
New York Journal of Mathematics
New York J� Math� � ������ ��	
����

Green�s Functions for Elliptic and Parabolic

Equations with Random Coe�cients

Joseph G� Conlon and Ali Naddaf

Abstract� This paper is concerned with linear uniformly elliptic and par�
abolic partial di�erential equations in divergence form� It is assumed that
the coe
cients of the equations are random variables� constant in time� The
Green�s functions for the equations are then random variables� Regularity
properties for expectation values of Green�s functions are obtained� In par�
ticular� it is shown that the expectation value is a continuously di�erentiable
function whose derivatives are bounded by the corresponding derivatives of
the heat equation� Similar results are obtained for the related �nite di�erence
equations�

Contents

�� Introduction ���

�� Proof of Theorem ��� ���

�� Proof of Theorem ��� ��	

	� Proof of Theorem ��	
Diagonal Case ���

�� Proof of Theorem ��	
O� Diagonal case ��	

�� Proof of Theorem ��� ���

References ��	

�� Introduction

Let 
��F � �� be a probability space and a � � � R
d�d����� be a bounded mea�

surable function from � to the space of symmetric d� d matrices� We assume that
there are positive constants �� � such that

�Id � a
�� � �Id� � � ��
����

in the sense of quadratic forms� where Id is the identity matrix in d dimensions� We
assume that Rd acts on � by translation operators �x � � � �� x � Rd � which are
measure preserving and satisfy the properties �x�y � �x�y� �� � identity� x� y � Rd �
We assume also that the function from Rd � � to � de�ned by 
x� �� � �x��
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x � Rd � � � �� is measurable� It follows that with probability � the function
a
x� �� � a
�x��� x � Rd � is a Lebesgue measurable function from Rd to d � d
matrices�
Consider now for � � � such that a
x� �� is a measurable function of x � Rd �

the parabolic equation

�u

�t
�

dX
i�j��

�

�xi

�
ai�j
x� ��

�

�xj
u
x� t� ��

�
� x � R

d � t � ��
����

u
x� �� �� � f
x� ��� x � Rd �
It is well known that the solution of this initial value problem can be written as

u
x� t� �� �

Z
Rd

Ga
x� y� t� ��f
y� ��dy �

where Ga
x� y� t� �� is the Green�s function� and Ga is measurable in 
x� y� t� ���
Evidently Ga is a positive function which satis�esZ

Rd

Ga
x� y� t� ��dy � ��
����

It also follows from the work of Aronson ��� 
see also ���� that there is a constant
C
d� ���� depending only on dimension d and the uniform ellipticity constants ���
of 
���� such that

� � Ga
x� y� t� �� � C
d� ����

td��
exp

� �jx� yj�
C
d� ����t

�
�
��	�

In this paper we shall be concerned with the expectation value of Ga over ��
Denoting expectation value on � by

� �
we de�ne the function Ga
x� t�� x �

Rd � t � � by D
Ga
x� �� t� ��

E
� Ga
x� t� �

Using the fact that �x�y � �x�y� x� y � R
d � we see from the uniqueness of solutions

to 
���� that

Ga
x� y� t� �� � Ga
x� y� �� t� �y���

whence the measure preserving property of the operator �y yields the identity�D
Ga
x� y� t� ��

E
� Ga
x � y� t� �

From 
����� 
��	� we have Z
Rd

Ga
x� t�dx � �� t � ��

� � Ga
x� t� � C
d� ����

td��
exp

� �jxj�
C
d� ����t

�
� x � Rd � t � ��
����

In general one cannot say anything about the smoothness properties of the function
Ga
x� y� t� ��� We shall� however� be able to prove here that Ga
x� t� is a C

� function
of 
x� t�� x � Rd � t � ��
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Theorem ���� Ga
x� t� is a C� function of 
x� t�� x � Rd � t � �� There is a

constant C
d� ����� depending only on d� ��� such that�����Ga

�t

x� t�

���� � C
d� ����

td�� � �
exp

� �jxj�
C
d� ����t

�
������Ga

�xi

x� t�

���� � C
d� ����

td�� � ���
exp

� �jxj�
C
d� ����t

�
�

The Aronson inequality 
���� shows us that Ga
x� t� is bounded by the kernel
of the heat equation� Theorem ��� proves that corresponding inequalities hold for
the �rst derivatives of Ga
x� t�� We cannot use our methods to prove existence of
second derivatives of Ga
x� t� in the space variable x� In fact we are inclined to
believe that second space derivatives do not in general exist in a pointwise sense�
As well as the parabolic problem 
���� we also consider the corresponding elliptic

problem�

�
dX

i�j��

�

�xi

�
ai�j
x� ��

�u

�xj

x� ��

�
� f
x� ��� x � R

d �
����

If d � � then the solution of 
���� can be written as

u
x� �� �

Z
Rd

Ga
x� y� ��f
y� ��dy�

where Ga
x� y� �� is the Green�s function and is measurable in 
x� y� ��� It follows
again by Aronson�s work that there is a constant C
d� ����� depending only on
d� ���� such that

