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Asymptotic Density in Combined Number
Systems

Karen Yeats

ABSTRACT. Necessary and sufficient conditions are found for a combination of
additive number systems and a combination of multiplicative number systems
to preserve the property that all partition sets have asymptotic density. These
results cover and extend several special cases mentioned in the literature and
give partial solutions to two problems in [6].
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1. Introduction

The recent ancestry of the problems examined in this paper began in 1937 when
abstract number systems with real valued norms were introduced by Arne Beurling
[5] for the purpose of finding minimal sufficient conditions to prove prime number
theorems. This is also the subject of Paul Bateman and Harold Diamond’s article
[2]. John Knopfmacher focused on density questions for classes of well known
algebraic and topological structures in his books [12] and [13].
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Interest in number systems with the property that is central to the discussion
below, namely that all partition sets have asymptotic density, started with Kevin
Compton’s work relating combinatorics to logic [9], [10], [11]. He proves logical limit
laws on certain classes of structures using enumeration methods. Stanley Burris’s
book Number Theoretic Density and Logical Limit Laws [6] pulls the abstract num-
ber systems and the logical asymptotic combinatorics together.

In [6] Burris poses the following problem (Problem 5.20): Find necessary and
sufficient conditions on two additive number systems A; and Ay for all partition
sets of Aj .45 to have asymptotic density. He also poses the corresponding problem
for multiplicative number systems (Problem 11.25): Find necessary and sufficient
conditions on two multiplicative number systems A; and As for all partition sets
of A; * Ay to have global asymptotic density.!

This paper considers these problems when 4; and A5 themselves have the prop-
erty that all partition sets have asymptotic density. Elegant and popular special
cases for additive and multiplicative systems will be considered first, followed by
the general cases.

2. Preliminaries
Definition 1. N={0,1,2,...}.
Definition 2. A number system
A= (AP,xe )

consists of a countable free commutative monoid (A, x, e), where P is the nonempty
set of indecomposable elements, and || || a norm.

Definition 3 ([6], 2.5 and 2.7). An additive number system is a number system
for which || || is an additive norm, that is, a mapping from A to the nonnegative
integers such that ||a|]| = 0 iff a = e, ||a % b|| = ||a]| + ||b||, and for every n € N the
set {a € A: ||a]| = n} is finite.

Definition 4 ([6], 8.1 and 8.2). A multiplicative number system is a number sys-
tem for which || || is a multiplicative norm, that is, a mapping from A to the positive
integers such that ||a]| = 1 iff a = e, ||axb]|| = ||a]|-||b]|, and for every positive integer
n the set {a € A: ||a]| = n} is finite.

Definition 5 ([6], 2.12 and 2.28). Given a number system A, for each set B C A
the (local) counting function of B is

b(n) = |{b € B: bl =n}|,
and the global counting function of B is
B(x) = Y _ b(n).
n<x

Notice that B(x) is nondecreasing. As special cases we have a(n) and p(n), the
(local) counting functions of A and P, respectively, and A(z), the global counting
function of A. We will refer to a(n) and p(n) as the (local) counting functions of A
and to A(z) as the global counting function of A.

1 Burris in [6] uses + for the combination of additive number systems and x for the combination
of multiplicative number systems.
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Definition 6 ([6], 3.21, 9.20). For A a number system and By,... ,B; C A, let
Byx---%xBp = {by*---xby:b; €B;}.
Definition 7 ([6], 3.23, 9.22). For A a number system and B C A,
B~ {e}

B" = Bx---xB form>0
———
m times

B<™ = BU---UB™ form >0

B=" = U B™ for m > 0.
n>m

Definition 8 ([6], 3.25, 9.24). Given a number system A a subset B of A is a par-
tition set of A if B can be written in the form

B = P) s xP)

where Pq,... Py is a finite partition of the set P of indecomposables of A, and
each ~; is of the form m, < m, or > m.

Definition 9 ([6], 4.14, 10.4). Given number systems A; and A, both additive
or both multiplicative, define A; * Ay to be the number system whose underlying
monoid is the direct product of the two monoids, and if A; and A5 are additive then
the norm is the sum of the coordinate norms, that is, ||(a1,a2)|| = |laill1 + [|az]|2,
while if A; and A5 are multiplicative then the norm is the product of the coordinate
norms, that is, ||(ai,a2)| = ||a1]l1 - ||az]|2-

Note that A; * A, is additive if A; and A, are additive and is multiplicative if
A; and A are multiplicative. The set of indecomposables of A; x Ay is
{(p1,e) : p1 € P1} U {(e,p2) : p2 € Pa}.

Let a;(n) and p;(n) be the local counting functions of A; for ¢ = 1,2, and let
a(n) and p(n) be the local counting functions of A; * As. Then

p(n) = pi(n)+pa(n)
Z a1(i)az(j) for A an additive number system
an) = (T

Z ay(i)az(j) for A a multiplicative number system.

i-j=n

Lemma 10. Let A = A;xAs be a multiplicative number system and let B = B1 xBg
where B; C A;. Then

B(z)= > bi(k)Bs(x/k).
1<k<z
Proof. Theorem 3.10 from [1]. O
Lemma 11. Let Ay and As be number systems both additive or both multiplicative.

Then any partition set B of Ay x As can be written in the form
k

B:UBleBQj

j=1

for some k > 1 where the union is disjoint and each B;; is a partition set of A;.



