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Examples and Counterexamples to Almost-Sure
Convergence of Bilateral Martingales

Thierry de la Rue

Abstract. Given a stationary process (Xp)p∈Z and an event B ∈ σ(Xp, p ∈
Z), we study the almost sure convergence as n and m go to infinity of the
“bilateral” martingale

E [1B |X−n, X−n+1, . . . , Xm−1, Xm ] .

We show that almost sure convergence holds in some classical examples such
as i.i.d. or Markov processes, as well as for the natural generator of Chacon’s
transformation. However, we also prove that in every aperiodic dynamical
system with finite entropy, there exists a generating process and a measurable
set B for which the almost sure convergence of the bilateral martingale does
not hold.
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1. Introduction

1.1. Bilateral martingales and reliable processes. In this work, we consider
a stationary process (Xp)p∈Z taking values in a finite alphabet, and an event B
which is measurable with respect to the σ-algebra σ(Xp, p ∈ Z). We observe a finite
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number of coordinates of the process: X−n, X−n+1, . . . , X0, . . . , Xm−1, Xm (where
m and n are always positive integers), and we are interested in the conditional
probability of B given this observation. More precisely, we wonder whether the
two-parameter martingale (henceforth called bilateral martingale)

E [1B |X−n, X−n+1, . . . , Xm−1, Xm ](1)

converges almost surely to 1B as n and m go to infinity.
Let us remark that if two increasing sequences of integers (nk) and (mk) are

given, both going to infinity, the classical martingale convergence theorem ensures
the almost sure convergence of E [1B |X−nk

, X−nk+1, . . . , Xmk−1, Xmk
] to 1B when

k −→ ∞, but the negligible set outside which this convergence holds may depend
on the sequences (nk) and (mk). The problem stated here amounts to ask whether
it is possible to find a negligible set outside which convergence holds for each choice
of the sequences (nk) and (mk).

We will say that the process (Xp)p∈Z is reliable if for each B in σ(Xp, p ∈ Z) the
bilateral martingale (1) converges almost surely to 1B as n and m go to infinity.
On the contrary, the process will be said unreliable if there exists an event B such
that with positive probability, it is possible to find two misleading sequences (nk)
and (mk) increasing to infinity, for which the conditional probability of B given the
observation of X−nk

, X−nk+1, . . . , Xmk−1, Xmk
is always far apart from 1B .

Unreliable processes: too much information kills information? Although
we have not been able to find a simple explicit example in this class, Theorem 3.1
shows the existence of many different unreliable processes. For such a process,
if B is a measurable set for which the bilateral martingale (1) does not converge
almost surely, we can ask whether it is possible to replace the conditonal probabil-
ity E [1B |X−n, X−n+1, . . . , Xm−1, Xm ] with another σ(X−n, . . . , Xm)-measurable
function fn,m, such that

fn,m −−−−−→
n,m→∞ 1B (a.s.).

But such a function is easy to find: just set kn,m
def= n ∧m, and

fn,m
def= E

[
1B

∣∣X−kn,m
, . . . , Xkn,m

]
.

Then we are in the following paradoxical situation: a reliable way to estimate
whether the event B is realized or not consists in systematically disregarding a
part of the information in our possession!

1.2. Some known results about almost-sure convergence of two-parame-
ter martingales. If (Fn)n∈N is an increasing sequence of σ-algebras in a proba-
bility space, it is well known that every (Fn)-martingale which is bounded in L1

converges almost surely. But if we consider a family (Fn,m)(n,m)∈N2 of σ-algebras
with Fn1,m1 ⊂ Fn2,m2 whenever n1 ≤ n2 and m1 ≤ m2, such a general result
about almost sure convergence of (Fn,m)-martingales does not exist. Cairoli ([1])
has studied the particular case where Fn,m can be written Gn ∨ Hm, with (Fn)
and (Gn) increasing filtrations and

∨
n Gn is independent of

∨
m Hm. Under this

hypothesis, if (Mn,m) is an (Fn,m)-martingale which satisfies

sup
n,m

E
[|Mn,m| log+ |Mn,m|] < +∞,(2)
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then Mn,m converges almost surely. Note: this result still holds for a martingale
which is indexed by N

d, providing that we replace condition (2) by

sup
n1,...,nd

E

[
|Mn1,...,nd

| (log+ |Mn1,...,nd
|)d−1

]
< +∞.