� � Ga
x� y� �� � C
d� ����	jx� yjd��� d � ��
����

Again we consider the expectation of the Green�s function� Ga
x�� de�ned byD
Ga
x� y� ��

E
� Ga
x� y��

It follows from 
���� that

� � Ga
x� � C
d� ����	jxjd��� d � ��
Theorem ���� Suppose d � �� Then Ga
x� is a C

� function of x for x 	� �� There
is a constant C
d� ���� depending only on d� ���� such that�����Ga

�xi

x�

���� � C
d� ����

jxjd�� � x 	� ��

We can also derive estimates on the Fourier transforms of Ga
x� t� and Ga
x��

For a function f � Rd � C we de�ne its Fourier transform �f by

�f

� �

Z
Rd

f
x�eix��dx� 
 � Rd �

Evidently from the equation before 
���� we have that j �Ga

� t�j � �
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Theorem ���� The function �Ga

� t� is continuous for 
 � Rd � t � �� and di�eren�

tiable with respect to t� Let � satisfy � � � � �� Then there is a constant C
�� ����
depending only on �� ���� such that

j �Ga

� t�j � C
�� ����

�� � j
j�t�� ������� �Ga

�t


� t�

����� � C
�� ����j
j�
�� � j
j�t���� �

where j
j denotes the Euclidean norm of 
 � Rd �
Remark ���� Note that the dimension d does not enter in the constant C
�� �����
Also� our method of proof breaks down if we take � � ��

In this paper we shall be mostly concerned with a discrete version of the parabolic
and elliptic problems 
����� 
����� Then Theorems ���� ���� ��� can be obtained as
a continuum limit of our results on the discrete problem� In the discrete problem
we assume Zd acts on � by translation operators �x � � � �� x � Z

d� which
are measure preserving and satisfy the properties �x�y � �x�y� �� � identity� For
functions g � Zd� R we de�ne the discrete derivative rig of g in the i th direction
to be

rig
x� � g
x� ei�� g
x�� x � Z
d�

where ei � Zd is the element with entry � in the i th position and � in other
positions� The formal adjoint of ri is given by r�i � where

r�i g
x� � g
x� ei�� g
x�� x � Zd�

The discrete version of the problem 
���� that we shall be interested in is given by

�u

�t
� �

dX
i�j��

r�i �aij
�x��rju
x� t� ��� � x � Zd� t � ��
����

u
x� �� �� � f
x� ��� x � Z
d�

The solution of 
���� can be written as

u
x� t� �� �
X
y�Zd

Ga
x� y� t� ��f
y� ���

where Ga
x� y� t� �� is the discrete Green�s function� As in the continuous case� Ga

is a positive function which satis�esX
y�Zd

Ga
x� y� t� �� � ��

It also follows from the work of Carlen et al ��� that there is a constant C
d� ����
depending only on d� ��� such that

� � Ga
x� y� t� �� � C
d� ����

� � td��
exp

�
�minfjx� yj� jx� yj�	tg

C
d� ����

�
�

Now let Ga
x� t�� x � Zd� t � �� be the expectation of the Green�s function�D
Ga
x� y� t� ��

E
� Ga
x� y� t��
����
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Then we have X
x�Zd

Ga
x� t� � �� t � � �

Ga
x� t� � C
d� ����

� � td��
exp

�
�minfjxj� jxj

�	tg
C
d� ����

�
� x � Zd� t � � �
�����

The discrete version of Theorem ��� which we shall prove is given by the following�

Theorem ���� Ga
x� t�� x � Zd� t � � is di�erentiable in t� There is a constant

C
d� ����� depending only on d� ��� such that�����Ga

�t

x� t�

���� � C
d� ����

� � td�� � �
exp

�
� minfjxj� jxj�	tg

C
d� ����

�
�

jriGa
x� t�j � C
d� ����

� � td�� � ���
exp

�
� minfjxj� jxj�	tg

C
d� ����

�
�

Let � satisfy � � � � �� Then there is a constant C
�� d� ���� depending only on

�� d� ��� such that

jrirjGa
x� t�j � C
�� d� ����

� � t�d�������
exp

�
� minfjxj� jxj�	tg

C
d� ����

�
�
�����

Remark ���� As in Theorem ���� Theorem ��	 shows that �rst derivatives of
Ga
x� t� are bounded by corresponding heat equation quantities� It also shows
that second space derivatives are almost similarly bounded� We cannot put � � �
in 
����� since the constant C
�� d� ���� diverges as � � ��

The elliptic problem corresponding to 
���� is given by

dX
i�j��

r�i �ai�j
�x��rju
x� ��� � f
x� ��� x � Z
d�
�����

If d � � then the solution of 
����� can be written as
u
x� �� �

X
y�Zd

Ga
x� y� ��f
y� ���

where Ga
x� y� �� is the discrete Green�s function� It follows from Carlen et al ���
that there is a constant C
d� ���� depending only on d� ��� such that