66 Karen Yeats

Proof. The proof is routine and thus is left to the reader to complete by using
the definitions of m, > m, and < m, and the fact that if B, C, and D are sets of
numbers from a number system, then (BUC) «D = (B* D) U (C x D). O

3. The nice cases

In this section we will deal with the most popular additive and multiplicative sys-
tems, namely the reduced additive systems and the strictly multiplicative systems.
In Section 4 we look at the general situation.

3.1. Additive. Throughout the additive subsections of this paper A, Ay, and As
will denote additive number systems. The most desirable of the additive systems
are those which are reduced.

Definition 12 ([6], 2.41). For f : N — N the support of f is
supp f(n) = {neN: f(n) > 0}.
Definition 13 ([6], 2.43). A is reduced if ged(supp p(n)) = 1.

Notice that A; * A may be reduced even when A; and Ay are not. However in
this subsection we will only consider reduced systems A;.

Definition 14 ([6], 2.12). Given A, for each B C A the generating series of B is
B(x) = Zb(n)x"

n>0

Definition 15 ([6], 1.24 and 3.18). Given p > 0, a real-valued function f(n) that
is eventually defined on N and eventually positive is in RT, if

- f(n—1)
1 —_— =
oo f(m) P
that is, the radius of convergence of > f(n)a™ can be found by the ratio test.
A power series is in RT,, if the sequence of coefficients is in RT,. A is in RT, if
a(n) € RT,, which can only occur if a(n) is eventually nonzero.

Definition 16 ([6], 3.1). For B C A, the asymptotic density §(B) of B is as follows,
provided the limit exists:
5(B) = Tim 20
a(my#0 U

We will use the following notational conventions.

The radius of convergence of the generating function A,;(x) of A; is p;, the
counting functions are a;(n) and p;(n), and when defined 6;(B;) is the asymptotic
density of B; with respect to A; for B; C A;. For A the preceding apply with the
removal of the subscript i.

Since P, Py, and Py are nonempty by definition, we know that p, p1, and py are
in [0, 00). From Lemma 2.23 of [6] we know that p, p1, and py are in [0, 1].

Lemma 17. Let A = Ay * Ay and B = By x By where B; C A;. Then:
1. B(z) = B1(z) - Ba(z).
2. > B(n)z" =Y Bi(n)a" - By(z).

n>0 n>0
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Proof. Both items follow from Proposition 3.33 of [6]. For the second item notice
that B(n) = >, <, Bi(k)bz(n—Fk) is the same relation as that which holds between
b(n), by(n), and ba(n). O

Lemma 18. If A= Ay x Ay then p = min{p1, p2}.

Proof. p = min{p1, p2} by Lemma 17 since A;(z) and Ay (z) are power series with
nonnegative coefficients. (I

Definition 19. A has Property I if all partition sets of A have asymptotic density.
A has Property II if p > 0, A(p) = o0, and a(n) € RT,,.

Our goal is to analyse when Property I holds. Some results of Bell, Bell et al.,
Burris and Sérkozy, and Warlimont follow; then we will proceed towards the main
result of the additive subsection, Theorem 28.

Proposition 20 ([6], 3.28). If A has Property I then 6(P) = 0.

Proposition 21 ([3], [15], [4]). If 6(P) = 0 then p > 0 and A(p) = co.
Proposition 22 ([6], 3.30). A has Property I and is reduced implies a(n) € RT,.
Corollary 23. A has Property 1 and is reduced implies A has Property II.

Proposition 24. Let A; and Ay have Property 11 and be reduced, and let A =
A1 x As. If p1 < pa, then:

. ai(n) O if p1 = p2
e lim = I
n—oo a(n) As(p1) if p1 < pa.
e lim a2(n) =
we a(n)

Proof. For the second item take n large enough that as(n) > 0. Then for m < n

a(n) _ Zal(k)az(n_k) > kzal(k)az(”—k)'
=0

az(n) = az(n) az(n)
So
lim inf a(n) > Em:al(k)pk.
n—o0 ag(n) - o 2

Now A;(p2) = oo; so by taking the limit as m — oo we get the desired result.
For the first item if p; = po apply the above proof with 1 and 2 interchanged; if
p1 < po then apply Schur’s Theorem.? O

2By this is meant Schur’s Tauberian Theorem which can be found in [6], 3.42. It states: Let
S(z) and T(x) be two power series such that, for some p > 0, T(z) € RT,, and S(z) has radius
of convergence greater than p. Then

lim [x"] (S(z) . T(z))

Jim [ T(z) = S(p).

If S(p) > 0 then this can be expressed as [z"] (S(z) - T(z)) ~ S(p) - [z"] T(x).
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Proposition 25. Let A; and As have Property 1 and be reduced with p1 = po.
Then Ai * Az has Property I and for B a partition set of A1 x Ay and B;; as in
Lemma 11 we get

k
= 61(B1;)02(Ba;).

j=1

Proof. Let A= A; x As.

First, consider partition sets of A of the form B = B; x By where each B; is a
partition set of A;.

From b;(n)/a;(n) — §;(B;) it follows that for all € > 0 there is an N such that
for m,n > N,

b1 (m)ba(n) — 61(B1)d2(B2)ai(m)az(n)| < ear(m)az(n).

