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On Commuting Matrix Differential Operators

Rudi Weikard

Abstract. If the differential expressions P and L are polynomials (over C)
of another differential expression they will obviously commute. To have a
P which does not arise in this way but satisfies [P, L] = 0 is rare. Yet the
question of when it happens has received a lot of attention since Lax presented
his description of the KdV hierarchy by Lax pairs (P, L). In this paper the
question is answered in the case where the given expression L has matrix-
valued coefficients which are rational functions bounded at infinity or simply
periodic functions bounded at the end of the period strip: if Ly = zy has
only meromorphic solutions then there exists a P such that [P, L] = 0 while
P and L are not both polynomials of any other differential expression. The
result is applied to the AKNS hierarchy where L = JD + Q is a first order
expression whose coefficients J and Q are 2 × 2 matrices. It is therefore an
elementary exercise to determine whether a given matrix Q with rational or
simply periodic coefficients is a stationary solution of an equation in the AKNS
hierarchy.

Contents

1. Introduction 10
2. The rational case 11
3. The simply periodic case 16
4. Application to the AKNS system 17
5. The lemmas 19
Appendix A. The theorems of Halphen and Floquet 26
Appendix B. Higher order systems of differential equations 27
Appendix C. Wasow’s theorem 28
References 29

Received November 8, 2000.
Mathematics Subject Classification. 34M05, 37K10.
Key words and phrases. Meromorphic solutions of differential equations, KdV-hierarchy,

AKNS-hierarchy, Gelfand-Dikii-hierarchy.
Research supported in part by the US National Science Foundation under Grant No. DMS-

9970299.

ISSN 1076-9803/02

9

http://nyjm.albany.edu:8000/j/2002/8-2.html
http://nyjm.albany.edu:8000/j/2002/Vol8.html
http://nyjm.albany.edu:8000/nyjm.html


10 Rudi Weikard

1. Introduction

Consider the differential expression

L = Q0
dn

dxn
+ · · ·+Qn.

When does a differential expression P exist which commutes with L? This question
has drawn attention for well over one hundred years and its relationship with com-
pletely integrable systems of partial differential equations has led to a heightened
interest in the past quarter century. A recent survey [10] by F. Gesztesy and myself
tries to capture a part of that story and might be consulted for further references.

If L = d2/dx2 + q the problem is related to the Korteweg-de Vries (KdV) hierar-
chy which, according to Lax [17], can be represented as the hierarchy of equations
qt = [P2n+1, L] for n = 0, 1, . . . , where P2n+1 is a certain differential expression of
order 2n + 1. The stationary solutions of these equations give rise to commuting
differential expressions and play an important role in the solution of the Cauchy
problem of the famous KdV equation (the case n = 1). Relying on a classical result
of Picard [21], Gesztesy and myself discovered in [8] that, when q is an elliptic func-
tion, the existence of an expression P2n+1 which commutes with L is equivalent to
the property that for all z ∈ C all solutions of the equation Ly = zy are meromor-
phic functions of the independent variable. This discovery was since generalized to
cover certain 2 × 2 first order systems with elliptic coefficients (see [9]) and scalar
n-th order equations with rational and simply periodic coefficients (see [24]).

According to the famous results of Burchnall and Chaundy in [1] and [2] a
commuting pair of scalar differential expressions is associated with an algebraic
curve and this fact has been one of the main avenues of attack on the problems
posed by this kind of integrable systems (Its and Matveev [13], Krichever [14], [15],
[16]). For this reason such differential expressions or their coefficients have been
called algebro-geometric.

In this paper I will consider the case where the coefficients Q0, . . . , Qn of L
are m×m matrices with rational or simply periodic entries. First let us make the
following definition.1

Definition 1. A pair (P,L) of differential expressions is called a pair of nontrivially
commuting differential expressions if [P,L] = 0 while there exists no differential
expression A such that both P and L are in C[A].

I will give sufficient conditions for the coefficients Qj which guarantee the exis-
tence of a P such that (P,L) is a nontrivially commuting pair when mn is larger
than one.2 Theorem 1 covers the rational case while Theorem 2 covers the periodic
case. These results are then applied to the AKNS hierarchy to obtain a character-
ization of all rational and simply periodic algebro-geometric AKNS potentials (see
Theorem 3).

The main ingredients in the proofs are generalizations of theorems by Halphen
[12] and Floquet [6], [7] which determine the structure of the solutions of Ly = zy.

1The definition is motivated by the following observation. The expressions P and L commute
if they are both polynomials of another differential expression A, i.e., if P, L ∈ C[A]. Note that
this does not happen in the case discussed above, i.e., when L = d2/dx2+q and P is of odd order,
unless q is constant.

2When m = n = 1 and [P, L] = 0 then P is necessarily a polynomial of L.



On Commuting Matrix Differential Operators 11

The original theorems cover the scalar case. The generalizations, which are quoted
in Appendix A, are proven in [11] and [25], respectively.

Algebro-geometric differential expressions with matrix coefficients have attracted
a lot of attention in the past. The papers by Cherednik [3], Dickey [4], Dubrovin
[5], van Moerbeke [19], Mumford [20], and Treibich [22] form a (rather incomplete)
list of investigations into the subject.

The organization of the paper is as follows: Sections 2 and 3 contain the state-
ments and proofs of Theorems 1 and 2, respectively. Section 4 contains a short
description of the AKNS hierarchy as well as Theorem 3 and its proof. The proofs
of Theorems 1 and 2 rely on several lemmas which do not specifically refer to one
or the other case. These lemmas are stated and proved in Section 5. Finally, for
the convenience of the reader, three appendices provide the statements of the theo-
rems of Halphen and Floquet, a few facts about higher order systems of differential
equations, and the statement of a theorem of Wasow on the asymptotic behavior of
solutions of a system of first order differential equations depending on a parameter.

Before we actually get started let us agree on a few pieces of notation. If F is a
field we denote by F[x] the ring of polynomials with coefficients in F and by F(x)
the associated quotient field. The ring of j×k matrices with entries in F is denoted
by F

j×k. The letter A represents the field of algebraic functions in one variable
over the complex numbers. The symbol 1 denotes an identity matrix. Occasionally
it is useful to indicate its dimension by a subscript as in 1k. Similarly 0 and 0j×k

denote zero matrices. Polynomials are to be regarded as polynomials over C unless
the contrary is explicitly stated.

2. The rational case

Theorem 1. Let L be the differential expression given by

Ly = Q0y
(n) +Q1y

(n−1) + · · ·+Qny.

Suppose that the following conditions are satisfied:
1. Q0, . . . , Qn ∈ C(x)m×m are bounded at infinity.
2. Q0 is constant and invertible.
3. The matrix

B(λ) = λnQ0 + λn−1Q1(∞) + · · ·+Qn(∞)

is diagonalizable (as an element of A
m×m).

4. There are linearly independent eigenvectors v1, . . . , vm ∈ A
m of B such that

limλ→∞ vj(λ), j = 1, . . . ,m, exist and are linearly independent eigenvectors
of Q0. In particular Q0 is diagonalizable.