� � Ga
x� y� �� � C
d� ����	�� � jx� yjd���� d � ��
�����

Letting Ga
x� be the expectation of the Green�s function�D
Ga
x� y� ��

E
� Ga
x� y��

it follows from 
����� that

� � Ga
x� � C
d� ����	�� � jxjd���� d � ��
���	�

We shall prove a discrete version of Theorem ��� as follows�

Theorem ���� Suppose d � �� Then there is a constant C
d� ����� depending only
on d� ��� such that

jriGa
x�j � C
d� ����	�� � jxjd���� x � Zd�
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Let � satisfy � � � � �� Then there is a constant C
�� d� ���� depending only on

�� d� ��� such that

jrirjGa
x�j � C
�� d� ����	�� � jxjd���� �� x � Zd�

Remark ���� As in Theorem ��	 our estimates on the second derivatives of Ga
x�
diverge as � � ��

Next we turn to the discrete version of Theorem ���� For a function f � Zd� C

we de�ne its Fourier transform �f by

�f

� �
X
x�Zd

f
x�eix��� 
 � R
d �

For � � k � d� 
 � Rd � let ek

� � � � eiek�� and e

� be the vector e

� �


e�

�� � � � � ed

��� Let �Ga

� t� be the Fourier transform of the functionGa
x� t�� x �
Zd� t � �� de�ned by 
����� From the equation before 
����� it is clear that

j �Ga

� t�j � ��

Theorem ���� The function �Ga

� t� is continuous for 
 � Rd and di�erentiable

for t � �� Let � satisfy � � � � �� Then there is a constant C
�� ���� depending
only on �� ���� such that

j �Ga

� t�j � C
�� ����

�� � je

�j�t�� �

j�
�Ga

�t


� t�j � C
�� ����je

�j�

�� � je

�j�t���� �

where je

�j denotes the Euclidean norm of e

� � C d �
In order to prove Theorems ������� we use a representation for the Fourier trans�

form of the expectation of the Green�s function for the elliptic problem 
������ which
was obtained in �	� � This in turn gives us a formula for the Laplace transform of the

function �Ga

� t� of Theorem ���� We can prove Theorem ��� then by estimating
the inverse Laplace transform� In order to prove Theorems ��	� ��� we need to use
interpolation theory� in particular the Hunt Interpolation Theorem ����� Thus we

prove that �Ga

� t� is in a weak L
p space which will then imply pointwise bounds

on the Fourier inverse� We shall prove here Theorems ��	���� in detail� In the
�nal section we shall show how to generalize the proof of Theorem ��� to prove
Theorem ���� The proofs of Theorems ��� and ��� are left to the interested reader�
We would like to thank Jana Bj�orn and Vladimir Maz�ya for help with the proof of
Lemma ����
There is already a large body of literature on the problem of homogenization of

solutions of elliptic and parabolic equations with random coe�cients� �	� ��� ��� ���
����� These results prove in a certain sense that� asympotically� the lowest frequency
components of the functions Ga
x� and Ga
x� t� are the same as the corresponding
quantities for a constant coe�cient equation� The constant depends on the random
matrix a
��� The problem of homogenization in a periodic medium has also been
studied ��� ����� and similar results been obtained�
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�� Proof of Theorem ���

Let �Ga

� t�� 
 � Rd � t � �� be the function in Theorem ���� Our �rst goal will

be to obtain a formula for the Laplace transform of �Ga

� t�� which we denote by
�Ga

� 
��

�Ga

� 
� �

Z �

�

dt e��t �Ga

� t� � Re

� � � �

It is evident that �Ga

� 
� is the Fourier transform of the expectation of the Green�s
function for the elliptic problem�


u
x� �� �

dX
i�j��

r�i �ai�j
�x��rju
x� ��� � f
x� �� � x � Zd �
����

In �	� we derived a formula for this� To do that we de�ned operators �i� � � i � d�
on functions � � � � C by �i�
�� � �
�ei�� � �
��� with corresponding adjoint
operators ��i � � � i � d� de�ned by ��i �
�� � �
��ei��� �
��� Hence for 
 � Rd

we may de�ne an operator L� on functions � � �� C by

L��
�� � P

dX
i�j��

ei���ei�ej� ���i � ei
�
�� ai�j
�� ��j � ej

���
�� �

where P is the projection orthogonal to the constant function and ej

� is de�ned
just before the statement of Theorem ���� Note that L� takes a function � to a
function L�� satisfying hL��i � �� Now for � � k � d� 
 � Rd � Re

� � �� let
�k

� 
� �� be the solution to the equation�

�L� � 
��k

� 
� �� �

dX
j��

eiej ��
�
��j � ej
�
�

�
�ak�j
��� hak�j
��i� � � �
����

Then we may de�ne a d� d matrix q

� 
� by�

qk�k� 

� 
� �

	
ak�k� 
�� �

dX
j��

ak�j
��e�iej �� ��j � ej

���k�

� 
� ��



�
����

The function �Ga

� 
� is then given by the formula�

�Ga

� 
� �
�


 � e

�q

� 
�e
�
� � 
 � Rd � Re

� � � �
��	�

We actually established the formula 
��	� in �	� when 
 is real and positive� In that
case q

� 
� is a d� d Hermitian matrix bounded below in the quadratic form sense

by �Id� It follows that �Ga

� 
� is �nite for all positive 
� We wish to establish
this for all 
 satisfying Re