Then, using Proposition 24, and the fact that a linear combination Y- r; 0(a(n))
is o(a(n)), we have

[b(n) — 61(B1)8>(Bz)a(n))|

Z J)ba(n — j) — 61(B1)d2(B2)ai(j)az(n — j)

=0
n—N
< b1(4)b2(n — j) — 61(B1)d2(B2)ai(j)az(n — j)
J=N
N—-1
+ 1D bi(h)ba(n — j) — 61(B1)82(Ba)as (j)az(n — j)
=0
N-1
+ bi(n — j)ba(j) — 61(B1)d2(Bz)ai(n — j)az(j)
=0
N—-1
< ea(n) + by (j)o(a(n)) — 51(31)52(52)a1(j)0(a(n))|
=0
N—-1
+ o(a(n))bs(j) — 61(B1)d2(Bz)o(a(n))as(j)
=0

= ea(n) + o(a(n)).

Therefore 6(B) = 61(B1)d2(B2).
Thus for a general partition set B of A

H'M»

Blj 52 BQJ

by Lemma 11 and Lemma 3.2 from [6] Therefore A has Property 1. O

Lemma 26. If lim ¢(n)/d(n) =£> 0 and d(n) € RT, then c¢(n) € RT,.
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Proof. The hypotheses imply ¢(n) is eventually nonzero, and then

lim M — lim c(n —1)d(n)d(n—1)

O

Proposition 27. Let A; and A have Property 1 and be reduced with p1 < po.
Then Ay x Ay has Property 1. Let B be a partition set of Ay x Ay and let B;; be as
in Lemma 11. Then

k
Bo;i(p1)
= 51(B1;) =2 .
jgl 1( 1]) Az(p1)

Proof. Let A = A; x Ay. We know A; € RT, by Proposition 22. Thus A € RT,
by Proposition 3.44 of [6].

Consider partition sets of A of the form B = By x By where B; is a partition set
of A;,i=1,2.

First, suppose §1(B1) # 0. Then B1(z) € RT, by Lemma 26. Thus by Lemma 17
we can apply Schur’s Theorem to get b(n) ~ b1 (n)Ba(p1) and a(n) ~ a1(n)Az(p1).
Hence

6(B) = 61(B1)

As(pr)

Second, suppose 01(B1) = 0; then for all ¢ > 0 there exists an N such that
bi(n)/ai(n) < e for n > N. Thus, since ba(n) < az(n) for all n,

b(n) = Zbl n— J)ba(j

=0

-N N—
bi(n —jlaz(j) + b1(y n by Proposition 24

j=0 j=0

n—N

< eZaln—jaz )+0( (n ))
=0

+0(a(n))

: kv
,_.

IN

< ea(n

~—

Ba(p1)

which gives 6(B) = 0. Therefore in both cases §(B) = 61(81)A )
2{pP1

Hence for a general partition set B of A

: Bo;(p1)
— ;51(51]-) A2 (

2 pl)
by Lemma 11 and Lemma 3.2 from [6]. Therefore A has Property 1. O

Theorem 28. Let Ay and Ay have Property 1 and be reduced with py < ps. Then
A1 Ag has Property 1 and for B a partition set of Ay x Az and B;; as in Lemma 11
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we get
k
B, _
2251“3“‘)M if p1 < p2,
o Az (p1)
5(8) = k
> 61(B1;)02(Ba;)  if p1 = pa.
j=1
Proof. If p; = ps apply Proposition 25; otherwise apply Proposition 27. [

Remark 29. If we assume only that A; * As has Property I then we can not
conclude that A; and A5 have Property I. For instance if 1 < q; < ¢o, where ¢o is an
integer, and we take A; to be the additive number system with p;(n) = |¢?*/n?] and
As to be the additive number system with pa(n) = ¢%, then p(n) = ¢& + |¢2*/n?| =
g5 + O(g}); so by Theorem 5.17 of [6], based on the asymptotics of Knopfmacher,
Knopfmacher, and Warlimont, A; * Az has Property I. However p; = 1/¢; and
P1(1/q1) < oo which gives A;(1/¢1) < oc; so A; does not have Property 1.3

3.2. Multiplicative. Throughout the multiplicative subsections of this paper, un-
less otherwise specified, A, Ay, and As will denote multiplicative number systems.

Similarly to the additive situation, the most desirable multiplicative systems are
those which are strictly multiplicative.

Definition 30 ([6], 9.39 and 9.48). A is discrete if there is a positive integer A
such that ||a|| is an integer power of A for any a € A. A is strictly multiplicative if
it is not discrete.

Strictly multiplicative systems will be the focus of this subsection.

Definition 31 ([6], 8.6). Given A, for each set B C A the generating series of B
is the Dirichlet series:

B(z) = Y b(n)n~".
n>1
Definition 32 ([6], 7.19 and 9.16). Given « € R, a function f(x) that is eventually
defined on R, and eventually positive, is in RV,, if for all y > 0

i L (zy) a

Yy,
z—oc f(x)
that is, f(x) has regular variation at infinity of index . Aisin RV, if A(z) € RV,.

Definition 33 ([6], 9.3). For B C A, the global asymptotic density A(B) of B is as
follows, provided the limit exists:

. B(n)
AB) = B A(n)’

We will use the following notational conventions.

The abscissa of convergence of the generating function A;(x) of A; is «;, the
functions a;(n), pi(n), and A;(x) are the local and global counting functions, and
when defined A;(B;) is the global asymptotic density of B; with respect to A; for
B; C A;. For A the preceding apply with the removal of the subscript i.

3This counterexample is inspired by one suggested by the referee.
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Since P, Py, and Py are nonempty by definition, we know that «, a1, and ay are
nonnegative.

Lemma 34. Let A= A *x Ay and B = By x By where B; C A;. Then

B(z) = Bi(x) - Ba(x).
Proof. Apply Proposition 9.30 from [6]. O
Lemma 35. If A= A; x Ay then o = max{ai,as}.

