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Topics in dyadic Dirichlet spaces

Nicola Arcozzi and Richard Rochberg

Abstract. We investigate the function theory on function spaces on a dyadic
tree which model Dirichlet spaces of holomorphic functions. Most of the spe-
cific questions addressed deal with Carleson measures on those spaces.
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1. Introduction

In a previous paper [ARS], together with Eric Sawyer, we studied Carleson mea-
sures and related topics for generalized Dirichlet spaces of holomorphic functions.
One of our main tools there was a family of discrete models which, while consid-
erably easier to work with, were faithful enough to the original situation so that
results for the model problems could be applied in the continuous situation. Here
we continue to study the function theory of such model spaces, the dyadic Dirichlet
spaces of the title. We feel both that these spaces are intrinsically interesting and
that understanding them better will help inform our study of spaces of holomorphic
functions.
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We begin this introduction with a brief overview of some results in the holo-
morphic setting. After that we have a brief survey of the contents of the later
sections.

1.1. Generalized Dirichlet spaces. Let dν(z) :=
(
1 − |z|2)−2

dxdy be the Mö-
bius invariant measure on the unit disk D and let δf(x) := (1 − |z|2)f ′(z) be the
gradient of a function f with respect to the hyperbolic geometry of D. The classical
Dirichlet space is the space of holomorphic functions f for which

∫
D
|δf |2dν < ∞.

More generally, for α ≥ 0, 1 < p < ∞, set ρα(z) = (1 − |z|2)α and define the
generalized Dirichlet space (a.k.a. generalized Besov spaces) Bp(α) to be the space
of holomorphic functions f for which the seminorm

‖f‖∗α,p =
(∫

D

|δf |pραdν

) 1
p

is finite. Note that the seminorm on the spaces Bp = Bp(0) is conformally invariant.
We also have the norms ‖f‖α,p = ‖f‖∗α,p + |f(0)|.

We define the α-hyperbolic distance of z from the origin by

dα(z) =
∫

[0,z]

ρα(w)1−p′ |dw|
1 − |w|2

where [0, z] is the segment from 0 to z. d0(0, z) = d(0, z) is the (classical) hyperbolic
distance from 0 to z. It is not difficult prove [ARS] that

|f(z) − f(0)| ≤ C(α, p)dα(z)1/p′‖f‖∗α,p(1.1)

where C(α, p) is a positive constant.
In the spaces Bp(α) we can pose natural questions such as the characterization of

Carleson measures, of multipliers, of interpolating sequences, or of zero sets. Part
of the motivation for these questions is that B2(1) = H2 is the classical analytic
Hardy space. For H2 the answers to these questions are known and are central to
that theory as well as to much of commutative harmonic analysis. Also, the study
of Carleson measures on the Bp(α) is the holomorphic counterpart of the study of
trace inequalities for Sobolev spaces. That topic has been studied extensively and
we refer the reader to [M], [KS1], [V], and [KV] for more information.

A positive measure μ on D is a Carleson measure for Bp(α) if for some constant
C(μ) ∫

D

|f(z)|pdμ(z) ≤ C(μ)‖f‖p
α,p(1.2)

holds for all functions f holomorphic in D.
For a ∈ D, set

S(a) = {z ∈ D : 1 − |z| ≤ 2(1 − |a|), | arg (az) | ≤ 2π (1 − |a|)}
and, if I is an arc on ∂D, let S(I) = S((1− |I|/2π)eiθI ) where eiθI is the midpoint
of I. It was proved by Carleson [Car] for H2 = B2(1) and then by Stegenga [Ste]
for B2(α), α ≥ 1, that μ is Carleson for B2(α) if and only if for some C(μ)

μ(S(I)) ≤ C(μ)|I|α.(1.3)
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for all arcs I. However for 0 ≤ α < 1 this simple condition is necessary, but not
sufficient. Stegenga showed that the correct condition for B2 is the capacitary
condition

μ
(∪n

j=1S(Ij
)
) ≤ C(μ)(log(cap(∪n

j=1Ij))
−1)−1(1.4)

whenever the Ij ’s are disjoint arcs of ∂D. Here cap denotes logarithmic capacity.
Stegenga also showed that similar conditions, with suitable capacities, also charac-
terize the Carleson measures for B2(α), 0 ≤ α < 1. J. Wang [Wang] had similar
results for Bp and those results were obtained independently by Wu [Wu2]. We
now describe those results.

For any open set O ⊂ ∂D we define the Bp(α)-capacity of the set O by

cap (O,Bp(α)) = inf
{
‖f‖Bp(α) : Re f ≥ 1 on O

}
.

It is shown in [Wang] and [Wu2] that, in analogy with (1.4), μ is a Carleson measure
for B2(α), 0 ≤ α < 1, if and only if there is a Cp,α(μ) > 0 so that

μ
(∪n

j=1S(Ij
)
) ≤ Cp,α(μ) cap

(∪n
j=1Ij , Bp(α)

)
.

However for α = 1 and 1 < p ≤ 2 the condition is again

μ(S(I)) ≤ C(μ)|I|.(1.5)

It isn’t know if this condition is the correct one for α = 1 and p > 2. (There is an
unfortunate misprint in Theorem 1 (b) of [Wu2]. In the notation used there, the
condition min(1, α+ 1) < p should be max(1, α+ 1) < p.)

A simpler, “one box”, condition was later found by Kerman and Sawyer [KS2].
We now recall their result in the special case p = 2. They showed that a necessary
and sufficient condition which is valid in the range 0 ≤ α ≤ 1 is given by∫

I

sup
J:θ∈J⊂I

μ(S(J) ∩ S(I))2

|J |ρα(1 − |J |) dθ ≤ C(μ)μ(S(I))(1.6)

for all arcs I in ∂D, the supremum being taken over arcs J in ∂D. An interest-
ing feature of (1.6) is that it “bridges” the gap between the simple (1.3) and the
more complicated (1.4). Yet another characterization of the Carleson measures is
available [ARS]. Namely, if 1 < p < ∞ and p′ is the conjugate index defined by
p−1 + p′−1 = 1, then for 0 ≤ α < 1, a measure μ is Carleson if and only if∫

S(I)

μ(S(z) ∩ S(I))p′
ρα(z)1−p′

dν(z) ≤ C(μ)μ(S(I))(1.7)

for all arcs I. In [ARS] it is shown that (1.7) is strictly stronger that (1.3) whenever
α ≥ 0 and 1 < p < ∞. A direct proof that the discrete versions of (1.6) and (1.7)
are equivalent when 0 ≤ α < 1 will be given in Section 3.

A multiplier of Bp(α) is a function g, analytic on D, such that the multiplication
operator

Mg : f 
→ gf

is bounded on Bp(α). We denote by M(Bp(α)) the space of multipliers. It is not
to difficult to show that g ∈ M(Bp(α)) if and only if it belongs to H∞ and the
measure

dμg(z) = |g′(z)|p(1 − |z|2)p−2ρα(z)dm(z)(1.8)
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is Carleson for Bp(α). Thus, each theorem characterizing the Carleson measures
also provides a first step toward the characterization of the multiplier space.