If mn > 1 and if, for all z ∈ C, all solutions of Ly = zy are meromorphic, then
there exists a differential expression P with coefficients in C(x)m×m such that (P,L)
is a pair of nontrivially commuting differential expressions.

Note that Conditions 3 and 4 are automatically satisfied if all eigenvalues of Q0

are algebraically simple.

Proof. Without loss of generality we will assume that Q0 is diagonal. Lemma 1
gives a large class of differential expressions P which commute with L. Our goal
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is therefore to check the hypotheses of Lemma 1. After that we will address the
question of finding a P which commutes nontrivially with L.

Let M = C(x). For j = 0, . . . , n let Q∞,j = Qj(∞) and let the function τ be the
identity. The eigenvectors of B, which are linearly independent as elements of A

m,
become linearly dependent (as elements of C

m) for at most finitely many values of
λ, since the determinant of the matrix whose columns are these eigenvectors is an
algebraic function. Conditions 1–3 of Lemma 1 are then satisfied. Next we have to
construct U such that Conditions 4 and 5 are also satisfied.

Let the characteristic polynomial of B be given by

det(B(λ)− z) =
ν∏

j=1

fj(λ, z)mj

where the fj ∈ C[λ, z] are pairwise relatively prime. Denote the degree of fj(λ, ·)
(which does not depend on λ) by kj . According to Lemma 2 we may choose λ
among infinitely many values such that:

1. B(λ) is diagonalizable.
2. (f1 . . . fν)(λ, ·) has k1 + · · ·+ kν distinct roots.
3. if zj,k(λ) is a root of fj(λ, ·), then λ is a simple root of (f1 . . . fν)(·, zj,k(λ)).

Until further notice we will think of this value of λ as fixed and, accordingly, we
will typically suppress the dependence on λ of the quantities considered.

Let zj,k be a root of fj(λ, ·), i.e., an eigenvalue of B(λ) of multiplicity mj .
The equation Ly = zy is equivalent to a first-order system ψ′ = A(z, ·)ψ where
A(z, x) ∈ C

mn×mn remains bounded as x tends to infinity. By Lemma 3 the
characteristic polynomial of A(z,∞) is a constant multiple of

∏ν
j=1 fj(λ, z)mj and

hence λ is an eigenvalue of A(zj,k,∞) of algebraic multiplicity mj . But Lemma 3
implies also that the geometric multiplicity of λ is equal to mj . Theorem 2.4 of
[11] (quoted in Appendix A), which is a generalization of a theorem of Halphen,
guarantees then the existence of mj linearly independent solutions

ψj,k,	(x) = Rj,k,	(x) exp(λx), � = 1, . . . ,mj

of ψ′ = A(zj,k, ·)ψ where the components of Rj,k,	 are rational functions. The
common denominator q of these components is a polynomial in x whose coefficients
are independent of λ and zj,k since the poles of the solutions of Ly = zy may occur
only at points where one of the coefficient matrices Qj has a pole. Moreover, q may
be chosen such that the entries of qQj are polynomials for all j ∈ {1, . . . , n}.

The Rj,k,	, � = 1, . . . ,mj , may have poles at infinity whose order can be deter-
mined from asymptotic considerations. We denote the largest order of these poles,
i.e., the largest degree of the numerators of the components of the Rj,k,	 by s and
perform the substitution

ψ(x) =
exp(λx)
q(x)

s∑
j=0

αjx
s−j .

This turns the equation ψ′ = A(z, ·)ψ into the equivalent equation

s+s′∑
	=0

xs+s′−	
∑

j+k=	

{(s− j)qk−1 − Γk(λ, z)}αj = 0(1)



On Commuting Matrix Differential Operators 13

where s′ = deg(q) and where the Γk and qk are defined respectively by

q(x)A(z, x) + (q′(x)− λq(x)) =
s′∑

k=0

Γk(λ, z)xs′−k and q(x) =
s′∑

k=0

qkx
s′−k

(quantities whose index is out of range are set equal to zero). Equation (1) repre-
sents a system of (s + s′ + 1)mn linear homogeneous equations for the (s + 1)mn
unknown components of the coefficients αj and is thus equivalent to the equation
Ã(λ, z)β = 0 where Ã is an appropriate (s+s′+1)mn×(s+1)mn matrix and β is a
vector with (s+1)mn components comprising all components of all the αj . Lemma 4
applies to the equation Ã(λ, z)β = 0 with R = C[λ] and g(λ, z) = det(B(λ) − z).
We therefore conclude that there are polynomials β1, . . . , β(s+1)mn in C[λ, z](s+1)mn

(some of which might be zero) such that

β1(λ, zj,k), . . . , βmj
(λ, zj,k)

are linearly independent solutions of Ã(λ, zj,k)β = 0 for k = 1, . . . , kj and j =
1, . . . , ν. Hence

ψj,k,	(x) =
exp(λx)
q(x)

(xs1mn, . . . , x
01mn)β	(λ, zj,k).

Using next that fj(λ, zj,k) = 0 and the fact that zkj has a constant nonvanishing
coefficient in fj(λ, ·) we obtain that ψj,k,	 can be expressed as

ψj,k,	(x) =
exp(λx)
q(x)

(xs1mn, . . . , x
01mn)

kj−1∑
r=0

β̃	,j,r(λ)zr
j,k

where the β̃	,j,r are elements of C[λ](s+1)mn. (They are independent of the subscript
k.) The first m components of each ψj,k,	 form a solution yj,k,	 of Ly = zj,ky. One
obtains

yj,k,	(x) = exp(λx)
kj−1∑
r=0

γ	,j,r(λ, x)zr
j,k,

where γ	,j,r(λ, ·) ∈ C(x)m and γ	,j,r(·, x) ∈ C[λ]m.
Now define

Sj = (γ1,j,0, . . . , γ1,j,kj−1, γ2,j,0, . . . , γmj ,j,kj−1),

Vj =

 1 · · · 1
...

...
z

kj−1
j,1 · · · z

kj−1
j,kj

 ,

Zj = ⊕mj

r=1Vj , and Yj(λ, x) = Sj(λ, x)Zj exp(λx).

The matrix Yj is a m ×mjkj matrix. The mj columns whose index is equal to k
modulo kj are the linearly independent solutions of Ly = zj,ky whose asymptotic
behavior is given by exp(λx). Finally we define the m×m matrices

S(λ, x) = (S1(λ, x), . . . , Sν(λ, x)), Z = ⊕n
j=1Zj , and

Y (λ, x) = (Y1(λ, x), . . . , Yν(λ, x)) = S(λ, x)Z exp(λ, x).
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We now study the asymptotic behavior of Y (λ, x) as λ tends to infinity. By
Lemma 3 the matrix A(zj,k,∞) is diagonalizable and there is a positive integer h
such that the eigenvalues of A(zj,k,∞) are given by

µj,k,	 = λ

(
σj,k,	,0 +

∞∑
r=1

σj,k,	,rλ
−r/h

)
, � = 1, . . . ,mn

where the numbers σj,k,	,0 are different from zero. Define the diagonal matrices
Mr = diag(σj,k,1,r, . . . , σj,k,mn,r) and order the eigenvalues in such a way that, for
r = 0, . . . , h− 1,

Mr =
(
σj,k,1,r1pr

0
0 Σj,k,r

)
,

where p0 ≥ p1 ≥ · · · ≥ ph−1 and where σj,k,1,r is not an eigenvalue of Σj,k,r.
Moreover, require that the mj eigenvalues which are equal to λ are first. Then
we have σj,k,1,0 = 1, σj,k,1,1 = · · · = σj,k,1,h−1 = 0, and ph−1 ≥ mj . There are
p0 eigenvalues which are asymptotically equal to λ and there are ph−1 eigenvalues
which differ from λ by a function which stays bounded as λ tends to infinity.