Proof. This follows from Lemma 34 since A;(z) and As(z) both have nonnegative
coefficients. O

Definition 36. A has Property I means that all partition sets of A have global
asymptotic density. .4 has Property IT if o < 0o, A(a) = 00, and A € RV,,.

As in the additive case Property I is the central property of interest. Some impor-
tant results of Burris and Sarkozy, and Warlimont follow; then we will proceed to-
wards the main result of the multiplicative subsection, Theorem 47. Proposition 39
is a recently announced result of Warlimont proving conjecture 9.70 from [6].
Proposition 37 ([6], 9.28). If A has Property I then A(P) = 0.

Proposition 38 ([14]). If A(P) =0 then o < cc.
Proposition 39 ([16]). If A(P) =0 then A(a) = co.
(I

Proposition 40
A€ RV,.

6], 9.50). If A is strictly multiplicative and has Property 1 then

Corollary 41. A has Property 1 and is strictly multiplicative implies A has Prop-
erty I1.

We also need a multiplicative analogue of Schur’s Theorem:

Proposition 42 ([6, 9.53]). Given a € R, suppose S(x) and T(x) are two Dirichlet

series such that T(x) has nonnegative coefficients, T(x) € RV, and the abscissa

of absolute convergence of S(x) is less than . Let R(z) = S(x) - T(z). Then
R(x)

A T(z) S(@)-

If S(a) > 0 then this can be expressed as R(x) ~ S(a) - T'(z).

Proposition 43. Let A; and Ay have Property 11 and be strictly multiplicative,
and let A= Ay x As. If ay > g, then:

. Ai(n) 0 if a1 = g
e lim = .
n—oo A(n) As(ar) if a1 > as.
. As(n)
. nILH;o Aln) =0.
Proof.

Aln) . Aa(n/i) Az (n/i)
As(n) Zal(l) As(n) 2 Zal(l)

i<n
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for fixed m < n. So

Afn) N
hnHi»ngQ( ) > Zal(z)z .

Now A;(a3) = o0; so by taking the limit as m — oo we get the second item.
For the first item, if a1 = a apply the above proof with 1 and 2 interchanged;
if a1 > a9 then apply Proposition 42. |

Proposition 44. Let A; and As have Property 1 and be strictly multiplicative with
ay = ag. Then A; x As has Property 1. Let B be a partition set of Ay x Az and let
Bi; be as in Lemma 11. Then

k
A(B) = Ai(B1;)As(By;).

j=1

Proof. Let A= A; x A>.

First, consider partition sets of A of the form B = By x By where each B; is a
partition set of A;.

Take an € > 0. Let N be such that |B;(n) — A;(B;)A4;(n)| < €A;(n) for n > N
and 7 = 1,2. Notice that

n

(1) Z 7)A2(n/j) Z (n/7)as (7

since both sides are equal to the global counting function of By x As. Then

|B(n) — A1(B1)Az(Ba)A(n)|

n

Z J)Ba(n/j) — A1(B1)A2(B2)ay (j)A2(n/j)

n

Z J)Ba2(n/j) — Aa(B2)bi(4)A2(n/g)

IN

n

Z (B2)b1(j)A2(n/j) — A1(B1)A2(B2)ay(j)A2(n/j)

Zbl(j)Bg(n/j) — Ag(B2)b1(j)A2(n/4)

I

> Bi(n/)as(j) — Ar(B1)Ar(n/5)az(j)

Jj=1

+ Az(B2) by (1).

II

Applying the triangle equality gives
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Tem 1< Y bi(5)|Ba(n/j) — Aa(B2)As(n/)]
1<j<n/N

+ Y b()[Ba(n/) — Da(Bay)As(n/))]

n/N<j<n

e Y bi(j)Ax(n/j)

1<j<n/N

+ > > b1(j)|Ba(k) — Aa(B) As(k)|

1<k<N _n__. n
= /c+1<7S k

IA

IA

+Z By (%) = Bi(72)) | Ba(k) — Ag(B2) Aa (k)|

eA(n) + (A(n)) by Proposition 43.
Term II can be treated in the same way. Therefore A(B) = A;(B1)A2(Ba).
Thus for a general partition set B of A
k
B) =) Ai(B1;)As(Byy)
j=1
by Lemma 11 and Lemma 9.4 from [6]. Therefore A has Property I. O

Lemma 45. Let B be a partition set of A. If A(B) # 0 and A(z) € RV, then
B(z) € RV,.

Proof. B(x) is eventually nonzero, since A(B) # 0. Then, for all y > 0,
im B@y) o, Bley) Alz) Alzy)
A% B@) T etk A(wy) B@) AQ)
o Bl Al Awy) _
v—o0 A([zy]) B(lz]) A(z)

O

Proposition 46. Let A; and Ay have Property 1 and be strictly multiplicative with
ay > ag. Then Ay x Ay has Property 1. Also for B a partition set of Ay x Ay and
for By as in Lemma 11 we get

£ Boj(a1)
B) = ;Al(slj) An(a)”

Proof. Let A= A; x A>.

Consider partition sets of A of the form B = By x By where B; is a partition set
of Aj,i=1,2.