However, even in this case of a product filtration, there exist Fn,m-martingales
which are bounded in L1 and which do not converge almost surely.

The bilateral martingale (1) being always between 0 and 1, there is no problem
of integrability in our study. But if no structure condition on the filtration (Fn,m)
is required, Dubins and Pitman ([4]) have proved that even an (Fn,m)-martingale
which is bounded in L∞ can fail to converge almost surely. Indeed, we will give
in this work some examples of bilateral martingales which diverge with positive
probability.

For other results about convergence of multiparameter martingales, the reader
is invited to consult [5] and [6].

1.3. Stationary processes defined in a dynamical system. The stationary
processes that we consider here will be henceforth supposed to be defined on an
underlying dynamical system (X,A, µ, T ), where T is an invertible, bimeasurable,
measure-preserving transformation of X. This means that X0 is defined by a finite
measurable partition P of X, and that the entire process is given by Xp

def= X0 ◦T p

for each p ∈ Z. For k and l in Z, k ≤ l, we note

P l
k

def=
l∨

j=k

T−jP

the finite partition generated by Xk, . . . , Xl. For every partition Q of X and every
x ∈ X, we denote by Q(x) the atom of Q containing x.

The process being completely defined by the partition P and the transformation
T , it will also be refered to by the couple (P, T ). In this context, the process (P, T )
is reliable if for each B ∈ ∨+∞

j=−∞ T−jP,

µ
(
B

∣∣Pm
−n(x)

) −−−−−→
n,m→∞ 1B (µ-a.e.).

The process (P, T ) is said to be a generator of the dynamical system if σ(Xp, p ∈
Z) = A. The following section gives examples of reliable processes among some
“natural” generators of classical dynamical systems.

2. Examples of reliable processes

2.1. Bernoulli shifts, Markov processes. Let us start with the simple case
where the random variables Xp are independent, identically distributed. This is
the case of the natural generator of the system (X,A, µ, T ) called Bernoulli shift,
where X is the set of all bi-infinite sequences of letters in the alphabet, A is the
Borel σ-algebra of X, µ is a product probabilty P⊗Z (P being a probability defined
on the alphabet), and T is the shift of the coordinates. The past of the process
σ(Xp, p < 0) is then independent of the future σ(Xp, p ≥ 0), so we are precisely
in the case studied by Cairoli, for which every martingale which is bounded in L∞

converges almost surely. As a consequence, an i.i.d. process is always reliable.
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More generally, an application of Cairoli’s result can also prove the reliability
of a k-step Markov process (Xp), because in this case the past of the process is
independent of its future conditionally on the variables X0, . . . , Xk−1.

2.2. Examples in zero entropy.

Rotations. The following example has been suggested to the author by Benjamin
Weiss. Let α be an irrational real number, and Tα be the transformation of the
torus R/Z defined by Tα(x)

def= x + α (mod 1). The only probability measure on
the torus which is preserved by Tα is the Lebesgue leasure λ. If P is a non-trivial
partition of R/Z in a finite number of intervals, it is easy to see that for every
positive integers m and n, Pm

−n is still a partition of R/Z in a finite number of
intervals. Moreover, as each extremity of the intervals of P has a dense orbit in the
torus, we have for each x ∈ R/Z

λ
(Pm

−n(x)
) −−−−−→

n,m→∞ 0.

But for every measurable subset B of the torus, this implies by the Lebesgue density
theorem that for λ-almost every x ∈ R/Z,

λ
(
B | Pm

−n(x)
) −−−−−→

n,m→∞ 1B .