� � �� We can in fact argue this from 
����� Suppose
the function on the RHS of 
���� is a function of x only� f
x� �� � f
x�� Then the
Fourier transform �u

� �� of the solution to 
���� satis�es the equation�

h�u

� ��i � �Ga

� 
� �f

�� 
 � R
d �
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If we multiply 
���� by u
x� ��� and sum with respect to x� we have by the Plancherel
Theorem�

j
j�
Z

�����	d
j�u

� ��j�d
 �

Z
�����	d

j �f

�j�d
 �

Since �f

� is an arbitrary function it follows that j �Ga

� 
�j � �	j
j� We improve
this inequality in the following�

Lemma ���� Suppose Re

� � � and 
 � Rd � Let � � 
��� � � � � �d� � C d � Then
Re�
 � ��q

� 
��� � Re

� � �j�j��
����

Im

�Im���q

� 
��� � ��
����

Proof� From 
����� 
���� we have that

qk�k�

� 
� �
D dX
i�j��

ai�j
��
�
�k�i � eiei����i � ei
�
���k
�
� 
� ��

�
�
�k��j � e�iej ����j � ej

���k� 

� 
� ��

� E
� 


D
�k
�
� 
� ���k� 

� 
� ��

E
�

Thus we have

��q

� 
�� �
D dX
i�j��

ai�j
��
h
��i � eiei����i � ei
�
���

� �
� ��

i

����

�
�j � e�iej �� ��j � ej

���

� 
� ��

� E
� 


D
�

� �
� ���

� 
� ��

E
�

where

�

� 
� �� �
dX

k��

�k�k

� 
� �� �
����

Evidently we have that

�L� � 
��

� 
� �� �

dX
k��

�k

dX
j��

eiej �� ���j � ej
�
�� �ak�j
��� hak�j
��i� � � �
����

It follows from the last equation that

�L� � 
��

� 
� �� � �L� � �
��

� �
� ���
whence

�L� �Re

����

� 
� �� � �

� �
� ��� � �i Im

���

� 
� �� � �

� �
� ��� �
�����

Hence


�����
D
��

� 
� �� � �

� �
� ����L� �Re

����

� 
� �� � �

� �
� ���

E
� �i Im

�

D
��

� 
� �� � �

� �
� �����

� 
� �� � �

� �
� ���

E
�

Observe that since the LHS of 
����� is real� the quantityD
��

� 
� �� � �

� �
� �����

� 
� �� � �

� �
� ���

E
is pure imaginary�
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Next for � � j � d� let us put

Aj � �j � e�iej ����j � ej

��
�

�
f�

� 
� �� � �

� �
� ��g�

Bj � e�iej ����j � ej

��
�

�
f�

� 
� ��� �

� �
� ��g�

Then

��q

� 
�� �
D dX
i�j��

ai�j
��� �Ai � �Bi��Aj �Bj �
E
� 


D
�

� �
� ���

� 
� ��

E
�

We can decompose this sum into real and imaginary parts� Thus

D dX
i�j��

ai�j
��� �Ai � �Bi��Aj �Bj �
E
�
D dX
i�j��

ai�j
�� �AiAj

E
�
D dX
i�j��

ai�j
�� �BiBj

E

� �i Im
D dX
i�j��

ai�j
�� �AiBj

E
�

Evidently the �rst two terms on the RHS of the last equation are real while the
third term is pure imaginary� We also have thatD
�

� �
� ���

� 
� ��

E
�
�

	

�n
��

� �
� �� � �

� 
� ��� � ��

� �
� ��� �

� 
� ���

o
f�

� 
� �� � �

� �
� ��� � ��

� 
� ��� �

� �
� ���g

�
�
�

	

�
j�

� 
� �� � �

� �
� ��j�

�
� �
	

�
j�

� 
� ��� �

� �
� ��j�

�
� i

�Im

�

�
��

� 
� �� � �

� �
� ����L� �Re

����

� 
� �� � �

� �
� ���

�
�

where we have used 
������ Observe that the �rst two terms on the RHS of the last
equation are real while the third term is pure imaginary� Hence



D
�

� �
� ���

� 
� ��

E
�

Re

�

	

D
j�

� 
� �� � �

� �
� ��j�

E
� Re

�

	

D
j�

� 
� �� � �

� �
� ��j�

E
�
�

�

Dh
�

� 
� ��� �

� �
� ����L� �Re

����

� 
� �� � �

� �
� ��

iE
� i
Im

�

	

D
j�

� 
� �� � �

� �
� ��j�

E
� i
Im

�
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We conclude then from the last four equations that
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Proof� We �rst note that for any � � C d � ��q

� 
�� and ��q

� �
�� are complex
conjugates� This follows easily from 
����� We conclude from this that