First, suppose A;(By) # 0. Then Bi(zr) € RV,, by Lemma 45. Thus by
Lemma 34 we can apply Proposition 42 to get B(z) ~ Bi(z)Ba(ay) and A(z) ~
Aj(xz)As(aq). So, as n — oo,

B(n)
A(n)

B2 (Oél)
A2 (041> '

— Al(Bl)
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Second, suppose A;1(B;) = 0. Then for all ¢ > 0 there is an N such that
Bi(n)/A1(n) < e for n > N. Thus

B(n) = > Bi(n/jb(j) + Y Bi(n/j)ba(j)

1<j<n/N n/N<j<n
< Y Bi/pbkG)+ D> Y Bi(k)ba())
1<j<n/N 1<k<N kT-1<J§ %
< ¢ YL Amel) + Y, Bik(BA}) - Ba(rh))
1<j<n/N 1<k<N
< €A(n) + Z By (k)o(A(n)) by Proposition 43
1<k<N

< €A(n) +o(A(n))
By(a)

which gives A(B) = 0. Therefore in both cases A(B) = Al(Bl)A (o)
2(on

Hence for a general partition set B of A

B2J )
ZA (By;) An(o)

by Lemma 11 and Lemma 9.4 from [6]. Therefore A has Property I. O

Theorem 47. Let Ay and Ay have Property 1 and be strictly multiplicative with
ay > as. Then A= Ay x Ay has Property 1. Also for B a partition set of Ay x A
and for By; as in Lemma 11 we get

A2( )
AB) ="}
> A1(B1;)Ax(By)  ifar =a
j=1
Proof. If oy = as apply Proposition 44; otherwise apply Proposition 46. (]

4. The general situation

4.1. Additive. Now, returning to the additive notational conventions, we extend
the results to the case when A; and A, are not necessarily reduced.

Definition 48. Let d = ged(supp p(n)) and let j|d. Define A* to be the additive
number system obtained from A by altering the norm so that ||a|* = ||al|/j. Let
a*i(n) and p*i(n) be the counting functions of A*, and let p*i be the radius of
convergence of A*i(x), the generating function of A*i.

Notice that a*i (n) = a(nj), p*i (n) = p(nj), ged(supp p*i(n)) =1, and p*i = p’.
If d = j then we drop the j in the exponent and write A*, which is a reduced
additive system called the reduced form of A. Notice also that if A is not reduced
then A ¢ RT, since a(n) is infinitely often zero.

As an additional notational convention we will let d; = ged(supp pi(n)) and

d = ged(supp p(n)).
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Here is an example of the value of working with nonreduced systems. For ¢
a power of a prime and d a positive integer, define the additive number system
Agq.q as the system formed from the monic elements of Fy [z%] with polynomial
multiplication as the operation and ||g(z)|| = deg g(x).

Let ag4,q4(n) be the local counting function for A, 4. Then

qm" ifdm=n
W™ =10 itarn

So the radius of convergence of the generating function of A, 4 is

1
P=
qi/d

Now, for all d, A? ; looks like A, 1 under the mapping g(z?) — g(z). From ag1(n) =
q" we see by the Knopfmacher, Knopfmacher, and Warlimont asymptotics (see
Theorem 5.17, [6]) that A, 1 has Property I and so, as we will see in Lemma 51,
A, q has Property I for all d.
Determining when Ay, 4, * Ay, 4, has Property I is rather more involved.
Theorem 57, the main theorem of this subsection, shows that Ay, 4, * Ag, 4, has
Property I iff

. 1/qi/d1 < 1/q;/d2 and dy|da, or

. 1/qi/d1 > 1/q;/d2 and daldy, or

° 1/qi/d1 = 1/q21/d2.

For instance, Ao * Az 4 and Ay 1 * Ay 3 have Property I but Ao * A 3 does
not. Such facts require a careful study of nonreduced systems.

“(n)

. BY epists.
e @ (n)’ provided 6(B) exists

Proof. From Hua’s Theorem (as found for instance in [6], 2.49), a*(n) is eventually

nonzero; so lim b*(n) = lim b(n) O
n—oo a*(n)  mie a(n)

The next lemma follows easily from the definitions.

Lemma 50. Let A= Ay x Ay; then d = ged(dy,ds). Let j|d; then A% = A} A5}
’Lﬁ .A = .Al * Ag.

Lemma 51. A% has Property 1 iff A has Property 1, whenever j|d.

Proof. A and A* have the same reduced form, so apply Lemma 3.3 from [6]. O
From this we get a slight variation on Proposition 22.

Proposition 52. A has Property I implies a*(n) € RT -.

The key to the more general case is Proposition 54, a modified version of Propo-
sition 24. In order to prove Proposition 54 we will need the following Lemma.

Lemma 53. If f(n) € RT,, p > 0, and ano f(n)p™ = oo then for all k and all
m > 1 we have Z f(n)p" = oo.

n=k mod m



76 Karen Yeats

Proof. Pick an € > 0. Let N be such that f(j +1)>0and f(j)/f(j+1) <e+p
for j > N. Then, for suitable constants C'; and C,

RN D SN () S SR ()
j=k mod m Jj=k mod m j=k mod m

J<N j>N

Ci+ (e+p) Y. fG+1)p
jEkj>m]c\)]dm

cr (8 S o

j=k+1 mod m

IN

Now Z f(n)p™ = oo implies that for all m we have Z f()p’ = oo for
n>0 j=k mod m
some k. Then by the above the latter equation holds for all & ([l

Proposition 54. Let A = A; * As, ged(dy,d2) =1, Ay(p1) = oo, and A; € RT .
If p1 < pg then lim ag(n — j)/a(n) =0 for all integers j > 0.