To each eigenvalue µj,k,	 we have an eigenvector uj,k,	 of the form

uj,k,	 =


vj,k,	

µj,k,	vj,k,	

...
µn−1

j,k,	vj,k,	

 ,

where vj,k,	 is an appropriate eigenvector of B(µj,k,	) associated with the eigenvalue
zj,k, and can, by assumption, be chosen to be holomorphic at infinity. Define Tj,k

to be (mn)× (mn) matrix whose columns are the vectors uj,k,1, . . . , uj,k,mn. Then
Tj,k(λ) is invertible at and near infinity. Let

Ăj,k(λ, x) = λ−1T−1
j,k A(zj,k, x)Tj,k = λ−1 diag(µj,k,1, . . . , µj,k,mn) + λ−1Xj,k(λ, x)

where, according to Lemma 5, Xj,k(λ, x) is bounded as λ tends to infinity. Further-
more, Xj,k(λ, x) tends to zero as x tends to infinity. Hence, given a δ > 0, there is
an x0(δ) and a number r(δ) such that ‖Xj,k(λ, x)‖ < δ whenever |x−x0(δ)| ≤ r(δ).
The matrix Ăj,k satisfies now the assumptions of Lemma 6 with ρ = λ−1/h,
Ω = {x : |x − x0(δ)| < r(δ)}, and S = {ρ : 0 < |ρ| < ρ0} for some suitable
constant ρ0. The matrix Γ is the upper left ph−1 × ph−1 block of Mh and hence
diagonal. The matrix ∆(x) is the upper left ph−1 × ph−1 block of Xj,k(∞, x).
Hence Lemma 6 guarantees the existence of ph−1 linearly independent solutions for
λy′ = Ăj,ky whose asymptotic behavior is given by(

exp(Γ(x− x0))(1ph−1 +Υ(x))
0(mn−ph−1)×ph−1

)
exp(λ, x).(2)

Moreover, given any ε > 0 there is a δ > 0 such that ‖Υ(x)‖ < ε for all x ∈ {x :
|x − x0(δ)| < r(δ)}. Since the first mj entries in the diagonal of Γ are zero we
obtain that the asymptotic behavior of the first mj columns of matrix (2) is given
by

Ej,k(x) =

 1mj +Υ1,1(x))
exp(Γ2,2(x− x0))Υ2,1(x)

0(mn−ph−1)×mj

 exp(λ, x)
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where Υ1,1 and Υ2,1 are the upper left mj ×mj block and the lower left (ph−1 −
mj)×mj block of Υ, respectively, and where Γ2,2 is the lower right (ph−1 −mj)×
(ph−1 −mj) block of Γ.

We have now arrived at the following result: the mj columns of Yj whose index
is equal to k modulo kj have asymptotic behavior whose leading order is given by
the first m rows of Tj,kEj,k(x)C where C is an appropriate constant and invertible
mj × mj matrix. By choosing the eigenvectors uj,k,1, . . . , uj,k,mj (which are all
associated with the eigenvalue µj,k,1 = λ) appropriately we may assume that C = 1.
Hence, up to terms of a negligible size, the linearly independent eigenvectors of Q0

are the columns of Y exp(−λx) = SZ when λ and x are large. This implies that Y
is invertible.

Similarly, considering the differential expression L∞ defined by

(L∞y)(x) = Q0y
(n)(x) +Q1(∞)y(n−1)(x) + · · ·+Qn(∞)y(x)

we obtain the invertible matrices

S∞(λ) = (S∞,1(λ), . . . , S∞,ν(λ))

and
Y∞(λ, x) = (Y∞,1(λ, x), . . . , Y∞,ν(λ, x)) = S∞(λ)Z(λ) exp(λx)

where Z is as before. The mj columns of Y∞,j whose index is equal to k modulo kj

are those solutions of L∞y = zj,ky whose asymptotic behavior is given by exp(λx).
Note that S∞ is x-independent, since the matrices A(zj,k,∞) are diagonalizable.
Furthermore, since L∞(v exp(λx)) = (B(λ)v) exp(λx), the columns of S∞Z are
eigenvectors of B(λ), which, to leading order as λ tends to infinity, are eigenvectors
of Q0.

Let d ∈ C[λ] be such that dS(·, x)S∞(·)−1 becomes a polynomial (at least d(λ) =
det(S∞(λ)) will do). Then we may define matrices Uj ∈ C(x)m×m by the equation

g∑
j=0

λg−jUj(x) = d(λ)S(λ, x)S∞(λ)−1

and a differential expression

U =
g∑

j=0

Uj(x)Dg−j .

Then, obviously,

U(S∞(λ)Z exp(λx)) = d(λ)S(λ, x)Z exp(λx) = d(λ)Y (λ, x).

Since Y Y −1
∞ is close to the identity when λ and x are sufficiently large we obtain

that U0 is invertible and hence that Conditions 4 and 5 of Lemma 1 are satisfied.
Applying Lemma 1 gives now the existence of a nonempty set F of polynomials

such that the differential expression P defined by PU = UDf(L∞) commutes
with L when f ∈ F . Assume that P and L commute trivially. Then, by the first
statement of Lemma 7, Q0 is a multiple of the identity and P and L are polynomials
of a unique first order differential expression G = D + G1 where G1 ∈ C(x)m×m

is bounded at infinity and where G1(∞) is a multiple of the identity. Let y be
a solution of Gy = gy where g ∈ C and let ϕ be the polynomial such that L =
ϕ(G). Then y satisfies also Ly = ϕ(g)y and hence every solution of Gy = gy is
meromorphic. By applying what we just proved to the expression G rather than
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L we know that we also have a differential expression Ũ and a nonempty set F̃

of polynomials such that, when f ∈ F̃ , the differential expression P defined by
PU = UCf(D + G1(∞)) commutes with G and hence with L for all matrices
C ∈ C

m×m. The second statement of Lemma 7 shows that P is not a polynomial
of G, if C is not a multiple of the identity. Hence, in this case, (P,L) is a nontrivially
commuting pair. �

3. The simply periodic case

If f is an ω-periodic function we will use f∗ to denote the one-valued function
given by f∗(t) = f( ω

2πi log(t)). Conversely, if a function f∗ is given f(x) will refer to
f∗(exp(2πix/ω)). We say that a periodic function f is bounded at the ends of the
period strip if f∗ is bounded at zero and infinity. A meromorphic periodic function
which is bounded at the ends of the period strip can not be doubly periodic unless
it is a constant. The function f is a meromorphic periodic function bounded at the
ends of the period strips if and only if f∗ is a rational function bounded at zero and
infinity. For more information on periodic functions see, e.g., Markushevich [18],
Chapter III.4.

