuous on GF
F such that its support is relatively

compact in G.

Proposition 20. Using Notation 19, if the space of continuous functions (with the
respect to the quotient topology induced by q) with relatively compact support on GF

F

separates the points of GF
F , then Cσ(G) is dense in Cc(G) (for the inductive limit

topology). In particular, if the quotient topology induced by q on GF
F is a locally

compact (Hausdorff ) topology, then Cσ(G) is dense in Cc(G).

Proof. If the space of continuous functions on GF
F (with the respect to the quotient

topology induced by q) having relatively compact support separates the points of
GF

F , then Cσ(G) separates the points of G. By Stone–Weierstrass Theorem, it
follows that Cσ(G) is dense in Cc(G) (for the inductive limit topology). �

Proposition 21. Let G be a locally compact principal groupoid. If G is proper,
then the quotient topology induced by q on GF

F is a locally compact (Hausdorff )
topology. Consequently, Cσ(G) is dense in Cc(G) for the inductive limit topology
(we use Notation 19).

Proof. Let π : G → G(0)/G be the canonical projection. Let us note that for a
principal groupoid the condition

q(x) = q(y)
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is equivalent to

π(r(x)) = π(r(y)).

First we shall prove that the topology on GF
F is Hausdorff. Let (xi)i and (yi)i

be two nets with q(xi) = q(yi) for every i. Let us suppose that (xi)i converges to
x and (yi)i converges to y. Then

lim π(r(xi)) = lim π(r(yi)) = π(r(x)) = π(r(y)).

Hence q(x) = q(y), and therefore the topology on GF
F is Hausdorff. We shall

prove that q is open. If (zi)i is a net converging to q(x) in GF
F , then π ◦ r(zi)

converges to π ◦ r(x). Since

π ◦ r : G → G(0)/G

is an open map, there is a net (xi)i converging to x, such that π ◦ r(xi) = π ◦ r(zi),
and consequently q(xi) = q(zi) = zi. Hence q is an open map and the quotient
topology induced by q on GF

F is locally compact. �

Theorem 22. Let G be a locally compact second countable groupoid with proper
orbit space. Let F be a Borel subset of G(0) meeting each orbit exactly once. Let
σ : G(0) → GF be a cross section for d : GF → G such that σ(K) is relatively
compact in G for all compact K ⊂ G(0). Let us assume that the quotient topology
induced by q on GF

F is a locally compact (Hausdorff ) topology. Let {νu, u ∈ G(0)}
be a Haar system on G. Then

C∗(G, ν) ⊂ M∗
σ(G, ν) ⊂ M∗(G, ν).

Proof. From Proposition 20, Cσ(G) is dense in Cc(G) for the inductive limit
topology and hence is dense in C∗(G, ν). Since Cσ(G) ⊂ Bσ(G), it follows that
C∗(G, ν) ⊂ M∗

σ(G, ν). �

Corollary 23. Let G be a locally compact second countable principal proper group-
oid. Let F be a Borel subset of G(0) meeting each orbit exactly once. Let σ : G(0) →
GF be a cross section for d : GF → G such that σ(K) is relatively compact in G
for all compact K ⊂ G(0). Let {νu, u ∈ G(0)} be a Haar system on G. Then

C∗(G, ν) ⊂ M∗
σ(G, ν) ⊂ M∗(G, ν).

Proof. Applying Proposition 21, we obtain that the quotient topology induced
by q on GF

F is a locally compact (Hausdorff) topology. Therefore G satisfies the
hypothesis of Theorem 22. �

Definition 24. Let {μu̇}u̇ be a system of measures on G(0) satisfying:
(1) supp(μu̇) = [u] for all u̇.
(2) For all compactly supported continuous functions f on G(0) the function

u →
∫

f(v)μπ(u)(v)

is continuous.
We shall say that the Hilbert bundle determined by the system of measures

{μu̇}u̇ has a continuous basis if there is sequence f1, f2, . . . of real valued continuous
functions on G(0) such that dim(L2(μu̇)) = ∞ if and only if ‖fn‖2 = 1 in L2(μu̇)
for n = 1, 2, . . . and then {f1, f2, . . . } gives an orthonormal basis of L2(μu̇), while
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dim(L2(μu̇)) = k < ∞ if and only if ‖fn‖2 = 1 for n ≤ k, and ‖fn‖2 = 0 for n > k
and then {f1, f2, . . . , fk} gives an orthonormal basis of L2(μu̇).