Proof. Let us restrict out attention to n large enough that a(n — j) > 0. This
is possible since d = ged(dy,ds) = 1; so A is reduced. For dy ¥ n — j we have
az(n —j) =0, and so az(n — j)/a(n) = 0. Assume dq|n — j, and let dam = n — j.
Now

dam+j

aldzm + ) az(dom +j — k)
aldom +Jj) _ o (py2(dam + 5~ k)
as(dam) I;O 1(k) a2 (darn)
= > ai(di +j)w
—j/da<i<m az(dam)
- Z a1 (dzi + j)%(fz_)l)
—j/d2<i<m Ag (TN
k ak (m _ Z)
> a (dgi + j)2*7
iz:; az(m)
for fixed k < m. Thus
. k. '
im inf 2(%2m 1 J) . o ab(m =)
Iminf = om) = a1(doi + j) lim inf
k .
ey
=0

Taking the limit as kK — oo, we have

lim inf 7a(d2m +J)

0

> dai + 5)p%

i ") > S i
=0

= p0 D> a(dil)ps
di14=j mod da
p? Y a0

di4=j mod da

v
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since pgl > pfl = pt. Now since ged(dy,ds) = 1, dif = j mod ds is the same as
¢ = ¢ mod d for some c. We know that 3, ai(0)(p})* = oo, and p; > 0 since
A;(p1) = co. Apply Lemma 53 to get lim as(n — j)/a(n) = 0. O

Proposition 55. Let Ay and Ay have Property 1 with py = po2. Then A; * As has
Property 1. Let B be a partition set of Ay x Az and let B;; be as in Lemma 11. Then

k
5(B) =Y 61(B1;)da2(Bs;).
j=1
Proof. Let A = A; x A3. By Lemmas 50 and 51 we need only consider d = 1.
Since p; = po we can switch the roles of A; and Ay in Proposition 54 to get

ai(n — j) = o(a(n)) for all integers j > 0.
From b;(nd;)/a;(nd;) — §;(B;) it follows that for all € > 0 there is an N such
that for md;,nd, > N,

|b1(md1)b2(nd2) - (51(81)52(82)&1(mdl)ag(ndg)| < eal(mdl)az(ndg).
Clearly a;(k) = 0 gives b;(k) = 0 for all k; so for j,k > N,
|b1(4)b2 (k) — 81(B1)d2(Ba)ar (j)az(k)| < ear(j)az(k).

Now continue as in the proof of Proposition 25 using Proposition 54 in place of
Proposition 24. ([l

Proposition 56. Let A; and As have Property I with py < pa. Then A; * As has
Property 1 iff di|d2. If di|d2 then for B a partition set of Ay « Ay and for B;; as in
Lemma 11 we get

k
5(8) = Z&(Bu)%;((gf)

)
Proof. Let A = Ay x Ay. di|ds iff dy = d since d = ged(dy,d2). We need only
consider the case when d = 1, that is, A is reduced, because d;|dy iff %1‘%2 and
Lemmas 50 and 51 give A; Ay has Property Liff A7?*AJ? has Property I. A; € RT,
iff A € RT, by Proposition 3.44 of [6].

(=) Suppose that A has Property I and radius of convergence p. Then A € RT,
since A is reduced, and so A; € RT,. Therefore A; is reduced, and so d; =1 =d.

(<) Suppose that d; = 1 = d; then A; € RT,,. Now continue as in the proof of
Proposition 27 using Proposition 54 in place of Proposition 24. (I

Theorem 57. Let A; and Ay have Property 1 with py < ps. Then Ay * As has
Property 1 iff di|dy or p1 = p2. If Ay % As has Property 1 then for B a partition set
of Ay x Ay and B;j; as in Lemma 11 we get

. Ba;(p1)
D2 -
5(8) 2Ly e
= k
251(Blj)52(|32j) if p1 = p2.
j=1

Proof. If p; = ps apply Proposition 55; otherwise apply Proposition 56. ([
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For any additive number system A define Aq, the extension of A by an indecom-
posable g, to be the additive system formed by adding a new indecomposable q to
P, by letting A4 be the set of formal expressions q™ *a, for m a nonnegative integer
and a € A, and by extending the norm with the definition ||q™ * a|| = m||q|| + ||a|.

Corollary 58. Suppose A has Property 1. An extension Aq has Property I iﬂ'd‘ llall
or p=1.

Proof. We can form an additive number system Q = (Ag,Pg, *,¢e,|| ||) generated
by q by letting Pg = {q}, Ag = {q™ : m > 0}, g™ % q"™ = q"™ "™ e = q°, and
la™] = mlq||. Then Aq = Ax Q, Q has Property I, pg =1, and dg = ||q||. Now
apply Theorem 57. [

If A is reduced in the above corollary then we have Theorem 3.59 of [6].

Corollary 59. Let Ai,..., A, be additive number systems with Aj,... , A’ in
RTy. Then (Ay *---x Ap)* is also in RTy.

Proof. Let A = A; x---x A,. It suffices to prove the theorem for n = 2. By
Theorem 4.2 of [6] AF € RTy iff A has Property I and p; = 1, and likewise for A*.
Now apply Theorem 57. ([l

This gives the additive half of Theorem 16.1 from [7]. If all the A; are reduced
then we have Stewart’s Theorem ([6], 4.15). We can also use Theorem 57 to prove
the following corollary, extending a result of Bateman and Erd&s which in our
notation says: if p(n) <1, for n > 1, then A* € RTy, ([6], 4.13).