The space X of holomorphic functions g for which dμg(z) is a Carleson measure
for B2(0) appears to play a role in the theory of the Dirichlet space B2(0) similar
to that of BMO in the theory of Hardy spaces B2(1). However analogs of classical
facts about BMO such as the theorem of John and Nirenberg or Fefferman’s result
that the space originally defined by an oscillation condition can equivalently be
described by a Carleson measure condition are not known for functions in X. In
Section 6 we do develop one result of that sort for the dyadic model case.

By (1.1), if Z is subset of D, the functional

T : f 
→ {(dα(z) + 1)−1/p′
f(z) : z ∈ Z}

maps a priori Bp(α) into l∞. We say that Z is an interpolating sequence for Bp(α)
if T maps Bp(α) into and onto lp. Marshall and Sundberg [MS] and, independently,
C. Bishop [Bi] found the following geometric characterization of the interpolating
sequences. Consider, with α = 0 and p = 2, the measure

dμZ =
∑
z∈Z

(1 + dα(z))1−pδz.(1.9)

Then, Z is interpolating for B2 if and only if μZ is Carleson for B2 and the following
separation condition holds: there are constants A and B so that for any distinct z
and w in Z

d(z, 0) ≤ Ad(z, w) +B.(1.10)

Note that the requirement that μZ is a Carleson measure is just a different way
of saying that T is bounded. Marshall and Sundberg also proved that these two
conditions are necessary and sufficient for Z to be interpolating for M(B2). By
this, we mean that

U : f 
→ {f(z) : z ∈ Z}
maps M(Bp(α)) onto l∞. J. Xiao [X] extended the characterization of the interpo-
lating sequences to 0 < α < 1, for both B2(α) and M(B2(α)). His conditions on Z
are, as in [MS], that μZ is Carleson for B2(α) and that the sequence Z is separated
in the sense that

d(z, w) ≥ C > 0

for all distinct z and w in Z. This latter separation condition is also the one
which occurs in Carleson classical interpolating Theorem [Car] which corresponds to
α = 1. This and other results of Xiao show that, when 0 < α < 1, B2(α) is similar
to B2 in some respects (Carleson measures), and to H2 in others (interpolating
sequences, ∂-problems). An extension of the Marhall and Sundberg interpolating
theorems to Bp, 1 < p < ∞, was recently obtained by Böe [Bo]. He shows that a
sequence Z is interpolating for Bp if and only if (1.9) and (1.10) hold, and that the
interpolating sequences for Bp are exactly those which are interpolating for M(Bp).
A dyadic version of Böe’s theorem will be given in Section 4.

There is another version of the problem of interpolating sequences which remains
open. One can require the map T (resp., U) to be onto, although not necessarily
defined on all Bp(α) (resp., M(Bp(α)). Some results in this direction exist for B2.
It has been proved by Bishop [Bi] that a sequence Z in D is interpolating for B2
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in this weaker sense if, for each z ∈ Z, there is an analytic function hz such that
‖hz‖B2 ≤ Cd(z)−1 and hz(w) = δz(w) for all w ∈ Z. The condition is clearly
also necessary to have interpolation. Bishop’s theorem connects the problem of
interpolation with that of characterizing the zero sets for B2. A sequence Z in D

is a zero set for B2 if there is a nonzero function f in B2 having zeros at all points
of Z. Shapiro and Shields [SS] showed that a sufficient condition for Z to be a zero
set is that ∑

z∈Z

d(z)−1 <∞(1.11)

It is not known if (1.11) is also necessary. Condition (1.11) is a special case of
(1.3), with p = 2, α = 0, μ = μZ and I = ∂D. Indeed, Bishop’s condition asks for
Z − {z} to be a zero set for all z ∈ Z and that there be natural uniform estimates
for the functions with the required properties. Thus, although the two problems
are related, it is in principle possible to find a geometric characterization of the
sequences that are interpolating in the weak sense, without having to characterize
the zero sets for B2.

1.2. Contents. The remaining part of this note is devoted to the dyadic Dirichlet
spaces, defined in Section 2. In Section 3, as part of an effort to understand the
range of applicability of these various models, we introduce a discrete model for
some of the Bp(α) which is different from the models used in [ARS]. More specif-
ically, having considered a cancellation free model in [ARS] as well as a discrete
harmonic model, here we consider a martingale model. In Section 4 we characterize
the Carleson measures for our dyadic Dirichlet spaces. The condition turns out to
be the same as for the cancellation free model. The sufficiency of the condition
follows a posteriori from the results for the cancellation free model, the necessity
of the condition, which was rather easy to verify for the cancellation free model,
is more delicate here due to the paucity of test functions. The discrete analogs of
condition (1.6) or of condition (1.7) characterize Carleson measures for our dyadic
Dirichlet spaces, hence the conditions must be equivalent. However the equivalence
is not transparent. It is straightforward that condition (1.7) implies condition (1.6);
in Section 4 we give a direct proof of the opposite implication. In Section 5, we char-
acterize the interpolating sequences for the dyadic Dirichlet spaces. In Section 6 we
obtain a result for the dyadic Dirichlet space which models the relationship between
BMO functions and bounded Hankel operators on the Hardy space.

2. Definitions and preliminary results

Let D be the index set

D = {(n, j) ∈ Z × Z : n ≥ 0, 1 ≤ j ≤ 2n}.
To each index α = (n, j) ∈ D, we associate an interval I(α) = [2−n(j − 1), 2−nj].
and we denote by |I(α)| the length of the interval I(α). We call o = (0, 1) the root
of D. We endow D with a partial ordering and with a tree structure. We say that
α < β if I(β) ⊂ I(α) and that there is an edge of D between α and β if either
α < β or α > β and also |I(α)| · |I(β)|−1 ∈ {2, 1/2}. We define the distance d(α, β)
between two points in D as the minimum number of edges in a path between α and
β. We write d(α) = d(α, o), the level of α. Given α ∈ D\{o}, the predecessor of
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α, α−1, is the element β of level d(α) − 1 such that α > β. The two successors of
α, α ∈ D, α− and α+, are the elements β at level d(α) + 1 such that β > α. As a
convention, we let α− to be the successor whose second coordinate is smaller. The
map α 
→ −α is defined by −o = o, −α± = α∓.

A function h : D → R is a (dyadic) martingale if

h(α) =
h(α−) + h(α+)

2
for all α ∈ D.

The derivative of a function f : D → R is defined by

Df(α) = f(α) − f(α−1)

for d(α) ≥ 1, and by Df(o) = f(o) at the root. For α ∈ D, let rα be the function
defined by

rα(α+) = 1, rα(α−) = −1,

rα being zero otherwise. Then, h is a martingale if and only if for some choice of
real numbers a(α), a∗,

Dh = a∗δo +
∑
α∈D

a(α)rα

where δo is the unit mass at o. The primitive of f : D → R, If , is

If(α) =
α∑

β=o

f(β)

It is a direct verification that DI = ID = Id. In particular, a martingale can be
reconstructed from its derivative.