The field of meromorphic functions with period ω will be denoted by Pω.

Theorem 2. Let L be the differential expression given by

Ly = Q0y
(n) +Q1y

(n−1) + · · ·+Qny.

Suppose that the following conditions are satisfied:

1. Q0, . . . , Qn ∈ P
m×m
ω are bounded at the ends of the period strip.

2. Q0 is constant and invertible.
3. The matrix

B(λ) = λnQ0 + λn−1Q∗
1(∞) + · · ·+Q∗

n(∞)

is diagonalizable (as an element of A
m×m).

4. There are linearly independent eigenvectors v1, . . . , vm ∈ A
m of B such that

limλ→∞ vj(λ), j = 1, . . . ,m, exist and are linearly independent eigenvectors
of Q0. In particular Q0 is diagonalizable.

If mn > 1 and if, for all z ∈ C, all solutions of Ly = zy are meromorphic, then
there exists a differential expression P with coefficients in P

m×m
ω such that (P,L)

is a pair of nontrivially commuting differential expressions.

Proof. The proof of this theorem is very close to that of Theorem 1. We record
the few points where more significant deviations exist. For notational simplicity we
will assume that ω = 2π.

Lemma 1 is now used with M = Pω, Q∞,j = Q∗
j (∞), and τ(x) = eix. As

before we have to construct the expression U : The role of Halphen’s theorem (or,
more precisely, Theorem 2.4 of [11]) is now played by Theorem 1 in [25] (quoted in
Appendix A), which is a variant Floquet’s theorem. We have therefore the existence
of mj linearly independent functions

ψj,k,	(x) = R∗
j,k,	(e

ix) exp(λx), � = 1, . . . ,mj
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where the components of R∗
j,k,	 are rational functions. The substitution

y(x) =
exp(λx)
q(eix)

s∑
j=0

αjeix(s−j)

turns the equation y′ = A(zj,k, ·)y into a system of linear algebraic equation with
mj linearly independent solutions. This way one shows as before that

ψj,k,	(x) =
exp(λx)
q(eix)

(esix1mn, . . . , eix1mn,1mn)
kj−1∑
r=0

β̃	,j,r(λ)zr
j,k

where the β̃	,j,r are elements of C[λ](s+1)mn. Doing this for k = 1, . . . , kj and
for j = 1, . . . , ν and selecting the first m components of all the resulting vectors
provides once more an m × m matrices S, Z, and Y = SZ exp(λx). Again the
entries of S are polynomials with respect to λ but now they are rational functions
with respect to eix. By considering the constant coefficient expression

L∞ = Q0
dn

dxn
+ · · ·+Q∗

n(∞)

one obtains also matrices S∞ and Y∞ = S∞Z exp(λx) and U is defined as before
through a multiple of S(λ, x)S∞(λ)−1. The investigation of the asymptotic behavior
of Y and Y∞ as λ tends to infinity, which leads to proving the invertibility of U0, is
unchanged as it did not use the special structure of the Qj , except that one should
choose exp(ix0) large rather than x0 large.

Finally, the argument that it is possible to pick, among all expressions commuting
with L, an expression which does not commute trivially remains unchanged. �

4. Application to the AKNS system

Let L = Jd/dx+Q(x), where

J =
(
i 0
0 −i

)
and Q(x) =

(
0 −iq(x)

ip(x) 0

)
.

Note that J2 = −12 and that JQ+QJ = 0.
The AKNS hierarchy is then a sequence of equations of the form

Qt = [Pn+1, L], n = 0, 1, 2, . . .

where Pn+1 is a differential expression of order n + 1 such that [Pn+1, L] is a
multiplication operator. For this to happen Pn+1 has to be very special. It can be
recursively computed in the following way: Let

Pn+1 =
n+1∑
	=0

(kn+1−	(x) + vn+1−	(x)J +Wn+1−	(x))L	,

where the kj and vj are scalar-valued and where the Wj are 2 × 2 matrices with
vanishing diagonal elements. Requiring that [Pn+1, L] is a multiplication operator
yields k′j = 0 for j = 0, . . . , n+ 1 and the recursion relations

W0 = 0

v′j12 = WjQ+QWj , Wj+1 =
1
2
J(W ′

j − 2vjQj), j = 0, . . . , n+ 1.
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This gives finally
[Pn+1, L] = 2vn+1JQ− JW ′

n+1.

The first few AKNS equations are

Qt = −c0Q
′ + 2c1JQ,

Qt = −c0
2
J(Q′′ − 2Q3)− c1Q

′ + 2c2JQ,

Qt =
c0
4
(Q′′′ − 6Q2Q′)− c1J(Q′′ − 2Q3)− c2Q

′ + 2c3JQ.

Here we are interested in the stationary solutions of AKNS equations. Therefore
we make the following definition.

Definition 2. Suppose p and q are meromorphic functions. Then Q is called an
algebro-geometric AKNS potential (or simply algebro-geometric) if Q is a stationary
solution of some AKNS equation.

The goal of this section is to prove the following theorem.

Theorem 3. Let Q =
(

0 −iq
ip 0

)
and assume either that p, q are rational functions

bounded at infinity or else that p, q are meromorphic ω-periodic functions bounded
at the ends of the period strip. Then Q is an algebro-geometric AKNS potential if
and only if for all z ∈ C all solutions of the equation Jy′+Qy = zy are meromorphic
with respect to the independent variable.

Before we begin the proof of this result let us recall the following two results
which were proven by Gesztesy and myself in [9]. The first one (Theorem 4 below)
asks that p and q are meromorphic and provides one direction in the proof of
Theorem 3. The second one (Theorem 5 below) is the analogue of Theorem 3 for
the case of elliptic coefficients and is stated here for comparison purposes.

Theorem 4. Let Q =
(

0 −iq
ip 0

)
where p, q are meromorphic functions. If Q is an

algebro-geometric AKNS potential then for all z ∈ C all solutions of the equation
Jy′ +Qy = zy are meromorphic with respect to the independent variable.

Theorem 5. Let Q =
(

0 −iq
ip 0

)
with p, q elliptic functions with a common period

lattice. Then Q is an elliptic algebro-geometric AKNS potential if and only if for
all z ∈ C all solutions of the equation Jy′ +Qy = zy are meromorphic with respect
to the independent variable.