Corollary 60. If p(n) <c, forn >1, then A* € RT;

Proof. Let m = max{p(n) : n > 1}, which exists since p(n) < ¢ is integer valued.
Then we can construct additive number systems A;, 1 < i < m, such that p;(n) <1
for 1 <i<mand A= Ay *---x A,. By the Bateman and Erdds result each
A? € RTy; so by Corollary 59 A* € RT;. O

4.2. Multiplicative. Now, using the multiplicative notational conventions, we
extend the results to the case when A; and As may be discrete.

As an additional notational convention, if A is discrete A will denote the largest
integer such that ||a|| is an integer power of A for all a € A; and similarly for \;
when A; is discrete.

Although A having Property I does not imply A € RV, the following lemma
gives a weaker result of a similar flavour.

Lemma 61. For any multiplicative number system A with Property 1 and abscissa

Aln /i
of convergence «, there exists a C > 0 such that liminf (?/)Z) > Ci™%, for all
n— oo n

integers ¢ > 0.

Proof. If A is strictly multiplicative then, by Corollary 9.50 from [6], A € RV,,
and so the lemma holds with C' = 1. _

Suppose A is discrete multiplicative; then A = (A, P, %, e,logy || ||) is a reduced
additive number system with all partition sets having global asymptotic density, and
with the radius of convergence of A(z) being A~*. Notice also that A(z) = A(\?)
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(Section 9.8.2 of [6] discusses relationships between A and A). Thus, by Proposition
3.20 and Lemma 3.29 from [6], A(n) € RTy-a; so

A(n/i) _ A(logy(n) —log, (i)
Alm) A1og, (n)
5 Alllogy(n)] — [log,(9)])
- A([logy(n)])
N AfaflogA z]
Therefore
lim in fA(n/Z) > \—allogy i > N—elogyitl) _ y—a;—a
n—o00 A( )
Solet C'= A", .
Proposition 62. Let Ay and Az have Property 1 and let A = Ay x Ay. If a1 > o,
then:
Ai(n) _ |0 if a1 = as
e lim = L
n—o00 A( ) Az(al) ZfOél > Q.
Az(n)
e lim =0.
wm A(n)
Proof.

A2 ﬂ/l) Ay (n/i)
= 200w 2 20 a0

for fixed m < n. So

A(n) Ag (n/i
- > limi , > —a
lim inf > hnrrigf Z a1 (i) A C Z aq (i
i<m i<m
by Lemma 61. By taking the limit as m — oo we get the second item.
For the first item, if & = a apply the above proof with 1 and 2 interchanged;
if a1 > a9 then apply Proposition 42. ([l

Proposition 63. Let Ay and As have Property I with oy = as. Then A; x Ay has
Property 1. Let B be a partition set of A1 x Ay and let B;; be as in Lemma 11. Then

k
=Y A4(B1;)As(By;).
j=1
Proof. Follow the proof to Proposition 44 replacing references to Lemma 43 with
references to Lemma 62. (Il

Proposition 64. Let A; and As have Property 1 with oy > ag, and let Ay be
strictly multiplicative. Then Ay x Ao has Property 1. Let B be a partition set of
Ay x Ay and let B;; be as in Lemma 11. Then

k
AB) =30 (1) 2.

J=1
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Proof. Follow the proof to Proposition 46 replacing references to Lemma 43 with
references to Lemma 62. ([

For the purposes of the next lemma we will briefly escape from our multiplicative
notational conventions. This lemma corresponds to Proposition 3.44 from [6], but
is concerned with global counting functions rather than local counting functions.

Lemma 65. Suppose A = A; Az, all three of which are additive number systems.
Additionally suppose ), -, A1(n)z™ has radius of convergence p and ), -y Aa(n)z™
has radius of convergence po > p. Then A(n) € RT, iff A1(n) € RT,.

Proof. By Lemma 2.31 from [6] the radius of convergence of Ay(x) is also pa. By
Corollary 2.39 from [6] we have that [1/A5](x) has radius of convergence at least
p2, where [1/As](x) is the power series expansion of 1/As(x). Then, by Lemma 17

D A" = > Ai(n)a" - As(x)

n>0 n>0
> Ain)z = [1/Ag)(x) Y An
n>0 n>0
It follows from Schur’s Theorem that A(n) € RT, iff A;(n) € RT,. O

Proposition 66. Let Ay and A have Property 1 with ay > as, and let A; and
As be discrete with Ao a power of A\y. Then Ay x Ay has Property 1. Let B be a
partition set of Ay * Ay and let By; be as in Lemma 11. Then

k
B) = ZAI(BU)%;&)).

Proof. Let A = A; *x A;. From the hypotheses A is discrete with A = A;.
Therefore each A; = (Ai,Pi, =, e,logy || [|;) is an additive number system and
A= (AP, xe Jlogy || ||) and Ay are reduced additive number systems.

Notice that A = Ay * Ay since log, [|(a1,a2)| = log [|la1 s + logy [|az]l2 for all
a; € Aj and ay € Ay. Also ﬂl and /Tg have all partition sets with global asymptotic
density since A; and Ay do.

Consider partition sets of A of the form B = By x By where B; is a partition set
of Aj,i=1,2.

First, suppose A1 (By) # 0. Then A1(By) #0. So By(n) € RT,-a by Lemma 26.
Thus B(n) ~ B;(n)By(A~*') and A(n) ~ A;(n)As(A~*') by Lemma 17 and
Schur’s Theorem. So, as n — oo,

B _ Blogn) | 5 5B
A(n)  A([logyn)) Ay(A—o)
Second, suppose A1 (B1) = 0. The proof that A(B) =

of Proposition 46. Therefore in both cases A(B) = Ay(B;)

BQ(al)
As(ar)

= Aq(By)

0 is exactly as in the proof
B2 (041)
A, (041) .