Therefore, the process (P, Tα) is reliable (and it is also a generator for the dynamical
system (R/Z, λ, Tα)).

This result can be generalized in dimension d ≥ 1: let α = (α1, . . . , αd) where
each αj is an irrational number, and let Tα be the translation by α modulo 1 on
(R/Z)d. If P is a finite partition of the d-dimensional torus obtained by a product
of partitions Pj , 1 ≤ j ≤ d, where each Pj is a non-trivial partition of R/Z in a
finite number of intervals, then for each x ∈ (R/Z)d, Pm

−n(x) is a Cartesian product
I1 × · · · × Id, where each Ij is an interval, and

sup
i≤j≤d

λ(Ij) −−−−−→
n,m→∞ 0.

As above, but using in this case the theorem of Jessen-Marcinkiewicz-Zygmund
(see, e.g., [2], p. 50) we can conclude that (P, Tα) is still a reliable process.

A weakly-mixing example: the natural generator for Chacon’s transfor-
mation.

Proposition 2.1. Let (P, T ) be a zero entropy process, and let us assume that
there exists θ > 0 satisfying the following property: for each n ≥ 1, for each atom
P of P0

−n or of Pn
0 , every atom A of Pn

−n contained in P is such that µ (A |P ) ≥ θ.
Then the process (P, T ) is reliable.

Proof. Let B be a set in the σ-algebra generated by the process (P, T ). Because
(P, T ) has zero entropy, B is both in

∨0
−∞ T−jP and in

∨+∞
0 T−jP. For almost

every x, we therefore have

µ
(
B

∣∣P0
−n(x)

) −−−−−→
n→∞ 1B(x), and(3)

µ (B | Pn
0 (x) ) −−−−−→

n→∞ 1B(x).(4)



Bilateral Martingales 137

We can write for each n ≥ 1

µ
(
B

∣∣P0
−n(x)

)
=

∑
A∈∨n−n

T−jP
A⊂P0−n

(x)

µ
(
A

∣∣P0
−n(x)

)
µ (B |A ) ,

hence, by the hypothesis, for each A appearing in the right-hand sum,
∣∣∣µ (B |A )− 1B(x)

∣∣∣ ≤ 1
θ

∣∣∣µ (
B

∣∣P0
−n(x)

) − 1B(x)
∣∣∣.(5)

If 1 ≤ m ≤ n, we also have

µ
(
B

∣∣Pm
−n(x)

)
=

∑
A∈∨n−n

T−jP
A⊂Pm−n

(x)

µ
(
A

∣∣Pm
−n(x)

)
µ (B |A ) ,

and as Pm
−n(x) ⊂ P0

−n(x), this implies by (5)
∣∣∣µ (

B
∣∣Pm

−n(x)
) − 1B(x)

∣∣∣ ≤ 1
θ

∣∣∣µ (
B

∣∣P0
−n(x)

) − 1B(x)
∣∣∣.

In the case where 1 ≤ n < m, we have by the same argument
∣∣∣µ (

B
∣∣Pm

−n(x)
) − 1B(x)

∣∣∣ ≤ 1
θ

∣∣∣µ (B | Pm
0 (x) )− 1B(x)

∣∣∣,
which proves that if x also satisfies (3) and (4),

µ
(
B

∣∣Pm
−n(x)

) −−−−−→
n,m→∞ 1B .

�

Now let us show that Proposition 2.1 can be applied to the natural generator
of Chacon’s transformation. We suppose here that the reader is familiar with this
transformation, described for example in [3]. We simply recall without proof the
following facts.

We consider the two-letter alphabet {1, s}, and we inductively construct a family
of words (Bk)k≥1 by setting

B1
def= 1, and ∀k ≥ 1, Bk+1

def= BkBksBk.

The word Bk is also called k-block. Let hk be the length of Bk; we clearly have
hk+1 = 3hk + 1.

We consider the two-letter alphabet {1, s}, and we inductively construct a family
of words (Bk)k≥1 by setting

B1
def= 1, and ∀k ≥ 1, Bk+1

def= BkBksBk.