Now we are ready to prove Theorem 3:

Proof of Theorem 3. We only need to prove that Q is algebro-geometric if all
solutions of Ly = zy are meromorphic since the converse follows from Theorem 4.
Suppose Q is periodic. The desired conclusion follows from Theorem 2 once we have
checked its hypotheses. But Conditions 1 and 2 are satisfied by our assumptions
while Conditions 3 and 4 hold automatically when the eigenvalues of Q0 (= J) are
distinct. For convenience, however, let us mention that the eigenvalues of

B(λ) =
(

iλ −iq∗(∞)
ip∗(∞) −iλ

)
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are ±√q∗(∞)p∗(∞)− λ2 and that these are distinct for all but two values of λ.
The eigenvectors may be chosen as

v1 =
1
2λ

(
iλ+ z1(λ)
ip∗(∞)

)
and v2 =

1
2λ

(
iq∗(∞)

iλ+ z1(λ)

)
where z1(λ) is the branch of

√
q∗(∞)p∗(∞)− λ2 which is asymptotically equal to

iλ.
The proof for the rational case is virtually the same. �

The solutions of Jy′ + Qy = zy are analytic at every point which is neither a
pole of p nor of q. Since it is a matter of routine calculations to check whether
a solution of Jy′ + Qy = zy is meromorphic at a pole of p or q and since there
are only finitely many poles of Q modulo periodicity, Theorem 3 provides an easy
method which allows one to determine whether a rational function Q bounded at
infinity or a meromorphic simply periodic function Q bounded at the ends of the
period strip is a stationary solution of an equation in the AKNS hierarchy.

5. The lemmas

Lemma 1. Let M be a field of meromorphic functions on C and consider the
differential expression L =

∑n
j=0 QjD

n−j where Q0 ∈ C
m×m is invertible and

Qj ∈ M
m×m for j = 1, . . . , n. Suppose that there exist differential expressions

L∞ =
n∑

j=0

Q∞,j Dn−j and U =
g∑

j=0

Uj(τ(x))Dg−j

with the following properties:
1. Q∞,0, . . . , Q∞,n are in C

m×m and Q∞,0 = Q0.
2. τ is a meromorphic function on C.
3. There is a set Λ ⊂ C with at least g + n + 1 distinct elements such that, for

each λ ∈ Λ, the matrix B(λ) =
∑n

j=0 λ
n−jQ∞,j has m linearly independent

eigenvectors v1(λ), . . . , vm(λ) ∈ C
m respectively associated with the (possibly

degenerate) eigenvalues z1(λ), . . . , zm(λ).
4. U0, . . . , Ug ∈ M

m×m and U0 is invertible.
5. U(vj(λ) exp(λx)) is a solution of Ly = zj(λ)y for j = 1, . . . ,m.

Finally, define the algebra

C = {C ∈ C
m×m : [Q∞,0, C] = · · · = [Q∞,n, C] = 0}.

Then there exists a nonempty set F ⊂ C[u] with the following property: for each
polynomial f ∈ F and each polynomial h ∈ C[u] there exists a differential expression
P with coefficients in M

m×m such that [P,L] = 0. In fact, P is given by PU =
Uh(D)f(L∞).

Proof. Consider the differential expression V = LU − UL∞ and fix λ ∈ Λ. Since

L∞(vj(λ) exp(λx)) = zjvj(λ) exp(λx)

we obtain
V (vj(λ) exp(λx)) = (L− zj)U(vj(λ) exp(λx)) = 0.
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V is a differential expression of order g + n at most, i.e., V =
∑g+n

k=0 Vk(x)Dk for
suitable matrices Vk. Hence

0 = exp(−λx)V (vj(λ) exp(λx)) =

(
g+n∑
k=0

Vk(x)λk

)
vj(λ).

For fixed x and λ we now have an m ×m matrix Ṽ (λ, x) =
∑g+n

k=0 Vk(x)λk whose
kernel contains all eigenvectors of B(λ) and is therefore m-dimensional. This means
that Ṽ (λ, x) = 0. Since this is the case for at least g + n + 1 different values of λ
we conclude that V0 = · · · = Vg+n = 0 and hence that

LU = UL∞.

Since U0 is invertible Uy = 0 has mg linearly independent solutions. Let {y1, . . . ,
ymg} be a basis of ker(U). With each element y	 of this basis we may associate
a differential expression H	 with coefficients in C

m×m in the following way. Since
y	 ∈ ker(U), so is L∞y	 and, in fact, Lj

∞y	 for every j ∈ N. Since ker(U) is finite-
dimensional there exists a k ∈ N and complex numbers α0, . . . , αk such that α0 �= 0
and

k∑
j=0

αk−jL
j
∞y	 = 0.

Then define H	 =
∑k

j=0 αk−jL
j
∞. Since the expressions H	 commute among them-

selves we obtain that

ker(U) ⊂ ker

(
mg∏
	=1

H	

)
.

Hence the set

F = {f ∈ C[u] : ker(U) ⊂ ker(f(L∞))}
is not empty.

Note that [L∞, D] = 0 and [L∞, C] = 0 if C ∈ C. For any h ∈ C[u] and any f ∈ F
let P∞ = h(D)f(L∞). Then [P∞, L∞] = 0 and ker(U) ⊂ ker(P∞) ⊂ ker(UP∞).
Corollary 1 in Appendix B shows that there is an expression P such that PU =
UP∞. Hence [P,L]U = PLU −LPU = UP∞L∞ −UL∞P∞ = U [P∞, L∞] = 0 and
thus, recalling that U0 is invertible, [P,L] = 0. �

Lemma 2. Let

B(λ) =
n∑

j=0

λn−jBj

where B0, . . . , Bn ∈ C
m×m and where B0 is invertible. Suppose the characteristic

polynomial of B has the prime factorization
∏ν

j=1 fj(λ, z)mj . If weight nr + s is
assigned to the monomial λszr, then the weight of the heaviest monomial in fj is a
multiple of n, say nkj and the coefficients of zkj and λnkj in fj are nonzero.

Let Λ be the set of all complex numbers λ satisfying the following two conditions:

1. (f1 . . . fν)(λ, ·) has k1 + · · ·+ kν distinct roots.
2. If zj,k is a root of fj(λ, ·), then λ is a simple root of (f1 . . . fν)(·, zj,k).
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Then the complement of Λ is finite.
Moreover, there is an integer h and there are complex numbers ρj,k,r such that,

for sufficiently large λ, the roots of fj(λ, ·), j = 1, . . . , ν, are given by

zj,k = λn

(
ρj,k,0 +

∞∑
r=1

ρj,k,rλ
−r/h

)
, k = 1, . . . , kj

where the numbers ρj,k,0 are different from zero.

Proof. First we agree, as usual, that the weight of a polynomial is equal to the
weight of its heaviest monomial. It is then easy to see that the characteristic
polynomial f(λ, z) = det(B(λ) − z) has weight mn. Suppose f = g1g2 and let
f =

∑mn
j=0 αjwj where wj is a polynomial all of whose terms have weight j. Doing

the same with g1 and g2 one can show that any factor of f has a weight which is
a multiple of n, say kn, and that the coefficients of zk and λkn in that factor are
nonzero. In particular then, this is true for the prime factors.

Therefore fj(λ, ·) has kj distinct roots for all but finitely many values of λ.
Moreover, by Bezout’s theorem, the curves defined by fj and f	 intersect only in
finitely many points if j is different from �. Hence the first condition is satisfied for
all but finitely many values of λ.