The martingale spaces we are interested in are defined in terms of the size of the
derivatives of the functions. Let 1 < p < ∞ and a ∈ R. The Dirichlet space Bp(a)
is the space of those dyadic martingales h such that

‖h‖p
Bp(a) =

∑
α∈D

|Dh(α)|p|I(α)|a <∞.

(The choice of notation is to distinguish between these spaces and the spaces Bp(a)
in [ARS] which have a similar norm but for which the elements h are not required to
be martingales.) In the remaining part of this section, we find reproducing kernels
and duals of these spaces. We let Bp = Bp(0).

Reproducing kernels. B2 is a Hilbert space with inner product

〈f, g〉B2 =
∑
α∈D

Df(α)Dg(α).

An orthonormal basis for B2 is provided by the functions Irβ , β ∈ D, where

rβ(β−) = 21/2, rβ(β+) = −21/2

rβ(γ) = 0, otherwise, and by the constant function δo = 1. The reproducing kernel
at α is a function Kα ∈ B2 such that

〈f,Kα〉B2 = f(α)

whenever f ∈ B2.
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Proposition 1. B2 has reproducing kernel Kα at all α ∈ D. The derivative of
Kα is given by

DKα(β) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 if β = o

2−1 if o < β ≤ α

−2−1 if o < −β ≤ α

0 otherwise.

(2.1)

In particular, if z ∈ D,

DKz −DKz−1 = ±1/2rz−1(2.2)

where the sign is + or − depending on z = z−1
+ or z = z−1

− .

Proof. The expression for DKα is obtained by direct calculation starting with the
fact that the reproducing kernel, Kα, can be built using (any) orthonormal basis.

Kα (·) = 1 +
∑
γ∈D

Irγ(α)Irγ (·) .

�

Dual spaces. Let a ∈ R and 1 < p <∞. By Hölder’s inequality, to each function
h ∈ Bp′((1 − p′)a) we can associate a functional Λh ∈ (Bp(a))

∗, the dual of Bp(a),
by

Λh(g) = 〈g, h〉B2 =
∑
α∈D

Dg(α)Dh(α).

In fact, all elements of the dual of Bp(a) can be obtained this way.

Proposition 2. The map h 
→ Λh is a bijection of Bp′((1 − p′)a) onto (Bp(a))
∗.

Proof. Let DBp(a) = {Dh : h ∈ Bp(a)} ⊆ Lp(a), normed with the Lp(a)-norm.
Consider the orthogonal projection Π of l2(D) onto DB2. Π can be computed by
its action on δα, α ∈ D − {o}:

Πδα = ±1/2rα−1

the sign being + (resp., −) if α = α−1
+ (resp., α = α−1

− ), and Πδo = δo. One checks
directly that Π2 = Π and Π is self-adjoint. One also easily verifies that Π is also a
contraction of Lp′

((1 − p′)a) into DBp′((1 − p′)a).
Now, let Λ be a continuous functional on Bp(a), which is isometric, through D,

to a subspace of Lp(a). By Hahn-Banach, it has a continuous extension to Lp(a),
hence,

Λh = 〈Dh, f〉l2
for some f ∈ Lp′

((1−p′)a). By the boundedness of Π, Πf ∈ DBp′((1−p′)a). Now,
if h ∈ Bp(a) and α ∈ D,

Λh = 〈DΛh, f〉l2 = 〈ΠDΛh, f〉l2
= 〈DΛh,Πf〉l2 = ΛIΠfh

and IΠf ∈ Bp′
((1 − p′)a). �
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In the continuous case, duality issues are more complicated and the analogue of
the duality result above only holds when a belongs to a certain range of exponents.
See [Bek], [L1], and [ARS].

3. Function spaces on dyadic trees

The function spaces on dyadic trees which we just introduced and as well as
other similar spaces arise in a number of different contexts. We came to them as a
model for certain function theoretic questions on the unit disk. It was our hope of
course that the model would reflect basic properties of the function theory on the
disk and yet be easier to work with. Here we wanted to note that if one is trying
to understand harmonic or holomorphic functions on, say, the disk by using a tree
model then there are several different approaches that are natural.

We regard a function fD on the dyadic tree D as a model for the function fD

on the disk D by thinking of fD(α) where α = (n, j) ∈ D as representing the
values of fD near the point zα = (1 − 2−n) exp(2πij/2n). The operators D and I
model differentiation and integration, etc. Such models give good representation of
aspects of global behavior related to hyperbolic modulus of continuity estimates.
For instance, (5.1) models (1.1). However, in such an approach it is not clear how
to model the local cancellation properties of harmonic or holomorphic functions.

Of course one possibility is to ignore the issue. This corresponds to working
not with the spaces we just described — martingales with derivatives in lp — but
rather working with the space of all functions on the tree with derivatives in lp.
This is the primary viewpoint taken in [ARS] and it served well there. Alternatively
one can try to model the local mean value property of harmonic functions. One
could work with functions on a tree which have local cancellation — for instance
functions fD with a local mean value property — the value of fD at a point α is
the average of the values of fD at the nearest neighbors of α. These are the so-
called harmonic functions on a tree. They were used in the final section of [ARS]
as part of an attempt to understand why some of the results there failed in certain
parameter ranges. Alternatively one can model the local mean value property by
restricting attention to functions on the tree with the property that the value of
fD at α is the average of the values of fD at the two successors of α; i.e., fD is a
dyadic martingale of the sort used in this paper. In fact there is a rich relationship
between the harmonic analysis associated to martingales and the harmonic analysis
associated to harmonic functions on trees. Much of that relationship is developed
in [KPT] and [T].

One of the goals of this paper was to examine the extent to which the analysis
of Carleson measures and interpolating sequences for space of all functions on the
tree with derivatives in lp and also for the space of harmonic functions on the
tree space with derivatives in lp, both carried out in [ARS], could be extended to
the space of martingales with derivatives in lp. The overall hope is to find more
unity if the seemingly disparate answers to seemingly similar questions concerning
characterization of Carleson measures. With that in mind it was satisfying to find
that the spaces studied here have the same Carleson measures as those which were
the main focus in [ARS].

We came to function theory on D as a way to model issues from analytic function
theory. However function theory on trees is a subject with its own rich life. Issues of
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classical harmonic analysis in the context of function spaces on trees are developed
in, among other places, [T], and [KPT]. However the methods of those papers
don’t apply well to the spaces Bp(a) with a < 1, which are our primary interest
here. The approach to Carleson measures for function spaces on trees developed by
Evans, Harris and Pick in [EHP] gives an alternative approach and an alternative
resolution (in terms of capacities) to some of the results in [ARS]. We don’t know
if their approach can be adapted to the spaces Bp(a).