�

��

Z N

�N

e�t


 � e

�q

� 
�e
�
� d�Im

�� �
�

�

Z N

�

Re
e�t


 � e

�q

� 
�e
�
� d�Im

��

�����

�
�

�
exp�Re

�t�

nZ N

�

h

� 
� cos�Im

�t�d�Im

�� �

Z N

�

k

� 
� sin�Im

�t�d�Im

��
o
�

where

h

� 
� � Re �
 � e

�q

� 
�e
�
��
j
 � e

�q

� 
�e
�
�j��
�����

k

� 
� � Im �
 � e

�q

� 
�e
�
��
j
 � e

�q

� 
�e
�
�j��

We show there is a constant C��
� depending only on ��� such thatZ �

�

jh

� 
�jd�Im

�� � C��
� Re

� � ��
�����

To see this� observe from 
���	�� 
����� that

jh

� 
�j � Re 

� �  

�f�g� � 
Im 
���
� where
�����

 �

DPd
i�j�� ai�j
�� �AiAj

E
� �

�

Dh
�

� 
� ��� �

� �
� ��

i
L� ��

� 
� �� � �

� �
� ���

E
h
� � �

� hj�

� 
� �� � �

� �
� ��j�i� �
� hj�

� 
� �� � �

� �
� ��j�i

�

and the quantity f�g in the �rst line of 
����� is the same as the one in the second�
It is easy to see that

D dX
i�j��

ai�j
�� �AiAj

E
�
�

	

Dh
�

� 
� �� � �

� �
� ��

i
L� ��

� 
� ��� �

� �
� ���

E
� �je

�j��


�����

We can also obtain an upper bound using the fact that
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where C��
 depends only on ���� whence 
����� follows�
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for any �� � � � � ��
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We consider the �rst term on the RHS of 
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We conclude then that���� Im �

�
 � e

�q

� 
�e
�
���
���� � min � �

��je

�j� �
��je

�j�
jIm

�j�

�
�

It follows that
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�
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�

����Im �

�
 � e

�q
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�e
�
���
���� d�Im

�� � Z je���j�

�

�
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je���j�
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�����

We also have that���� h�

� 
� ���
�
� 
� ��i�
 � e

�q

� 
�e
�
���
���� � min � �

��je

�j�jIm

�j �
�je

�j�
jIm

�j�

�
�

We conclude thatZ �

�
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�

���� h�
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� ���
�
� 
� ��i�
 � e

�q

� 
�e
�
���
���� d�Im

�� � C��
�
�����
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The inequality 
����� follows from 
������ 
������ It follows from 
���	�� 
������

����� that the �rst integral on the RHS of 
����� is di�erentiable with respect to t
for t � � and


��	��
�

�t

Z �

�

h

� 
� cos�Im

�t�d�Im

�t� �

�

t

Z �

�

�

��Im

��
fh

� 
� Im

�g

h
�� cos�Im

�t�

i
d�Im

���

Furthermore� there is the inequality����� ��t
Z �

�

h

� 
� cos�Im

�t�d�Im

��

���� � C��
	t�

Next we wish to improve this inequality to���� ��t
Z �

�

h

� 
� cos�Im

�t�d�Im

��

���� � C��
��

t�� � je

�j�t�� �
��	��

To do this we integrate by parts on the RHS of 
��	�� to obtain


��	��
�

�t

Z �

�

h

� 
� cos�Im

�t�d�Im

�� �

�

t�

Z �

�

�
��h

� 
�

��Im

��
� Im

�

��h

� 
�

��Im

���

�
sin�Im

�t�d�Im

���

We have already seen in Lemma ��� that

�

t

Z �

�

���� �h

� 
���Im

��

���� j sin�Im

�t�jd�Im

�� � C��
��

�je

�j�t�� �

for any �� � � � � �� where we assume je

�j� t � �� The inequality 
��	�� will
follow therefore if we can show that

�

t

Z �

�

���� ��h

� 
���Im

���

���� jIm

�j��� sin�Im

�t�d�Im

�� � C��
��

�je

�j�t�� � je

�j�t � �� � � � � ��


��	��

To prove this we use the fact that���� ��h

� 
���Im

���

���� � ���� ���
�
�
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�
���� �
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�
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� ��i
�
 � e

�q

� 
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�
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�
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� ��ig�
�
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�q
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�e
�
���
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�
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Observe now that similarly to 
������ 
����� we have that

j� � h�
�
� 
� ���

� 
� ��i j�
j
 � e

�q

� 
�e
�
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�
�
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�j� �
�

��je

�j
 �
���
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�
�
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We can conclude from this last inequality just like we argued in Lemma ��� that

�

t

Z �

�

j� � h�
�
� 
� ���

� 
� ��i j�
j
 � e

�q

� 
�e
�
�j� jIm

�jj sin�Im

�t�jd�Im

�� � C��
��

�je

�j�t�� �

for � � � � �� je

�j�t � ��
Next from 
���� we see that ��

� 
� ��	�
 satis�es the equation�

�L� � 
�
��

� 
� ��

�

� �

� 
� �� � ��
��	��

From this equation and the Schwarz inequality we easily conclude that�j��

� 
� ��	�
j�� � j
j�� �j�

� 
� ��j�� �
It follows then that

j h�
�
� 
� �����

� 
� ��	�
�i j�
j
 � e

�q

� 
�e
�
�j� � min

�
�

jIm

�j� �
�

��je

�j�j
j�
�
�
��	��

Since this inequality is similar to 
��	�� we conclude that 
��	�� holds�
We have proved now that 
��	�� holds� To complete the proof of the lemma we

need to obtain a similar estimate for the second integral on the RHS of 
������ To
see this observe that we can readily conclude that the integral is di�erentiable in t
and