Remark 25. Let {μu̇
1}u̇ and {μu̇

2}u̇ be two systems of measures on G(0) satisfying:
(1) supp(μu̇

i ) = [u] for all u̇, i = 1, 2.
(2) For all compactly supported continuous functions f on G(0) the function

u →
∫

f(v)μπ(u)
i (v)

is continuous.
Let us assume that the Hilbert bundles determined by the systems of measures
{μu̇

i }u̇ have continuous bases. Let f1.f2, . . . be a continuous basis for Hilbert bundle
determined by {μu̇

1}u̇ and let g1, g2, . . . be a continuous basis for Hilbert bundle
determined by {μu̇

2}u̇. Let us define a unitary operator Uu̇ : L2(μu̇
1 ) → L2(μu̇

2 ) by

Uu̇(fn) = gn for all n.

Then the family {Uu̇}u̇ has the following properties:
(1) For all bounded Borel functions f on G(0),

u → Uπ(u)(f)

is a bounded Borel function with compact support.
(2) For all bounded Borel functions f on G(0),

Uπ(u)(f) = Uπ(u)(f).

(3) For all compactly supported continuous functions f on G(0) there is a se-
quence (hn)n of compactly supported continuous functions on G(0) such that

sup
u̇

∫
|Uu̇(f) − hn|2dμu̇

2 → 0 (n → ∞).

Indeed, we can define

hn(v) =
n∑

k=1

gk(v)
∫

f(u)fk(u)dμ
π(v)
1 (u).

Remark 26. Let G be a locally compact second countable groupoid with proper
orbit space. Let F be a Borel subset of G(0) containing only one element e(u) in
each orbit [u]. Let us assume that F ∩ [K] has a compact closure for each compact
subset K of G(0), and let σ : G(0) → GF be a cross section for dF : GF → G(0)

such that σ(K) is relatively compact in G for all compact K ⊂ G(0). Let us endow
GF

F with the quotient topology induced by q : G → GF
F

q(x) = σ(r(x))xσ(d(x))−1, x ∈ G.

If g is continuous on GF
F and has relatively compact support in G, and if g1, g2

are two functions on G(0) with the property that there is two sequences (h1
n)n and

(h2
n)n of compactly supported continuous functions on G(0) such that

sup
u̇

∫
|gi − hi

n|2dμu̇
2 → 0 (n → ∞)

for i = 1, 2, then

x
f→ g1(r(x))g(σ(r(x))xσ(d(x))−1)g2(d(x))
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can be viewed as an element of C∗(G, ν). Indeed, it is easy to see that

‖f − (h1
n ◦ r)(g ◦ q)(h2

n ◦ d)‖II → 0 (n → ∞).

Proposition 27. Let G be a locally compact second countable principal proper
groupoid. Let νi = {νu

i , u ∈ G(0)}, i = 1, 2, be two Haar systems on G and let
({βu

v }, {μu̇
i }) be the corresponding decompositions over the principal groupoid. If

the Hilbert bundles determined by the systems of measures {μu̇
i }u̇ have continuous

bases, then the C∗-algebras C∗(G, ν1) and C∗(G, ν2) are ∗-isomorphic.

Proof. We use Notation 19. From Proposition 20, Cσ(G) is dense in Cc(G) for
the inductive limit topology and hence is dense in C∗(G, ν1). We shall define a
∗-homomorphism Φ from Cσ(G) to C∗(G, ν2). It suffices to define Φ on the set of
functions on G of the form

x → g1(r(x))g(q(x))g2(d(x))

where g1, g2 ∈ Cc(G(0)) and g continuous on GF
F having relatively compact support

in G. Let {Uu̇}u̇ be the family of unitary operators with the properties stated in
Remark 25 associated to the systems of measures {μu̇

i }u̇, i = 1, 2.
Let us define Φ by

Φ(f) = (x → Uπ(r(x))(g1)(r(x))g(q(x))Uπ(d(x))(g2)(d(x)))

where f is defined by

f(x) = g1(r(x))g(q(x))g2(d(x))

with g1, g2 ∈ Cc(G(0)) and g continuous on GF
F having relatively compact support

in G.
As noted in Remark 26, the functions of the form Φ(f) can be viewed as elements

of C∗(G, ν2). With the same argument as in the proof of Theorem 9, it follows that
Φ can be extended to ∗-isomorphism between C∗(G, ν1) and C∗(G, ν2). �
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