The discriminant of (f1 . . . fν)(·, z) is a polynomial in z. Hence there are at most
finitely many values of z for which (f1 . . . fν)(·, z) has multiple roots. For each
of these exceptional z-values there are only finitely many of the multiple roots.
Hence there are only finitely many values of λ such that there is a z for which
(f1 . . . fν)(·, z) has a multiple root.

The last statement follows from standard considerations of the behavior of alge-
braic functions near a point. In particular, the power n on λ is determined by an
inspection of the Newton polygon associated with fj . �

Lemma 3. Let

B(λ) =
n∑

j=0

λn−jBj

where B0, . . . , Bn ∈ C
m×m and where B0 is invertible. Define

A(z) =


0 1m 0 · · · 0
...

...
0 · · · 1m

B−1
0 (z −Bn) −B−1

0 Bn−1 −B−1
0 Bn−2 · · · −B−1

0 B1

 ,

a matrix whose n2 entries are m×m blocks.
The vector v ∈ C

m is an eigenvector of B(λ) associated with the eigenvalue z if
and only if

u =


v
λv
...

λn−1v


is an eigenvector of A(z) associated with the eigenvalue λ. In particular, z has
geometric multiplicity k as an eigenvalue of B(λ) if and only if λ has geometric
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multiplicity k as an eigenvalue of A(z). Also,

det(A(z)− λ) = (−1)nm det(B−1
0 ) det(B(λ)− z).(3)

If B is diagonalizable (as an element of A
m×m), then A(z) is diagonalizable for all

but finitely many values of z.
Moreover, if zj,k is a zero of fj(λ, ·), then there are complex numbers σj,k,	,r and

an integer h such that the eigenvalues µj,k,1, . . . , µj,k,mn of A(zj,k) are given by

µj,k,	 = λ

(
σj,k,	,0 +

∞∑
r=1

σj,k,	,rλ
−r/h

)
, � = 1, . . . ,mn

where the numbers σj,k,	,0 are different from zero.

Proof. That B(λ)v = zv if and only if A(z)u = λu follows immediately from direct
computation. The validity of (3) is proven by blockwise Gaussian elimination.

Assume now that B is diagonalizable and let T ∈ A
m×m be an invertible matrix

whose columns are eigenvectors of B. The determinant of T is an algebraic function
in λ which is zero or infinity only for finitely many distinct values of λ and B(λ)
is diagonalizable for all λ but these. From Lemma 2 we know also that there are
only finitely many values of λ for which

∏ν
j=1 fj(·, z) has repeated zeros. To all

these exceptional values of λ correspond finitely many eigenvalues z of B(λ). We
assume now that z is a complex number distinct from all those values. If µ is now
an eigenvalue of A(z) then it is a zero of fj(·, z) for some j but not a zero of f	(·, z),
if � �= j. Hence its algebraic multiplicity is mj . Additionally, z is an eigenvalue
of geometric multiplicity mj of B(µ), since B(µ) is diagonalizable. The previous
argument shows that µ has geometric multiplicity mj as eigenvalue of A(z). Since
this is true for any eigenvalue of A(z), the matrix A(z) must be diagonalizable.
The last statement follows again from standard considerations of the behavior of
algebraic functions near a point, using that zj,k is an algebraic function of λ (whose
behavior near infinity is of the form given in Lemma 2) and that µj,k,r are algebraic
functions of zj,k. �

Lemma 4. Let R be an integral domain, Q its fraction field, g an element of R[z],
and K a field extension of Q in which g splits into linear factors. Suppose A is a
matrix in R[z]j×k. Then there exist k vectors v1, . . . , vk ∈ R[z]k with the following
property: if z0 ∈ K is any of the roots of g and if the dimension of ker(A(z0)) is µ,
then v1(z0), . . . , vµ(z0) are linearly independent solutions of A(z0)x = 0.

Proof. Suppose g has the prime factorization gm1
1 . . . gmν

ν . If g(z0) = 0 then
precisely one of the prime factors of g, say g	, satisfies g	(z0) = 0. Note that
F	 = Q[z]/〈g	〉 is a field and that we may view A as an element of F j×k

	 . Since F	

is isomorphic to a subfield of K any Kk-solution of A(z0)x = 0 is a scalar multiple
of a representative of an F k

	 -solution of Ax = 0 (evaluated at z0) and vice versa.
Therefore there is a basis {x	,1(z0), . . . , x	,µ�

(z0)} of ker(A(z0)) where the x	,r are
in Q[z]k. By choosing appropriate multiples in R we may even assume that the x	,r

are in R[z]k. Notice that if z′0 is another root of g	 then {x	,1(z′0), . . . , x	,µ�
(z′0)} is

a basis of ker(A(z′0)). We define also x	,r = 0 for r = µ	 + 1, . . . , k.
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For r = 1, . . . , k we now let

vr =
ν∑

	=1

 ν∏
	′=1
	′ �=	

g	′

x	,r.

This proves the lemma once we recall that g	(z0) = 0 = g	′(z0) implies that � =
�′. �

Lemma 5. Suppose A ∈ C
mn×mn and T ∈ A

mn×mn have the following properties:
1. The first (n− 1)m rows of A are zero.
2. T is invertible at and near infinity and its columns T1:mn,j have the form

T1:mn,j =


vj

µjvj

...
µn−1

j vj

 ,

where the µj are complex-valued algebraic functions of λ with the asymptotic
behavior µj(λ) = λ(σj + o(1)) as λ tends to infinity and where the vj are
C

m-valued algebraic functions of λ which are holomorphic at infinity.
Then (T−1AT )(λ) is bounded as λ tends to infinity.

Proof. The first (n− 1)m rows of AT are zero. Consequently we need to consider
only the last m columns of T−1. Let Bn, . . . , B1 denote the m×m matrices which
occupy the last m rows of A (with decreasing index as one moves from left to right)
and let τ∗	 denote the row-vector in the last m columns of row � in T−1 (note that
τ	 ∈ A

m). Then

(T−1AT )	,k =
n∑

j=1

µn−j
k τ∗	 Bjvk.

We will show below that τ	 has the asymptotic behavior τ	 = λ1−n(τ0,	+o(1)) with
τ0,	 ∈ C

m as λ tends to infinity. Hence

(T−1AT )	,k =
n∑

j=1

λ1−j(σn−j
k τ∗0,	Bjvk(∞) + o(1)) = σn−1

k τ∗0,	B1vk(∞) + o(1)

as λ tends to infinity and this will prove the claim.
The minor of T which arises when one deletes row r and columns s of T will be

denoted by Ms,r. We have then that

(T−1)r,s =
(−1)r+s

det(T )
det(Ms,r).