�

�t
� �

t

Z �

�

�k

� 
�

��Im

��
f�� cos�Im

�t�g d�Im

��
��	��

�
�

t�

Z �

�

�k
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�

��Im
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f�� cos�Im

�t�g d�Im
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�
�

t�

Z �

�

��k
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�

��Im
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Im

� f�� cos�Im

�t�g d�Im
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We have already seen in Lemma ��� that

�
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�

���� �k

� 
���Im
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���� f�� cos�Im

�t�gd�Im

�� � C��
��

t�� � je

�j� t�� �

for any �� � � � � �� Hence we need to concern ourselves with the second integral
on the RHS of 
��	��� Now it is clear that ��k

� 
�	��Im

��� satis�es the same
estimates we have just established for ��h

� 
�	��Im

���� It follows in particular
that

�

t�
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�

���� ��k

� 
���Im
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for some universal constant C� Arguing as in Lemma ��� we also have that
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for � � � � �� je

�j� t � �� The last three inequalities then give us the same
estimate on the derivative of the second integral on the RHS of 
����� as we have
already obtained for the �rst integral� �

The estimate for � �Ga

� t�	�t in Lemma ��	 diverges as t � �� We rectify this
in the following�

Lemma ���� There is a constant C��
 depending only on ��� such that������ �Ga

� t�

�t

����� � C��
je

�j�� 
 � Rd � t � ��

Proof� To bound the derivative of the �rst integral on the RHS of 
����� it is
su�cient to show that
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We have now from 
���	� that
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and from the inequalities before 
����� that
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�	��Im
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�j�	jIm

�j�� Re

� � ��

The inequalities 
��	�� follow from these last two inequalities�
The derivative of the second integral is given by the RHS of 
��	��� Using the

identity
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�

we see that the derivative of the second integral on the RHS of 
����� is also given
by the formula
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m��

Z �m�t

�

k

� 
� Im

� cos�Im

�t�d�Im

���
�����

where the limit in 
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Observe now that just as before we haveZ �

�

jIm

�j
jb

�j

a
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d�Im
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for a constant C��
 depending only on ���� We also have from 
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It follows therefore from 
����� that the result will be complete if we can show thatZ �
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with a similar inequality for �
�
� 
� ��� Note that 
����� does not follow from the
bound

�j�

� 
� ��j�� � �je

�j�	j
j which we have already established� In view of

���� the inequality 
����� is a consequence of the following lemma� �

Lemma ���� Let �
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� �� be the function de�ned by 
����� Then there is the in�
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� ��j�� d�Im

�� � ���j�j��
Proof� Let �
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j��

�
��j � ej
�
�

�
eiej �� �ak�j
��� hak�j
��i� � ��

It is clear that
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We can estimate the RHS of this last equation by de�ning a function !
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Observe next thatD
!
t� 
� �� ��
t� 
� ��

�t

E
�
�

�

�

�t

D
!
t� 
� ��L�!
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Integrating 
����� w�r� to t and using the positivity of L� we conclude that for
any � � �� there is the inequality�Z �

�

�
�
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� ��j�� dt � �

�

D
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We have now from 
����� thatD
!
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E
� �j�j��

The result follows now on letting � � �� �

�� Proof of Theorem ���

For 
 real and positive� let q

� 
� be the d� d matrix de�ned in 
����� We shall
show that the function Ga
x� of Theorem ��� is given by�

Ga
x� � lim
���

�


���d

Z
�����	d

d
e�ix��	e

�q

� 
�e
�
�� x � Z
d �
����

In view of the fact that q

� 
� � �Id� we see from the following lemma that the
limit 
���� exists if d � ��
Lemma ���� The limit lim��� q

� 
� exists for all 
 � Rd �

Proof� For 
 � �� x � Zd� let G�
x� be the Green�s function satisfying the equation

dX
i��

r�iriG�
x� � 
G�
x� � �
x�� x � Zd�

where �
x� is the Kronecker � function� Now for � � L�
�� there is a unique
solution � � L�
�� to the equation�

dX
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���i � ei
�
�� ��i � ei

���
�� � 
�
�� � �
��� � � � �
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�
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X
x�Zd
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x�e
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�x��� � � ��
����

Observe the RHS of 
���� is square integrable since G�
x� decreases exponentially
as jxj � 
� Now for � � k� k� � d we de�ne operators Tk�k����� by Tk�k�����
�� �
e�iek����k � ek

���� where � is the solution to the equation�
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dX
i��

���i � ei
�
�� ��i � ei

���
�� � 
�
��

� eiek� �� ���k� � ek�
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From 
���� we see that

Tk�k����� �
�� �
X
x�Zd

r�krk�G�
x�e
�ix���
�x��� � � ��
��	�

Since r�krk�G�
x� is exponentially decreasing as jxj � 
 it follows that Tk�k�����
is a bounded operator on L�
��� Observe that the projection operator P on L�
��
orthogonal to the constant function commutes with Tk�k������ It follows from 
����
that kTk�k�����k � �� independent of 
 as 
 � �� We wish to show that there is an
operator Tk�k����� on L