4. Carleson measures

4.1. Characterization of Carleson measures. Let a ∈ R, 1 < p <∞. We say
that a positive function μ on D is a Carleson measure for Bp(a) if Bp(a) ⊂ Lp(μ),
that is, if the following discrete Sobolev-Poincaré inequality holds for all h ∈ Bp(a),∑

α∈D
|h(α)|pμ(α) ≤ C(μ)

∑
α∈D

|Dh(α)|p|I(α)|a.(4.1)

In this section we give a geometric characterization of the Carleson measures for
Bp(a), 0 ≤ a < 1, and we discuss its relation with two different geometric conditions,
corresponding to the characterization theorems in [KS2] and [Car]. With little
effort, but at the expenses of brevity, these comparisons could be extended to cover
the continuous case.

For z ∈ D, let S(z) = {w ∈ D : w ≥ z} be the Carleson box with vertex z and
let Mz = μ(S(z)).

Theorem 1. Let 0 ≤ a < 1 and 1 < p < ∞. Then, a measure μ on D is a
Carleson measure for Bp(a) if and only if∑

w≥z

Mp′
w |I(w)|a(1−p′) ≤ C(μ)Mz.(4.2)

In the proof of the theorem we need the following definition. Let u ∈ D. A
geodesics starting at u is a sequences ξ = {z0, z1, . . . , zn, . . . } ⊂ D such that z0 =
u, zn > zn−1, d(zn, zn−1) = 1. It is well-known that the map ξ 
→ ∩∞

n=0I(zn) is a
map of the set of geodesics starting at u onto I(u), which is one-to-one, but for the
set of the dyadic rationals in I(u).

Proof. Suppose that (4.2) holds. In [ARS] it is proved then, in greater generality,
that I is bounded from Lp(a) to Lp(μ). In particular, this shows that μ is Carleson.

Let μ be a Carleson measure. Testing (4.1) on h ≡ 1, we see that μ must be
bounded. Also, μ is Carleson if and only if the identity Id is bounded from Bp(a)
to Lp(μ). By duality, this is equivalent to the boundedness of

Θ : Lp′
(μ) → Bp′((1 − p′)a)

where Θ is the (formal) adjoint of Id. Explicitly,

Θh(z) = 〈Θh,Kz〉B2 = 〈h,Kz〉L2(μ) =
∑
w∈D

h(w)Kz(w)μ(w).

Thus,

∑
z∈D

∣∣∣∣∣
∑
w∈D

h(w)(Kz(w) −Kz−1(w))μ(w)

∣∣∣∣∣
p′

|I(z)|(1−p′)a ≤ C
∑
w∈D

|h(w)|p′
μ(w).
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As was noted in (2.2) the expression Kz(w) − Kz−1(w) has values 1/2, if w ≥ z,
and −1/2, if w ≥ −z. Testing this relation on functions of the form h = χS(u),
u ∈ D, we obtain the inequalities

Mp′
u |I(u)|(1−p′)a +

∑
z>u

|Mz −M−z|p
′ |I(z)|(1−p′)a ≤ CMu.(4.3)

To finish the proof, then, it suffices to show that, if 0 ≤ a < 1, then

∑
w≥u

Mp′
w |I(w)|a(1−p′) ≤ CMp′

u |I(u)|(1−p′)a + C
∑
z>u

|Mz −M−z|p
′ |I(z)|(1−p′)a.

(4.4)

Observe that, for all a ∈ R the right-hand side of (4.4) is controlled by the left-hand
side.

Fix ε > 0 to be chosen later. On the geodesics ξ = {zn : n ≥ 0} starting at u,
define stopping times t0 = t0(ξ) = 0,

tk = tk(ξ)

= inf
{
t > tk−1 : Mp′

zt
|I(zt)|a(1−p′)

> ((1 + ε)/2)p′
Mp′

z−1
t

∣∣I(z−1
t )
∣∣a(1−p′)

}
= inf

{
t > tk−1 : Mp′

zt
> 2a(1−p′) ((1 + ε)/2)p′

Mp′

z−1
t

}
.

The inf might be infinite. Let b be a k-stopping point (that is, b = ztk
on some

geodesic starting at u). Let B(b) be the set of the (k + 1)-stopping points b′ such
that b′ > b. Let SP (u) be the set of the stopping points.

Claim. ∑
w≥u

Mp′
w |I(w)|a(1−p′) ≤ C

∑
v≥u,v∈SP (u)

Mp′
v |I(v)|a(1−p′).

Let b be a k-stopping point. The claim is proved if we show that∑
b≤w<B(b)

Mp′
w |I(w)|a(1−p′) ≤ CMp′

b |I(b)|a(1−p′)

where w < B(b) means that w < v for all k + 1-stopping points v.
Let n be a positive integer and let c be such that b < c < B(b), d(b, c) = n. If

b < −c < B(b), then(
Mp′

c +Mp′
−c

)
|I(c)|a(1−p′) ≤ 2 ((1 + ε)/2)p′

Mp′

c−1 |I(c−1)|a(1−p′)

If −c is not between b and B(b), then

Mp′
c |I(c)|a(1−p′) ≤ ((1 + ε)/2)p′

Mp′

c−1 |I(c−1)|a(1−p′)

Choose ε such that 21−p′
(1 + ε)p′

= 1 − δ < 1. Summing over all such c’s and
iterating,∑

b<c<B(b),d(b,c)=n

Mp′
c |I(c)|a(1−p′) ≤ (1 − δ)

∑
b<c<B(b),d(b,c)=n−1

Mp′
c |I(c)|a(1−p′)

≤ . . .

≤ (1 − δ)nMp′
b |I(b)|a(1−p′).

Summing over n, then over b, we obtain the claim.
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Let now b > u be a stopping point. By the definition of Mb and of the stopping
times,

M−b ≤Mb−1 −Mb ≤
(

2
1 + ε

2a/p − 1
)
Mb

hence,

Mb −M−b ≥ 2
(

1 − 2a/p

1 + ε

)
Mb.

The right-hand side can be made greater than ηMb, for some η > 0, if we can
choose ε > 0 such that

2a/p < 1 + ε < 21/p.

This is possible, since a < 1. Summing over all stopping points, we obtain∑
b≥u,b∈SP (u)

Mp′
b |I(b)|a(1−p′) ≤ CMp′

u |I(u)|a(1−p′)

+ C
∑
z>u

|Mz −M−z|p
′ |I(z)|a(1−p′).

By the claim, we deduce (4.4). �

4.2. The equivalence of different conditions. When a = 1, the condition
(4.2) in Theorem 1 is still sufficient, but no longer necessary. In fact, a measure μ
is Carleson for B2(1) if and only if the following Carleson type condition holds:

Mz ≤ C|I(z)|.(4.5)

See [NT] for a short proof. In fact, as in the continuous case, a condition of
Kerman-Sawyer type encompasses both the a < 1 and the a = 1 case. We give a
direct proof of this in Theorems 2 and 3. In the theory of Carleson measures on the
Hardy space, and the theory of the associated function space BMO, it is ubiquitous
and often crucial that certain estimates appear to be self-improving. That is, the
estimates imply further estimates that are, on casual inspection, strictly stronger.
Such phenomena are less understood for the Carleson measures on the Dirichlet
space. Theorem 2 is an example of such a phenomenon.