The k-th entry in row mα + β, where β ∈ {1, . . . ,m} and α ∈ {0, . . . , n − 1},
equals λα times a function which is bounded as λ tends to infinity. Hence det(T ) =
λN (t0 + o(1)) for some nonzero complex number t0 and for N = mn(n − 1)/2.
By the same argument we have that det(Mmα+β,r) = λN ′

(mmα+β,r + o(1)) where
N ′ = N − α and mmα+β,r ∈ C. Hence

(T−1)r,s = (−1)r+sλ−αmmα+β,r + o(1)
t0

.
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For the first part of the proof we need only the case α = n− 1. �

Lemma 6. Let Ω ⊂ C be an open simply connected set containing x0 and S ⊂ C

a sector centered at zero. Suppose that A : S×Ω → C
n×n is holomorphic on S×Ω

and admits a uniform asymptotic expansion

A(ρ, x) ∼
∞∑

r=0

Ar(x)ρr

as ρ tends to zero. Suppose that, for r = 0, . . . , h− 1, the matrices Ar are constant
and have the block-diagonal form

Ar =
(
σr1pr 0
0 Σr

)
where p0 ≥ p1 ≥ · · · ≥ ph−1 = p and where σr is not an eigenvalue of Σr. Denote
the upper left p × p block of Ah by Ah;1,1 and assume that Ah;1,1(x) = Γ + ∆(x)
where Γ ∈ C

p×p and ∆ : Ω → C
p×p. Let α =

∑h−1
r=0 σrρ

r−h.
Then there exists a subsector S′ of S and an n×p matrix Y (ρ, x) whose columns

are linearly independent solutions of ρhy′ = Ay and for which

R(ρ, x) = Y (ρ, x) exp(−αx)

has in S′ an asymptotic expansion of the form

R(ρ, x) ∼
∞∑

j=0

Rj(x)ρj

as ρ tends to zero. Moreover, for every positive ε there exists a positive δ such that
‖∆(x)‖ < δ for all x ∈ Ω implies

R0(x) =
(
exp(Γ(x− x0))(1p +Υ(x))

0(n−p)×p

)
with ‖Υ(x)‖ < ε for all x ∈ Ω.

Proof. The key to the proof of this lemma is Theorem 26.2 in Wasow [23] which we
have (essentially) quoted in Appendix C and which implies immediately Corollary 2.
A repeated application of this corollary shows that there are p linearly independent
solutions yj of ρhy′ = Ay of the form

yj = P0Q0 . . . Ph−1Qh−1wj exp(αx), j = 1, . . . , p

where the Pk and Qk are matrices and where the wj are vectors whose properties
are described presently. Let p−1 = n. Then Pk is an pk−1 × pk−1 matrix which
is asymptotically equal to 1pk−1 . The matrix Qk is a constant pk−1 × pk matrix
whose upper block is equal to 1pk

and whose lower block is a zero matrix. Finally,
the wj are linearly independent solutions of the p× p-system w′ = B(ρ, x)w where

B(ρ, x) = ρ−hQ∗
(
A(ρ, x)−

h−1∑
r=0

Ar(x)ρr

)
Q.

Note that B(ρ, x) has the asymptotic behavior

B(ρ, x) ∼
∞∑

r=0

Br(x)ρr
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as ρ tends to zero where B0(x) = Ah;1,1(x).
The equation w′ = B(ρ, x)w has a fundamental matrix W whose asymptotic

behavior is given by

W (ρ, x) ∼
∞∑

r=0

Wr(x)ρr

where

W0(x) = exp
(∫ x

x0

Ah;1,1(t)dt
)

= exp
(
Γ(x− x0) +

∫ x

x0

∆(t)dt
)

is an invertible matrix. Since ‖ exp(T1 + T2) − exp(T1)‖ ≤ ‖T2‖ exp(‖T1‖ + ‖T2‖)
we have that

W0(x) = exp(Γ(x− x0))(1p +Υ(x))
where the norm of Υ becomes small if the norm of ∆ becomes small. The fact that
the matrices Pk are asymptotically equal to identity matrices and that the upper
blocks of the Qk are equal to identity matrices gives now the desired conclusion. �

Lemma 7. Suppose that M, L, L∞, U , C, and F are as in Lemma 1. Given an
expression P∞ let P be defined by PU = UP∞. Then the following two statements
hold:

1. Let P∞ = Df(L∞), where f is a monic polynomial in F . If (P,L) is a trivially
commuting pair, then Q0 and Q∞,1 are multiples of the identity. Moreover,
there exists a first order differential expression G = D + Q−1

0 (Q1 − η1)/n
(where η1 is a suitable constant) such that both P and L are polynomials of
G.

2. Let P∞ = Cf(L∞), where C ∈ C and where f ∈ F is monic. If both P and L
are polynomials of an expression D +G1 then C is a multiple of the identity
matrix.

Proof. Assume that

L =
n∑

j=0

QjD
n−j =

n′∑
j=0

ηjG
n′−j and P =

r∑
j=0

PjD
r−j =

r′∑
j=0

γjG
r′−j ,

where G is a differential expression of order k and the coefficients ηj and γj are
complex numbers.

To prove the first statement assume also that P∞ = Df(L∞) where f ∈ F has
degree s. Since the order of L is equal to n = kn′ and the order of P is equal to
r = sn+1 = kr′ we have necessarily k = 1, n′ = n, and r′ = r = sn+1. Therefore
we assume now that G = G0D +G1.

Note that LU = UL∞, PU = UP∞, and Q∞,0 = Q0 imply that

U0Q0 = Q0U0, U0P∞,0 = P0U0,(4)

U1Q0 + U0Q∞,1 = Q0U1 +Q1U0 + nQ0U
′
0,(5)

and that

U1P0 + U0P∞,1 = P0U1 + P1U0 + rP0U
′
0,(6)

where P∞,j is the coefficient of Dr−j in P∞. Since P∞,0 = Qs
0 we find firstly

that P0 = U0Q
s
0U

−1
0 = Qs

0. Next, since Q0 = η0G
n
0 and P0 = γ0G

sn+1
0 , we

have that G0 = ηs
0γ

−1
0 1. Hence G0, Q0, and P0 are all multiples of the identity



26 Rudi Weikard

matrix. Therefore we can (and will) assume from now that G0 = 1 by changing
the coefficients ηj and γj appropriately. In particular, Q0 = η01.

We find next that

Q1 = (nη0G1 + η11), P1 = (rγ0G1 + γ11),

and that
P∞,1 = (sQ∞,1 + κ)Qs−1

0

where κ is the coefficient of us−1 in f(u) if n = 1 and κ = 0 if n > 1. Inserting
these expressions into (5) and (6) and eliminating the terms with U ′

0 gives

Q∞,1 = [nκ+ η−s
0 (rη1γ0 − nγ1η0)]1.

We also obtain that G1 = Q−1
0 (Q1 − η1)/n. This proves the first statement of the

lemma.
To prove the second statement, let G = D + G1. This implies, as before, that

Q0 = η01 and P∞,0 = P0 = γ01. On the other hand, since P∞ = Cf(L∞), we have
that P∞,0 = Cηs

0. Thus C is a multiple of the identity. �

Appendix A. The theorems of Halphen and Floquet

The proofs of Theorems 1 and 2 rely on results of Halphen [12] and Floquet [6],
[7], or rather on generalizations to systems of their results. These generalizations
were proven in [11] and [25], respectively, and are repeated here for the convenience
of the reader.