The word Bk is also called k-block. Let hk be the length of Bk; we clearly have
hk+1 = 3hk + 1. Let’s denote by X the set of all sequences x = (xp)p∈Z ∈ {1, s}Z

which for each k ≥ 1 can be written as a concatenation of an infinite number
of k-blocks, possibly separated by isolated symbols s, (called spacers). Chacon’s
transformation (denoted by T ) can be defined as the shift of the coordinates on
X: (Tx)p

def= xp+1. The decomposition in k-blocks and spacers is unique for every
sequence in X, and there is only one probability measure µ on X which is preserved
by T . This probability satisfies for each k ≥ 1 the following properties:
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• Let F be the set of all sequences in X on which we can read Bk in a fixed
window of length hk. Then F is the disjoint union of 3 equiprobable sets F1,
F2 and F3, respectively corresponding to the sequences for which this k-block
appears in first, second or third position in a (k + 1)-block.

• This same set F can also be written as the disjoint union of 4 sets denoted
by FBBB , FBBsB , FBsBB , FBsBsB , according to the existence of the spacers
between this k-block, the preceding and the following ones. We have

µ(FBsBB) = µ(FBBsB) = µ(F )/3, and(6)

µ(FBBB) = µ(FBsBsB) = µ(F )/6.

The process (P, T ), where P is defined by the 0-coordinate of the sequence
x ∈ X is under the probability µ a stationary process, which is a generator of the
dynamical system. It is well-known that this process has zero entropy; now let us
check that it satisfies the hypothesis of Proposition 2.1.

Let n ≥ 2, and let P be a fixed atom of P0
−n. Let k be the greatest integer such

that we can read a k-block in the word of length n+ 1 characterizing P . we have

hk ≤ n+ 1 ≤ 2hk+1 + 1 = 6hk + 3.(7)

Let us consider the last occurrence of Bk in this word, and let F be the set of all
sequences x ∈ X for which Bk appears in the same window. We have P ⊂ F , and
F is the disjoint union of 9 equiprobable sets Fi,j , 1 ≤ i, j ≤ 3, corresponding to the
9 possible positions of this k-block in the k+2-block including it. Then, each Fi,j is
itself a disjoint union of 4 sets Fw

i,j , w ∈ {BBB,BsBB,BBsB,BsBsB}, according
to the existence of the spacers before and after this (k + 2)-block. Because of (6),
all these sets satisfy

µ
(
Fw

i,j

) ≥ µ(Fi,j)/6 ≥ µ(F )/54.

But (7) implies that each Fw
i,j is entirely contained in an atom of Pn

−n. From this,
we can deduce that each atom A of Pn

−n contained in P satisfies µ(A) ≥ µ(P )/54.
A similar argument prove the same result if, at the begining, P is an atom of Pn

0 .
By Proposition 2.1, we can then conclude that the natural generator of Chacon’s
transformation is a reliable process.

3. Construction of an unreliable generating process

Now we are going to prove the existence of an unreliable generating process in
every aperiodic dynamical system with finite entropy (this last condition being re-
quired only because we are dealing with processes taking values in finite alphabets).

Theorem 3.1. In every aperiodic dynamical system (X,A, µ, T ) with finite en-
tropy, we can find a finite partition P and a set B such that:

• (P, T ) is a generating process.
• µ(B) > 0.
• For µ-almost every x ∈ B, lim infn,m−→∞ µ

(
B

∣∣Pm
−n(x)

) ≤ 1/2.

We recall that a Rokhlin tower is a finite family T = (B, TB, T 2B, . . . , Th−1B)
of mutually disjoint sets, which are successive images of a fixed set B, called the
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basis of T . The integer h is the height of the tower, each T jB is a rung, and we
denote by the same symbol T the union of the h rungs of the tower. We have

µ(T ) = µ




h−1⋃
j=0

T jB


 = hµ(B).

A Rokhlin tower T ′ will be called sub-tower of T if it has the same height and if
the basis of T ′ is contained in the basis of T .