Theorem 2. If 1 < p <∞ and 0 ≤ a < 1, then the following are equivalent:∑
w≥z

Mp′
w |I(w)|a(1−p′) ≤ CMz;(ARS)

∫
I(z)

sup
x∈I(w)⊆I(z)

(
Mp′

w |I(w)|a(1−p′)−1
)
dx ≤ CMz.(KS)

Theorem 3. If 1 < p <∞, the following are equivalent:∫
I(z)

sup
x∈I(w)⊆I(z)

(
Mp′

w |I(w)|−p′)
dx ≤ CMz;(KS)

Mz ≤ C|I(z)|(Car)
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Proof of Theorem 2. The implication (ARS) =⇒ (KS) is elementary and it
holds for all a’s. For z ∈ D, let Sn(z) = {w ∈ s(z) : d(z, w) = n}.∑

w≥z

Mp′
w |I(w)|a(1−p′) =

∞∑
n=0

∑
Sn(z)

Mp′
w |I(w)|a(1−p′)

=
∞∑

n=0

∑
w∈Sn(z)

∫
I(w)

Mp′
w |I(w)|a(1−p′)−1dx

=
∫

I(z)

∑
z≤w

x∈I(w)

Mp′
w |I(w)|a(1−p′)−1dx

≥
∫

I(z)

sup
x∈I(w)⊆I(z)

(
Mp′

w |I(w)|a(1−p′)−1
)
dx.

The converse, (KS) =⇒ (ARS), says that the inclusion l1 ⊂ l∞ in the last chain
of inequalities can somewhat be reversed. Let z ∈ D and define stopping times on
the geodesics ξ = {zn : n ≥ 0} starting at z: t0 = t0(ξ) = 0,

tk = tk(ξ) = inf
{
t > tk−1 : Mp′

zt
|I(zt)|a(1−p′)−1 > Mp′

ztk−1
|I(ztk−1)|a(1−p′)−1

}
.

Let SP (z) be the set of the stopping points on the geodesics starting at z.

Claim 1. Let γ = a(p′ − 1) + 1. Then∑
w≥z

Mp′
w |I(w)|1−γ ≤ C

∑
w≥z

w∈SP (z)

Mp′
w |I(w)|1−γ .

Proof of Claim 1. Let k ≥ 0, c be a k-stopping point and Γ(n) = {w ∈ S(c) :
d(c, w) = n, w < SP (k+ 1)}. The last requirement means that w < ξ, whenever ξ
is a k + 1-stopping point. Then, if b ∈ Γ(n),

Mp′
w ≤

( |I(w)|
|I(c)|

)γ

Mp′
c

= 2−nγMp′
c .

Thus, ∑
w∈Γ(n)

Mp′
w |I(w)|1−γ = |I(c)|1−γ2n(γ−1)

∑
w∈Γ(n)

Mp′
w

≤ |I(c)|1−γ2n(γ−1)Mp′−1
c 2−nγ p′−1

p′
∑

w∈Γ(n)

Mw

≤ |I(c)|1−γMp′
c 2n

(
γ−1−γ p′−1

p′
)

≤ |I(c)|1−γMp′
c 2n

(
γ
p′ −1

)

Now, since a < 1, γ
p′ − 1 < 0. Thus, summing over n ≥ 1, we have that∑
c≤w<SP (k+1)

Mp′
w |I(w)|1−γ ≤ C|I(c)|1−γMp′

c .

Summing over all stopping points c, we obtain the desired inequality. �
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By Claim 1, the theorem is proved if we show the inequality∑
w≥z

Mp′
w |I(w)|−a(p′−1) ≤ C

∫
I(z)

sup
x∈I(w)⊆I(z)

(
Mp′

w |I(w)|−a(p′−1)−1
)
dx.(4.6)

Recall that the map ξ = {z0 = z, z1, . . . , zn, . . . } 
→ x(ξ) = ∩∞
n=0I(zn) maps the set

of geodesics starting at z onto I(z) and it is one-to-one, but for the dyadic rationals
x ∈ I(z). Since the latter has measure zero, from the viewpoint of measure theory
we can identify geodesics and points in I(z). In particular, the stopping times tk
can be thought of as functions on I(z). We write x > w if x = x(ξ) and w is a
point on the geodesic ξ. The proof of (4.6) is based on the following:

Claim 2. Let c be a k-stopping point and let

E(c) = {x ∈ I(c) : tk+1(x) = +∞}.
Then, there exists ε ∈ (0, 1) such that

|E(c)| ≥ ε|I(c)|.
Proof that Claim 2 implies (4.6). Any two sets in {E(c) : c ∈ SP (z)} have
intersection with zero measure, and supz≤w<x

(
Mp′

w |I(w)|−γ
)

is achieved for w = c

on E(c). Hence∫
I(z)

sup
z≤w<x

(
Mp′

w /|I(w)|γ
)
dx ≥

∑
c∈SP (z)

∫
E(c)

Mp′
c |I(c)|−γ

=
∑

c∈SP (z)

|E(c)|Mp′
c |I(c)|−γ

≥ ε
∑

c∈SP (z)

Mp′
c |I(c)|1−γ

as desired. �
Proof of Claim 2. Let SPk(z) be the set of the k-stopping points and let c ∈
SPk(z). Then,

I(c) − E(c) = ∪b∈SPk+1(z)∩S(c)I(b)

the union being disjoint. For any such b, by the definition of the stopping times,

Mp′
b |I(b)|−γ > Mp′

c |I(c)|−γ .

By a scaling argument, we can assume |I(c)| = Mc = 1. Let q = p′/γ > 1, since
a < 1, and let β ∈ SPk+1(z)∩S(c) be such that Mβ = max{Mb : SPk+1(z)∩S(c)}.

1 ≥Mq
β +

∑
b �=β

b∈SPk+1(z)∩S(c)

Mq
b

≥Mq
β +

∑
n �=β

b∈SPk+1(z)

|I(b)|.

We consider three cases:
(1) If

∑
n �=β, b∈SPk+1(z) |I(b)| ≤ 1/4, since, a priori, |I(β)| ≤ 1/2,

|I(c) − E(c)| ≤ 3/4|I(c)|.
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(2) Fix A > 0 such that 3/4 < Aq < 1 (and hence A < 1). If∑
b �=β, b∈SPk+1(z)∩S(c)

|I(b)| ≥ 1/4, and

Mβ > A
∑

b∈SPk+1(z)∩S(c)

Mb

then ∑
b∈SPk+1(z)∩S(c)

|I(b)| ≤
∑

b∈SPk+1(z)∩S(c)

Mq
b

≤
⎛
⎝ ∑

b∈SPk+1(z)∩S(c)

Mb

⎞
⎠

q

≤ A−qMq
β

≤ A−q

⎛
⎜⎜⎝1 −

∑
b �=β

b∈SPk+1(z)∩S(c)

|I(b)|

⎞
⎟⎟⎠

≤ 3
4
A−q.

Hence,

|I(c) − E(c)| ≤ 3
4
A−q|I(c)|.