Hence for a general partition set B of A

k
B) = ; A1(Byy) BAZ;((Sll))




Asymptotic Density in Combined Number Systems 81

by Lemma 11 and Lemma 9.4 from [6]. Therefore A has Property I. O

Proposition 67. If Ay x Ay has Property 1 and a1 > aq, then
® (X1 =— (g OTr
e a1 > ag and Ay is strictly multiplicative or
e a3 > as, Ay and Ay are discrete, and Mo is a power of \1.

Proof. Let A= A; * A5. Assume a; > as.

Suppose A is strictly multiplicative; then A € RV, by Corollary 9.50 from [6].
Thus A; € RV, by Proposition 9.55 from [6]. Then A4; is strictly multiplicative;
for otherwise a; = 0 by Proposition 9.51 from [6] which contradicts ag > as.

Suppose A is discrete; then ||(a1, a2)|| is an integer power of A for a; € A;. Thus
if there existed an a; € A; such that ||a;||; was not an integer power of A then
(a1, e)|| = |la1]]s would not be an integer power of A, and likewise for a; € Aq.
Therefore for all a; € A;, i = 1,2, ||a;||; is an integer power of \; so A; and Ay are
discrete. Hence A, and Ay are powers of A, each A; = (A, Py, ,e,log, || |;) is an
additive number system, and A = (A, P, %, e,1og, || ||) is a reduced additive number
system. _ _ _ _ _

As in Proposition 66 A = A; * Ay and A; and Ay have all partition sets with
global asymptotic density. So by Proposition 3.20 and Lemma 3.29 from [6], A(n) €
RTy-«; so ;11(71) € RTy-« by Lemma 65. Now o = a3 > ag > 0; s0 A7 < 1. If
Aj is not reduced then A (n—1)/A;(n) is infinitely often 1 giving a contradiction.
So .Zl is reduced, and thus A = A;. Therefore Ay is a power of A;. O

Theorem 68. Let Ay and Ay have Property I with ay > ag. Then A = Ay x Asy
has Property 1 iff

® (X1 = (v OTr

e a1 > ag and Ay is strictly multiplicative or

o a1 > ag, Ay and Ay are discrete, and Ao is a power of A\1.
If Ay x Ay has Property I then for B a partition set of Ay * Ay and for B;; as in
Lemma 11 we get

k
B .
ZAl(Blj)M Zf&l > oo,

] Ag(al)

A(B) = ]k
> A1(B1;)Ax(By;) if ar = as.
j=1

Proof. In the if direction apply Propositions 63, 64, and 66, and in the only if
direction apply Proposition 67. (]

Because of the connection between discrete multiplicative systems and additive
systems used in Lemma 61 and Proposition 66, global density results for multi-
plicative systems give global density results for additive systems. FEach additive
system can be seen as a multiplicative system (as shown in Section 9.8.1 of [6]);
this translation maps additive number systems in RT, to multiplicative number
systems in RV_ o, , for integer A > 1 and preserves partition sets and density.
In the next corollary we will also need the fact that if the generating series of the
additive number system diverges at its radius of convergence then the Dirichlet



82 Karen Yeats

series of the corresponding multiplicative number system diverges at its abscissa of
convergence.

For the purposes of this corollary we are returning to the notational conventions
of the first half of the paper.

Corollary 69. Let Ay and Ay be additive number systems such that every partition
set has global asymptotic density. Then every partition set of Ay * Ao has global
asymptotic density iff di|da or p1 = pa.

Proof. Let A= A;*A,. Pick an integer A\g > 1. Then A = (A, P;, %, e, )\H I “) and

A= (AP,x,e, )\” ”) are discrete multiplicative number systems with A = A; x As.
Apply Theorem 68. Notice that in the case p; < p2 the condition d;|ds is equivalent
to the condition Ay is a power of A; for the discrete systems. 0

Corollary 70. Let Aq,..., A, be multiplicative number systems in RVy. Then
Ay *---x A, € RVy.

Proof. It suffices to prove the theorem for n = 2. A; € RV iff A; has Property I
and the abscissa of convergence of A; is 0 by Theorem 10.2 of [6]; the same applies
to A x As. Now apply Theorem 68. O

This gives Odlyzko’s Theorem ([6], 10.5) and the multiplicative half of Theorem
16.1 from [7].

For any multiplicative number system A define Aq, the extension of A4 by an
indecomposable g, to be the multiplicative number system formed by adding a new
indecomposable q to P, by letting Ay be the set of formal expressions q"™ x a, for
m a nonnegative integer and a € A, and by extending the norm by the definition
lla™ xal| = [all™{|al|-

Corollary 71. Suppose that A has Property 1. An extension Aq has Property 1 iff
A is strictly multiplicative, or A is discrete and ||q| is an integer power of A, or
a=0.

Proof. We can form a multiplicative number system Q = (Ag,Pg,-,1,| ||) gener-
ated by q by letting Pg = {q}, Ag = {q™ :m >0}, 1 = q°, q™ % q™2 = g™z,
and ||q™|| = |la]|™. Then Aq = A* Q, and Q has Property I, ag = 0. Now apply
Theorem 68. U

If A is strictly multiplicative then Corollary 71 gives Theorem 9.69 from [6].
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