First we establish the following lemma.

Lemma 3.2. Let (εk) be a sequence of positive real numbers, and (lk) a sequence
of positive integers. In every aperiodic dynamical system, we can find a sequence
(Tk) of Rokhlin towers, Tk = (Bk, TBk, . . . , T

hk−1Bk), with the following properties
holding for each k ≥ 1:

µ(Tk) ≥ 1− εk(8)

Tk ⊂
hk+1−1−lk⋃

j=lk

T jBk+1.(9)

Proof. Given the sequences (εk) and (lk), it is easy to construct a sequence (δk)
of positive real numbers and a sequence (hk) of integers with δ1 ≤ ε1/2, and such
that for each k ≥ 1 and each m ≤ k + 1,

δk+1 +
2(lk+1 + hk)

hk+1
<

εm
2k+1

.(10)

The system being aperiodic, we can find for each k ≥ 1 a Rokhlin tower T 1
k of

height hk such that µ(T 1
k ) ≥ 1− δk. Let B1

k be the basis e of T 1
k .

For each k ≥ 1, we remove from B1
k the points contradicting (9); more precisely,

we define

B2
k

def= B1
k ∩

hk+1−1−lk+1−hk⋃
j=lk+1

T jBk+1.

B2
k is the basis of a sub-tower T 2

k of T 1
k . The points which are in T 1

k but not in T 2
k

are either out of T 1
k+1, or in the first or last (hk + lk+1) rungs of T 1

k+1. We thus
have

µ(T 2
k ) ≥ µ(T 1

k )− δk+1 − 2(lk+1 + hk)
hk+1

.(11)

Finally, we define for each k ≥ 1

Bk
def= B2

k \
+∞⋃
j=1

(T 1
k+j \ T 2

k+j

)
.

Then Bk is the basis of a Rokhlin tower Tk with height hk, which now satisfies the
property (9). By (10) and (11), we have

µ(Tk) ≥ µ(T 1
k )−

+∞∑
j=1

εk/2k+j ≥ 1− εk.

�
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Proof of Theorem 3.1. As T has finite entropy, we can fix a generating process
(Q, T ), where Q is a finite partition indexed by the alphabet {1, . . . ,K}. We
consider the sequence (Tk) of Rokhlin towers given by Lemma 3.2, for the sequences
εk

def= 2−k and lk
def= k + 2k − 1.

Construction of the partition P. The partition P will be indexed by the al-
phabet {1, . . . ,K}× {b, c, d, e}, the first coordinate of P(x) being Q(x), which will
ensure that (P, T ) is still a generating process.

It remains to define the second coordinate of P(x), denoted by R(x). Let us
begin by defining R(x) def= a on the first tower T1. Next, let k ≥ 2 be such that
R(x) is defined on Tk−1. We want to define R(x) on Tk \ Tk−1:

• On the first (2k − 1) and last (2k − 1) rungs of Tk, R(x) is going to be b or c
(to be specified later).

• On the k rungs from 2k to 2k + k − 1, we define R(x) def= d.
• On the k rungs from hk − (2k − 1)− k to hk − 2k, we define R(x) def= e.
• For x in intermediate rungs but not in Tk−1, we define R(x) def= a.

Here we can point out that the observation of exactly k consecutive identical sym-
bols d or e in the R-name of a point x enables us to situate x in the rungs of
Tk.

k

2 −1
k

2 −1

d

a
e

k

k

the preceding tower
is contained in
these rungs

orb      c

orb      c

Figure 1. Definition of R(x) on Tk \ Tk−1

Now let us see how to choose between b and c on the extremities of Tk. We
temporarily consider a partition denoted by P∗ on the tower Tk, which coincides
with P except on the 2× (2k − 1) rungs where R(x) is still not defined, and where
we set the second coordinate of P∗(x) to be the symbol ∗. We cut Tk into sub-
towers, each one corresponding to a fixed P∗-name. In other words, we consider the
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sub-towers of Tk whose basis are the atoms of the partition
∨hk−1

j=0 T−jP∗ restricted
to Bk. These sub-towers are called P∗-k-columns.