(3) If Mβ ≤ A
∑

b∈SPk+1(z)∩S(c)Mb, then∑
b∈SPk+1(z)∩S(c)

|I(b)| ≤
∑

b∈SPk+1(z)∩S(c)

Mq
b

≤ (1 − ε)

⎛
⎝ ∑

b∈SPk+1(z)∩S(c)

Mb

⎞
⎠

q

≤ 1 − ε

where ε > 0. The gain in Hölder’s inequality is due to the assumption and to
the following lemma, whose easy proof is left to the reader. �

Lemma 1. Let q > 1 and 0 < K < 1. There exists ε, 0 < ε < 1, such that for all
choices of 0 ≤ xn ≤ K, if

∑
n≥0 xn = 1, then∑

n≥0

xq
n ≤ 1 − ε.

�

Proof of Theorem 3. To show that (KS) implies (Car), it suffices to minorize
the supremum in (KS) with Mp′

z |I(z)|−p′
.
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Suppose that (Car) holds and let ϕ(w) = Mw|I(w)|−1. Observe that ϕ is a
supermartingale:

ϕ(w) ≥ ϕ(w−) + ϕ(w+)
2

.

Let

Mzϕ(x) = sup
z≤w<x

ϕ(w).

The theorem is proved if we show

1
|I(z)|

∫
I(z)

(Mzϕ(x))p′
dx ≤ C(p)ϕ(z)‖ϕ‖p′−1

l∞(D).(4.7)

To prove (4.7), we use a simple interpolation argument. Observe that Mzϕ(x) ≤
‖ϕ‖l∞(D) whenever x ∈ I(z).

For fixed λ > 0, {Mzϕ(x) > λ} is the disjoint union of intervals I(w), such that
w ≥ z and Mw|I(w)|−1 > λ. Let J(λ) be the set of such w’s. Then,

λ|I(z)|−1|{x : Mzϕ(x) > λ}| = λ|I(z)|−1
∑

w∈J(λ)

|I(w)|

≤ λ|I(z)|−1
∑

w∈J(λ)

Mw

λ

≤ |I(z)|−1Mz = ϕ(z).

Then,

|I(z)|−1

∫
I(z)

Mzϕ(x)p′
dx = p′

∫ ∞

0

|I(z)|−1|{x : Mzϕ(x) > λ}|λp′−1dλ

= p′
∫ ‖Mzϕ‖l∞(D)

0

|I(z)|−1|{x : Mzϕ(x) > λ}|λp′−1dλ

≤ p′

p′ − 1
ϕ(z)‖Mzϕ‖p′−1

l∞(D)

=
p′

p′ − 1
ϕ(z)‖ϕ‖p′−1

l∞(D).

�

5. An interpolation theorem

In this section, we characterize the interpolating sequences for the martingales
in Bp, 1 < p <∞. The results can be easily extended to Bp(a), 0 ≤ a < 1.

The definition of interpolating sequences below is justified by the following dis-
crete analogue of (1.1).

Lemma 2. For all functions f : D → R,

|f(z) − f(w)| ≤ d(z, w)1/p′‖Df‖lp .(5.1)

Proof. It is a simple consequence of Hölder’s inequality. �



60 Nicola Arcozzi and Richard Rochberg

We say that a sequence Z ⊂ D is interpolating for Bp if the map T : Bp → lp(Z),

T : h 
→
{
d(z)−

1
p′ h(z) : z ∈ Z

}
(5.2)

is into and onto.

Theorem 4. A sequence Z is interpolating for Bp if and only if:

(i) The measure

μZ =
∑
z∈Z

d(z)1−pδz

is Carleson for Bp.
(ii) There is a constant A > 0 such that, for all z, w ∈ Z, z �= w,

Ad(z, w) ≥ d(z).(5.3)

Proof. The proof is similar to that of Theorem 26 in [ARS], and we give only
a detailed outline of it. In [ARS] it is proved that (i) and (ii) are necessary and
sufficient to solve the interpolation problem with functions having derivatives in lp,
such functions not necessarily being dyadic martingales.

Hence, it suffices to show that if Z satisfies (i) and (ii), then Z is interpolating.
As in [ARS], we show that there exists a family of functions {hz : z ∈ Z} in Bp

such that:

(a) hz(w) = δz(w), for z, w ∈ Z.
(b) ‖hz‖Bp

≤ Cd(z)−1/p′
.

(c) If z and w are distinct points in Z, then the supports of hz and hw are disjoint.

Given (a)–(c), it can be easily verified that an explicit solution to the equation
Th = g ∈ lp(z) is given by the linear extension operator

h(x) = Eg(x) =
∑
z∈Z

g(z)d(z)1/p′
hz(x).

The rest of the proof consists in the construction of the functions hz.
First, we endow Z with a suitable tree-like structure. Assume, for convenience,

that o ∈ Z. For any X ⊂ D let X̃ be the smallest subtree of D containing X;
i.e., X̃ = {w ∈ D | w ≤ x, for some x ∈ X}. We now proceed inductively. Let
z0 = o, Z̃0 = {o}. Now suppose that Zn−1 and Z̃n−1 have already been formed.
Pick zn ∈ Zc

n−1, the complement of Zn−1, such that

d(o, zn) = min{d(o, z)|z ∈ Zc
n−1}.(5.4)

One easily verifies that Zn ⊆ Zn+1,
⋃

n≥0 Zn = Z, and
⋃

n≥0 Z̃n = Z̃.
Let ξn = max{x ∈ Z̃n−1| x ≤ zn}. The map zn 
→ ξn = γ(zn) defines a function

γ : Z → D. We call γ(z) the landing point of z on Z̃.
The following lemma is proved in [ARS], but we repeat its proof for the conve-

nience of the reader.

Lemma 3. Let A be the constant in (5.3). Then

d(z, γ(z)) ≥ (2A)−1d(z).(5.5)
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Proof. (5.5) is obvious for z = o. Otherwise, z = zn for some n and γ(z) ∈ [0, zj ]
for some j < n. By the construction of Zn, d(zn) ≥ d(zj). Hence,

2d(zn, γ(zn)) ≥ d(zn, γ(zn)) + d(γ(zn), zj)

= d(zn, zj) ≥ A−1d(zn).

�

In the remaining part of the proof, we assume that, if z ∈ Z, then d(z, γ(z)) ≥ 4.
We can make this assumption upon removing a finite number of points from Z, and
this can be shown not to affect the interpolating properties of Z. Let I = [x, y] be
an interval in D, x < y. That is, I = {x = x1, x2, . . . , xn = y} ⊂ D, x1 < · · · < xn

and d(xj , xj+1) = 1. Define ψI ∈ Bp,

DψI =
y−1∑

ξ=x−1

ε(ξ)rξ

where the coefficients ε(ξ) ∈ {1,−1} are chosen in such a way that DψI |I ≡ 1. The
function hz will be defined recursively.

Dh0
z = r(z, α(z))−1Dψ[z,α(z)].