�
�� with kTk�k�����k � � such that
lim
���

kTk�k������� Tk�k������k � �� � � L�
���
����

We follow the argument used to prove the von Neumann Ergodic Theorem ����
Thus if � � L�
�� satis�es ���k� � ek�
�
��� � �� then Tk�k������ � �� Thus we set
Tk�k������ � � for � in the null space of ��

�
k��ek�
�
��� Now the range of ��k��ek�

��

is dense in the subspace of L�
�� orthogonal to the null space of ���k� � ek�
�
��� If
� � e�iek� ����k� � ek�

��� with � � L�
�� then

Tk�k������
�� �
X
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x�e
�ix���
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It is clear from this representation that if we take

Tk�k������
�� �
X
x�Zd

r�k�r�krk�G�
x�e
�ix���
�x��� � � � �

then Tk�k�����
�� � L�
�� and 
���� holds� Thus Tk�k����� is de�ned on a dense
subspace of L�
�� and kTk�k�����k � �� If follows easily that one can extend the
de�nition of Tk�k����� to all of L

�
�� and 
���� holds�

Suppose now b � �� Rd�d����� is a bounded measurable function from � to the
space of symmetric d� d matrices� We de�ne kbk to be

kbk � sup
�
j

dX
i�j��

bi�j
���i�j j �
dX

i��

��i � �� � � �
�
�

Next let H
�� � f� � 
��� � � � � �d� � �i � L�
��� � � i � dg be the Hilbert space
with norm k�k� � k��k� � � � � � k�dk�� � � 
��� � � � � �d�� We de�ne an operator
Tb���� on H
�� by

�
Tb�����
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�
k
�
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Tk�i����
�
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k
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where �
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��

�
�



��� Joseph G� Conlon and Ali Naddaf

If follows that Tb���� is a bounded operator on H
�� with norm kTb����k � kbk� In
view of 
���� there exists a bounded operator Tb���� on H
�� such that kTb����k �
kbk and

lim
���

kTb������ Tb�����k � �� � � H
�� �

Let us take now b
�� � �
�Id � a
���	�� whence kbk � �� Let �k

� 
� �� be the

function satisfying 
����� De�ne "k

� 
� �� to be
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� �� �
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�
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� ��
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where for � � j � d� Tj���� is a bounded operator from L�
�� to H
�� de�ned by
Tj����
�� � 
T��j������ � � � � Td�j������� Writing

"k

� 
� �� � 
"k��
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� ��� � � � �"k�d
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� ����
we have from 
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D
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j��
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E
�
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It is clear now that lim��� q

� 
� exists� �

Our next goal is to assert some di�erentiability properties of q

� 
� in 
 which
are uniform as 
 � ��

Lemma ���� Suppose 
 � �� � � k � d� � � L�
�� and b
�� a random symmetric

matrix satisfying kbk � �� For 
 � Rd let "

� 
� �� be the solution to the equation�


I � PTb�����"

� 
� �� � Tk�����
���
����

Then "

� 
� ��� regarded as a function of 
 � Rd to H
�� is di�erentiable� The

derivative of "
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� �� is given by
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� �� � 
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��� � � j � d�
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X
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X
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We regard 
����� as the de�nition of the operator �	�
jTk��k���� which is clearly a
bounded operator on L�
��� Similarly we can de�ne �	�
jTb���� by�

�

�
j
Tb�����
��

�
r

�
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�

�
j
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�
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���j� 
��

�
�
�����

� � 
��� � � � � �d� � H
��� � � r � d� Again it is clear that �	�
jTb���� is a
bounded operator on H
��� From 
���� "

� 
� �� is given by the Neumann series�

"
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� �� �
�X
n��
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which converges since kbk � �� Formally the derivative of "
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� �� �
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n �
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n
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Since the RHS of 
����� converges it is easy to see that "

� 
� ��� regarded as a
mapping from Rd to H
�� is di�erentiable and the derivative is given by 
������
Finally observe that the RHS of 
����� is the same as the RHS of 
����� �

For � � p � 
 let Lp
��
� � �� �

�d
� be the space of functions �

� ��� 
 ��� �� �

�d
� � � � such that k�kp �
� where

k�kpp �
Z
�����	d

d

�j�

� ��j��p�� �

Suppose now f �
� � �� �

�d � C is a smooth periodic function� The Fourier

transform bf of f is given by
bf
x� � �


���d

Z
�����	d

f

�e�ix��d
� x � Zd�

Since bf is rapidly decreasing we can de�ne for � � L�
�� an operator T	 by

T	
f�

� �� �
X
x�Zd

bf
x�e�ix���
�x��� 
 � �� �� �
�d
� � � � �
�����

Evidently T	
f� � L�
��
�� �� �

�d
��

Lemma ���� Suppose � � p � 
 and � � L�
��� Then the operator T	 extends

to a bounded operator from Lp

� � �� �

�d
� to Lp
�� ���� ��d�and the norm of T	

satis�es kT	k � k�k�

Proof� Now by Bochner�s Theorem ��� there is a positive measure d�	 on ���� ��d
such that D