Each P∗-k-column is then cut into 2k + 1 sub-towers of equal measure, which
will bear different P-names: these sub-columns will be called P-k-columns. Let us
number from 0 to 2k the 2k + 1 P-k-columns obtained with a single P∗-k-column.
On the P-k-column numbered by 0, we define R(x) by putting the symbol c in place
of ∗ on each rung. Now consider the P-k-column numbered by j, for 1 ≤ j ≤ 2k.
On this column, we replace the symbols ∗ on the 2k − 1 first rungs with (j − 1) b
followed by (2k − j) c, and the symbols ∗ on the 2k − 1 last rungs with (j − 1) c
followed by (2k − j) b (see Figure 2).

Construction and property of the set B. We denote by Ck the union of all the
P-k-columns numbered by 0, i.e., the set of all points in Tk with R-name beginning
and ending with (2k − 1) consecutive c. We have 0 < µ(Ck) < 2−k. Then we define

C
def=

+∞⋃
k=2

Ck, and B def= X \ C.

We have 1/2 < µ(B) < 1.

To complete the proof of the theorem, it remains to verify that for µ-almost
every x ∈ B, lim infn,m−→∞ µ

(
B

∣∣Pm
−n(x)

) ≤ 1/2. But for almost every x ∈ B,
we can find an integer k0 such that x ∈ ⋂

k≥k0
Tk. Then by the definition of B, for

each k ≥ k0, x is in a P-k-column numbered by jk �= 0. Let ik be the height of x
in the tower Tk, i.e., the only integer in {0, . . . , hk − 1} such that x ∈ T ikBk, and
let us define

nk
def= ik − (jk − 1) and mk

def= hk − 1− ik − (2k − jk).

Because x ∈ Tk0 , we have 2k − 1 + k ≤ ik < hk − (k+ 2k − 1) as soon as k > k0,
which ensures that nk and mk are greater than k. Now let us consider the atom
Pmk−nk

(x). As shown on Figure 3, the P-name characterizing this atom stops just
before seeing the symbols b written in the P-k-column containing x. The k consec-
utive symbols d and e in this P-name tell us that Pmk−nk

(x) is contained in T ikBk.
But then we see that Pmk−nk

(x) is the disjoint union of two sets of equal measure,
one of which is the union of rungs of height ik in some Pk-columns numbered by 0,
hence contained in C. We have therefore

µ
(
B

∣∣Pmk−nk
(x)

) ≤ 1
2
.

�

4. Comments and questions

Reliable generators. Section 2 shows that in various classical examples of dynam-
ical systems it is possible to find a reliable generating process. Does the existence
of such a reliable generator hold in every finite entropy dynamical system?

The answer to this question may be all the less obvious because the examples of
processes given in this work seem to be reliable for very different reasons.
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e

c

d

e

c

b
c

c

c
c

c

b
b

b
b

b
b

b
c

Figure 2. Definition of symbols b and c on a P∗-k-column
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b

b
c

c
e

e

x

n

m

k

k

d

d
c

c
b

b

Figure 3. Definition of nk and mk according to the position of x
in its P-k-column

Reliability and operations on processes. In the proof of Theorem 3.1, we see
that given a process (Q, T ) in an aperiodic dynamical system, it is always possible
to find a finite partition P which is finer than Q (i.e., P = Q ∨ R, where R is
another finite partition), such that the process (P, T ) is unreliable. Now what can
be said about the reliability of a process (P, T ) when P = Q∨R, with both (Q, T )
and (R, T ) reliable processes?

Conversely, let (P, T ) be a reliable process, and Q be a finite partition which is
coarser than P: is the process (Q, T ) always reliable?

The author would like to thank Emmanuel Lesigne, Jean-Paul Thouvenot and
Benjamin Weiss for fruitful discussions on the subject.
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