The support of DψI is I ∪ (−I), where −I = {−x : x ∈ I}.
We will need to divide the intervals I = [γ(z), z]. For z ∈ Z, consider points

α(z) and β(z) in I, where γ(z) < β(z) < α(z) < w, β(z) = α(z)−1 and α(z) is
minimum in I with the property that

d(α(z), z) + 1
d(γ(z), z)

≤ 1/2.(5.6)

That is, [γ(z), β(z)] and [α(z), z] have comparable length.
Now, fix z ∈ Z. The function hz will be defined inductively. Let S0 = [z, α(z)]∪

(−[z, α(z)]). Define

Dhz = (d(α(z), z) + 1)−1Dψ[α(z),z].

on S0 and hz = 0 on [o, β(z)].
Now, let w1 be a point in Z such that γ(w1) ∈ S0. Let δ(w0) be the minimum

element in [γ(w1), w1]−S0. Then, d(γ(w1), δ(w1)) ≤ 2. On the set [δ(w1), β(w1)]∪
(−[δ(w1), β(w1)]), define

Dhz = A1Dψ[δ(w1),β(w1)]

where A1 is chosen in such a way that

0 = hz((δ(w1))−1) +A1(d(δ(w1), β(w1)) + 1).

Let S1 = S0 ∪ [δ(w1), β(w1)] ∪ (−[δ(w1), β(w1)]). We can proceed inductively.
Suppose that Dhz has been defined on Sn−1. Let wn ∈ Z be such that γ(wn) ∈
Sn−1. Let δ(wn) be minimum in [γ(wn), wn] − Sn−1 and let

Sn = Sn−1 ∪ [δ(wn), β(wn)] ∪ (−[δ(wn), β(wn)]).

It can be proved, inductively, that d(γ(wn), δ(wn)) ≤ 2. On the set [δ(wn), β(wn)]∪
(−[δ(wn), β(w)]), define Dhz by

Dhz = AnDψ[δ(wn),β(wn)]
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where An is chosen in such a way that

0 = hz((δ(wn))−1) +An(d(δ(wn), β(wn)) + 1).

The procedure could run for infinitely many wn. Let S∞ =
⋃∞

1 Sn and set Dhz = 0
on D − S∞.

Observe that, for all n, wn > β(z). Also, Dhz has been defined in such a way
that |hz| ≤ 1. Since, by Lemma 3, d(δ(wn), β(wn)) is comparable with d(wn), we
have |An| ≤ Cd(wn) for some universal constant C.

Now, by the way it was constructed, hz has the properties (a) and (c). By the
estimate on An, we have that

‖hz‖p
Bp

≤ C

⎛
⎝d(z)1−p +

∑
w∈Z, w≥β(z)

d(w)1−p

⎞
⎠ .

To prove (b), then, it suffices to show that∑
w∈Z, w≥β(z)

d(w)1−p ≤ Cd(β(z))1−p.(5.7)

since d(β(z)) is comparable with d(z), still by Lemma 3. Now, in [ARS], Lemma 29,
it is proved that (5.7) is a consequence of the fact that μZ is a Carleson measure. �

6. Boundedness of Hankel forms

For a function b on the dyadic tree D we define I∗f by

I∗b(w) =
∑
z≥w

b(z).

I∗ is the formal adjoint of the operator I acting on l2(D). That is, one checks
directly that if h and k are functions on D with finite support then

〈Ih, k〉l2(D) = 〈h, I∗k〉l2(D) .

We are interested in knowing for which functions b2 we have the following esti-
mate for F,G with DF, DG ∈ l2(D):∣∣∣∑F (z)G(z)b2(z)

∣∣∣ ≤ cb ‖DF‖l2(D) ‖DG‖l2(D) .(6.1)

(The reason for the subscript will be given shortly.) The answer will be in terms of
the measure with density |I∗b2(w)|2; that is the measure μ|I∗b2|2 on D defined by
μ|I∗b2|2(S) =

∑
w∈S |I∗b2(w)|2 . We will prove the following:

Theorem 5. Given b2, there is a constant cb2 so that (6.1) holds for all F, G if and
only if μ|I∗b2|2 is a Carleson measure for B2; i.e., if and only if μ|I∗b2|2 , satisfies
condition (4.1) with p = 2, a = 0.

Before going to the proof we give some background.
The question of when (6.1) holds can be viewed as a discrete model problem for

the question of boundedness of Hankel forms on the Dirichlet space. Recall that a
Hankel form on the Hardy space, B2(1), is a bilinear form defined on holomorphic



Topics in dyadic Dirichlet spaces 63

functions on the disk. The form is determined by a symbol function, b, which we
may take to be holomorphic. In that case the form is given by

Hb(F,G) =
∫

D

F (z)G(z)b′(z)dxdy

and to say that the form is bounded is to say that there is a cb so that∣∣∣∣
∫

D

F (z)G(z)b′(z)dxdy
∣∣∣∣ ≤ cb ‖F‖B2(1)

‖G‖B2(1)
.

(This is the classical Hankel form with symbol b. The derivative of b appears because
we have chosen to use the bilinear pairing of the Bergman space. A similar comment
applies in (6.3) below.) To emphasize the analogy with (6.1) we write this out in
full under the assumption F (0) = G(0) = 0. We must have∣∣∣∣

∫
D

F (z)G(z)b′(z)dxdy
∣∣∣∣

≤ cb

(∫
D

|F ′(z)|2 (1 − |z|2)dxdy
)1/2(∫

D

|G′(z)|2 (1 − |z|2)dxdy
)
.

In this case it is classical that the necessary and sufficient condition for such an
estimate is that the measure

dμ = |b′(z)|2 (1 − |z|2) dxdy(6.2)

be a Carleson measure for the Hardy space, or, equivalently b be in BMO. For this
as well as analogous results for the Bergman space see [Z]. Based on analogies with
the Hardy space as well as results for related problems in [RW] one conjectures that
a similar result holds for the Dirichlet space, B2(0); that is, that a necessary and
sufficient condition for an estimate of the form∣∣∣∣

∫
D

F (z)G(z)b′′(z)dxdy
∣∣∣∣ ≤ cb ‖F‖B2(0)

‖G‖B2(0)
,

or, equivalently, with F (0) = G(0) = 0,∣∣∣∣
∫

D

F (z)G(z)b′′(z)dxdy
∣∣∣∣ ≤ cb

(∫
D

|F ′(z)|2 dxdy
)1/2(∫

D

|G′(z)|2 dxdy
)

(6.3)

is that

dμ = |b′(z)|2 dxdy
be a Carleson measure for the Dirichlet space. However it is not known if this is
true. The theorem just stated is a model result for the conjecture using the model
for the Dirichlet space studied in [ARS]. The subscript on b2 is to emphasize that
the b2 in the theorem is a model for b′′ in the conjecture. Thus I∗b2, in some sense
a primitive of b2, is a model of b′. We should note that our theorem gives a result for
the discrete space B2 of [ARS] not for the discrete martingale space B2 considered
earlier in this paper.