Theorem 6. Let A ∈ C(x)n×n with entries bounded at infinity and suppose that
the first-order system y′ = Ay has a meromorphic fundamental system of solutions.
Then y′ = Ay has a fundamental matrix of the type

Y (x) = R(x) exp(diag(λ1x, . . . , λnx)),

where λ1, . . . , λn are the eigenvalues of A(∞) and R ∈ C(x)n×n.

Theorem 7. Suppose that A is an n × n-matrix whose entries are meromorphic,
ω-periodic functions which are bounded at the ends of the period strip. If the first-
order system y′ = Ay has only meromorphic solutions, then there exists a constant
n× n-matrix J in Jordan normal form and an n× n-matrix R∗ whose entries are
rational functions over C such that the following statements hold:

1. The eigenvalues of A∗(0) and J are the same modulo iZ if multiplicities are
properly taken into account. More precisely, suppose that there are nonneg-
ative integers ν1, . . . , νr−1 such that λ, λ + iν1, . . . , λ + iνr−1 are all the
eigenvalues of A∗(0) which are equal to λ modulo iZ. Then λ is an eigenvalue
of J with algebraic multiplicity r.

2. The equation y′ = Ay has a fundamental matrix Y given by

Y (x) = R∗(e2πix/ω) exp(Jx).

In particular every entry of Y has the form f(e2πix/ω, x)eλx, where λ+ iν is
an eigenvalue of A∗(0) for some nonnegative integer ν and where f is rational
function in its first argument and a polynomial in its second argument.
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Appendix B. Higher order systems of differential equations

In this section we recall two basic facts about systems of linear differential equa-
tions of order higher than one.

Consider the system

Ty = T0(x)y(n) + T1(x)y(n−1) + · · ·+ Tn(x)y = 0(7)

where the Tj are m ×m matrices whose entries are continuous functions on some
real interval or complex domain Ω and where T0(x) is invertible for every x ∈ Ω.
Using the analogue of the standard transformation which turns a higher order scalar
equation into a first order system, one finds that the system (7) is equivalent to the
first order system u′ = Au where A is the mn×mn matrix

0 1m 0 · · · 0
...

...
0 · · · 1m

−T−1
0 Tn −T−1

0 Tn−1 −T−1
0 Tn−2 · · · −T−1

0 T1


in which all entries represent m×m blocks. From this it follows immediately that
a fundamental system of solutions of Ty = 0 has mn elements.

The other property we need is about the existence of a factorization of an n-th
order expression into n first order factors.

Theorem 8. Let T be the differential expression defined in (7). Suppose that F1,
. . . , Fn−1 are m × m matrices whose entries are continuous functions on Ω and
which are invertible for every x ∈ Ω. Define Fn = T0F

−1
1 . . . F−1

n−1. Then there
exist m×m matrices Φ1, . . . , Φn such that

T = (FnD − Φn) . . . (F1D − Φ1).

Proof. Denote the elements of a fundamental system of solutions by y1, . . . , ymn

and define, for j = 1, . . . , n, the m×m matrices

Yj = (ym(j−1)+1, . . . , ymj).

Next define W1 = Y1 and Φ1 = F1Y
′
1Y

−1
1 and suppose we have determined matrices

Φ1, . . . , Φj−1. We will show below that

Wj = (Fj−1D − Φj−1) . . . (F1D − Φ1)Yj

is invertible so that we can define

Φj = FjW
′
jW

−1
j .

Now let

S = (FnD − Φn) . . . (F1D − Φ1).

Then S(Yj) = (FnD − Φn) . . . (FjD − Φj)Wj = 0, i.e., S and T have the same
solutions. S and T are therefore equivalent to the same first order system. Since
they have the same leading coefficient we finally obtain S = T .

We complete the proof by showing that the matrices Wj are invertible, i.e., that
their columns Wj,1, . . . , Wj,m are linearly independent. This is true for j = 1 since
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the columns of W1 are the solutions y1, . . . , ym which are linearly independent.
Assume that W1, . . . , Wj−1 are invertible and that

0 =
m∑

k=1

αkWj,k.

Then

0 = (Fj−1D − Φj−1) . . . (F1D − Φ1)
m∑

k=1

αkym(j−1)+k.

Since the space of solutions of (Fj−1D − Φj−1) . . . (F1D − Φ1)y = 0 is spanned by
y1, . . . , ym(j−1) we obtain that

m∑
k=1

αkym(j−1)+k =
m(j−1)∑

	=1

β	y	.

But since y1, . . . , ymj are linearly independent it follows that all α1 = · · · = αn = 0
(and β1 = · · · = βm(j−1) = 0). Hence the columns of Wj are linearly independent
and Wj is invertible. �

Corollary 1. Let S and T be differential expressions with matrix coefficients and
invertible leading coefficients. If kerS ⊂ kerT then there exists a differential ex-
pression R such that RS = T .

Appendix C. Wasow’s theorem

For the reader’s convenience we provide here a slightly adapted version of Theo-
rem 26.2 in Wasow [23]. The adaptation makes use of formulas (25.19) and (25.20)
in [23].

Theorem 9. Let Ω ⊂ C be an open simply connected set containing the point
x0 and let S be a sector {ρ : 0 < |ρ| < ρ0, α0 < arg(ρ) < β0}. Suppose that
A : S × Ω → C

n×n is holomorphic and admits a uniform asymptotic expansion

A(ρ, x) ∼
∞∑

r=0

Ar(x)ρr

on S×Ω. Furthermore suppose that A0 is diagonal, i.e., A0 = diag(λ1, . . . , λn) and
that the sets {λ1(x0), . . . , λp(x0)} and {λp+1(x0), . . . , λn(x0)} are disjoint. Then
there exists a subsector S∗ of S and a subregion Ω∗ of Ω and C

n×n-valued functions
P and B with the following properties:

1. P and B are holomorphic in S∗ × Ω∗.
2. P − 1 and B have the block forms

P (ρ, x)− 1 =
(

0 P1,2(ρ, x)
P2,1(ρ, x) 0

)
and

B(ρ, x) =
(
B1,1(ρ, x) 0

0 B2,2(ρ, x)

)
,

and the blocks have asymptotic expansion Pj,k(ρ, x) ∼ ∑∞
r=1 Pr;j,k(x)ρr and

Bj,j(ρ, x) ∼
∑∞

r=0 Br;j,j(x)ρr, as ρ tends to zero.
3. B0 = A0 and A0P1 − P1A0 = B1 −A1.
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4. the transformation y = Pz takes the differential equation ρhy′ = Ay into
ρhz′ = By.

Corollary 2. If λ1(x) = · · · = λp(x) = σ for all x ∈ Ω and

B̃(ρ, x) =
1
ρ
(B1,1 −B0;1,1(x)) ∼

∞∑
r=1

Br;j,j(x)ρr−1,

then the equation ρhy′ = Ay has p linearly independent solutions of the form y(x) =
PQw(x) exp(σxρ−h), where

Q =
(

1p×p

0(n−p)×p

)
and w is a solution of the p× p system

ρh−1w′ = B̃(ρ, x)w.
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Sci. Paris 91 (1880), 880–882.
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