Hankel operators are considered in a range of contexts in function theoretic
operator theory. Similar questions have also been considered in contexts where
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there is no holomorphy. In [MV] Maz’ya and Verbitsky study the conditions on
functions b2 defined on R

n which insure that there are estimates of the form∣∣∣∣
∫

Rn

F (x)G(x)b2(x)dx
∣∣∣∣ ≤ cb

(∫
Rn

|F ′(x)|2 dx
)1/2(∫

Rn

|G′(x)|2 dx
)1/2

(6.4)

which are formally similar to (6.3). To oversimplify, their result is that for an
appropriate “integral operator”, Int, a necessary and sufficient condition for (6.4)
is that |Int(b2)(x)|2 dx is, in our language, a Carleson measure for the Sobolev space.

Rather than work with (6.1) we will work with the associated linear operator.
Also, having noted various analogies, we drop the subscript on b.Recall that DI =
ID = Id . Hence, setting f = DF and g = DG, (6.1) is equivalent to

|〈(If) (Ig), b〉l2 | ≤ cb ‖f‖l2 ‖g‖l2 .

Although we cannot freely assume that b is positive, it is elementary to reduce to the
case of f, g, and b real valued and we now consider that case. In particular |I∗b|2 =
(I∗b)2. Also, it suffices to consider the case in which f, g, and b have finite support;
we now assume that. We have 〈(If) (Ig), b〉 = 〈(Ig), b (If)〉 = 〈g, I∗(b (If))〉 .
Being able to estimate this for all g is equivalent to knowing the boundedness of
the operator f → Hbf := I∗(b (If)) on l2(D). We now prove:

Theorem 6. Hb is bounded on l2 if and only if μ|I∗b|2 is a Carleson measure for
B2; that is it satisfies (4.2) with a = 0, p = 2.

We begin with a formula for summation by parts in this context:

Lemma 4. Suppose h and k are functions on D, then

I∗(h(Ik)) = (Ik)(I∗h) + I∗(k(I∗h)) − kI∗h.

Proof of the lemma.

I∗(h(Ik))(z) =
∑
x≥z

h(x)

⎛
⎝ ∑

o≤y≤x

k(y)

⎞
⎠

=
∑

o≤y≤x

∑
x≥z

h(x)k(y)

=
∑

o≤y≤z

∑
x≥z

h(x)k(y) +
∑
y>z

∑
x≥y

h(x)k(y)

=
∑

o≤y≤z

∑
x≥z

h(x)k(y) +
∑
y≥z

∑
x≥y

h(x)k(y) − k(z)
∑
x≥z

h(x)

=
∑

o≤y≤z

(I∗h)(z)k(y) +
∑
y≥z

(I∗h)(y)k(y) − k(z)(I∗h)(z)

= (I∗h)(z) (Ik) (z) + I∗ ((I∗h)k) (z) − k(z)(I∗h)(z).

�

Proof of Theorem 6. For convenience we set B = I∗b. By the previous lemma
we have

Hbf = I∗(b (If)) = B (If) + I∗(fB) − fB.(6.5)
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We consider the summands separately. If μB2 is a Carleson measure then, by the
very definition,

‖B (If)‖2
l2 =

∑
D

|(If)|2B2 = ‖(If)‖2
l2(D,μB2 ) ≤ c ‖f‖2

.

Hence in this case the operator f → B (If) is bounded. The operator f → I∗(fB)
is the adjoint of that operator and hence is also bounded. By applying the definition
of a Carleson measure with the function f equal to the point mass at o we find that
B ∈ l2, hence by Cauchy-Schwarz the third term is bounded. Adding we find that
Hb is bounded.

Suppose now that Hb is bounded. By computing the norm of Hb applied to the
point mass at o we find that B ∈ l2 and hence the third term is also bounded, and
hence so is the sum of the first two terms. We will work with that sum. That is
we will consider H̃b defined by H̃bf = B (If) + I∗(fB).We need to show that μB2

is a Carleson measure. By Theorem 3 of [ARS] that is equivalent to showing that
there is a constant cb so that for all w in D

∑
x≥w

⎛
⎝∑

z≥x

B2(z)

⎞
⎠

2

≤ c
∑
t≥w

B2(t).(6.6)

Pick and fix w ∈ D, w �= o and set S := {x ∈ D : x ≥ w}. Let χ be the characteristic
function of S and set f = χB. We are assuming H̃b is bounded. Thus

c
∑
t∈S

B2(t) = c ‖f‖2 ≥
∥∥∥H̃bf

∥∥∥2 .
Thus we will be finished if we can show that for some c > 0

∑
x∈S

⎛
⎝∑

z≥x

B2(z)

⎞
⎠

2

≤ c
∥∥∥H̃bf

∥∥∥2 .
Set k = # {z ∈ D : o ≥ z > w} . Direct computation gives∥∥∥H̃bf

∥∥∥2 = ‖I∗(b) (If) + I∗(f (I∗b))‖2

= ‖B (If) + I∗(fB)‖2

= ‖I∗(fB)‖2 + ‖B (If)‖2 + 2 〈B (If) , I∗(fB)〉
=
∥∥I∗(χB2)

∥∥2 + ‖BI (χB)‖2 + 2
〈
BI (χB) , I∗(χB2)

〉

=
∑
x∈S

⎛
⎝∑

z≥x

B2

⎞
⎠

2

+ kI∗(B2)(w)

+ ‖BI (χB)‖2 + 2
〈
BI (χB) , I∗(χB2)

〉
.

The first term on the last line is the one we wish to dominate by the left-hand side.
The third term on the last line is nonnegative. Hence we will be finished if we show
that

0 ≤ kI∗(B2)(w) + 2
〈
BI (χB) , I∗(χB2)

〉
.(6.7)
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We have

2
〈
BI (χB) , I∗(χB2)

〉
= 2
〈I{BI (χB)}, χB2

〉
= 2
∑
x∈S

I{BI (χB)}(x)B2(x)

= 2
∑
x∈S

⎧⎨
⎩
∑

x≥y≥w

B(y)I (χB) (y)

⎫⎬
⎭B2(x)

= 2
∑
x∈S

⎧⎨
⎩
∑

x≥y≥w

B(y)
∑

y≥z≥w

B(z)

⎫⎬
⎭B2(x)

= 2
∑
x∈S

⎧⎨
⎩

∑
x≥y≥z≥w

B(y)B(z)

⎫⎬
⎭B2(x)

=
∑
x∈S

⎧⎪⎨
⎪⎩
⎛
⎝ ∑

x≥y≥w

B(y)

⎞
⎠

2

−
⎛
⎝ ∑

x≥y≥w

B2(y)

⎞
⎠
⎫⎪⎬
⎪⎭B2(x)

≥ −
∑
x∈S

⎛
⎝ ∑

x≥y≥w

B2(y)

⎞
⎠B2(x)

= − [(I∗B2
)
(w)
]2
.

Because k ≥ 1 in (6.7) the estimate in (6.7) holds and we are finished with the
cases w �= o.

The case w = o follows by elementary estimates from the fact that we have (6.6)
for w = o+ and w = o− and the fact that the total measure if finite, i.e., that we
have a bound on ‖B‖l2 . This last fact follows from applying the operator to a point
mass at o. �
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