�
�x���
�y ��
E
�

Z
�����	d

ei�x�y��
d�	
���
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whence �jT	
f�

� ��j�� � Z
�����	d

jf
� � 
�j�d�	
���
���	�

Since
R
�����	d d�	
�� � k�k� the fact that kT	k � k�k follows immediately from


���	� for p � �� p � 
� The fact that kT	k � k�k when � � p � 
 can be
obtained by an application of Holder�s inequality� �

Next for � � p � 
 let Hp
�� ���� ��d� be the space of functions �

� ��� 
 �
���� ��d with �

� �� � H
�� such that k�kp �
� where

k�kpp �
Z
�����	d

d
k�

� ��kp�

We de�ne an operator for � � L�
��� T	�b�� by

T	�b��
f�

� �� �
X
x�Zd

bf
x�e�ix���x�b
��
I � PTb�����
��Tk�����
��

�
�
�����

It is clear that if f is smooth then T	�b��
f� is in H�
�� ���� ��d� provided kbk � ��
Lemma ���� Suppose kbk � �� Then�

a� If � � L�
��� T	�b�� extends to a bounded operator from L�
���� ��d� to

H�
�� ���� ��d�� The norm of T	�b�� satis�es

kT	�b��k � kbkk�k

�� kbk� �


b� If � � L�
��� T	�b�� extends to a bounded operator from L�
���� ��d� to

H�
�� ���� ��d�� The norm of T	�b�� satis�es

kT	�b��k �
p
dkbkk�k�

�� kbk�� �

Proof� To prove 
a� observe that 
���	� implies

kT	�b��
f�

�k� � kfk��kb
��
I � PTb�����
��Tk�����
���k�

� kfk��kbk�k�k�

�� kbk�� �

To prove 
b� we consider the integral

Z
�����	d

d
k
X
x�Zd

bf
x�e�ix���x �b
��
PTb�����mTk������ k� � 
���d X
r�Zd

k �k�

�����

� 
���d
X
r�Zd

k �k��

where  � is given byX
x������xm���r

bf
x��b
�x� ���m��Y
j��

r�rG�
xj�Pb
�x������xj ��
�
r�rkG�
xm����
�r ��
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and  � is given byX
y������ym��

bf
y��b
�y� ���m��Y
j��

r�rG�
yj � yj���Pb
�yj ��
�
r�rkG�
r � ym����
�r ���

Observe now that


����� bf
y��b
�y� ���m��Y
j��

r�rG�
yj � yj���Pb
�yj ��
�
r�rkG�
r � ym����
�r ��

� bf
y��b
�y� ���m��Y
j��

r�rG�
yj � yj���b
�yj ��
�
r�rkG�
r � ym����
�r ��

�
mX
n��

bf
y��b
�y� ��� nY
j��

r�rG�
yj � yj���b
�yj ��
�

�
r�rG�
yn�� � yn�b
�yn ��

� m��Y
j�n��

r�rG�
yj � yj���Pb
�yj ��
�

r�rkG�
r � ym����
�r ��
�
�

Next let M be the space of complex d � d matrices and L�
Zd�M� the set of
functions A � Zd �M� We can make L�
Zd�M� into a Hilbert space by de�ning
the norm of A to be

kAk�M � 
���d
X
x�Zd

Tr
A�
x�A
x���

We can also de�ne an operator T� on L
�
Zd�M�by

T�A
x� �
X
y

A
y�r�rG�
x� y�� x � Z
d�

It is easy to see that T� is bounded on L
�
Zd�M� and kT�k � �� For n � �� � � � �m���

� � �� yn � Zd� let us de�ne An
yn� �� � M by

An
yn� �� �
X

y�����yn��

bf
y��b
�y���� nY
j��

r�rG�
yj � yj���b
�yj��
�
�

It follows from the fact that kT�k � � that for any �xed � � � the function
An
�� �� � L�
Zd�M� and

kAn
�� ��kM � kbknk bfIdkM �
p
dkbknkfk� �
�����

Recall now that P is the projection operator� P�
�� � �
�� � h�i � � � L�
��� If
we introduce the notation P � as �
��P � � P�
�� then�

r�rG�
yn�� � yn�b
�yn ��
� m��Y
j�n��

r�rG�
yj � yj���Pb
�yj ��
�

r�rkG�
r � ym����
�r ��
�
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is equal to�
r�rG�
yn�� � yn�b
�yn ��

� m��Y
j�n��

r�rG�
yj � yj���P �b
�yj ��
�

r�rkG�
r � ym����
�r ��
�
�

Let us denote now by L�
Zd� ��M� the set of functions A � Zd� � � M with
norm�

kAk�M�ran � 
���
d
X
x�Zd

hTr
A�
x� ��A
x� ���i �

For n � �� � � � �m de�ne an operator Tn on this space by

TnA
ym��� �� �
X

yn�����ym

A
yn� ��r�rG�
yn�� � yn�

b
�yn ��
� m��Y
j�n��

r�rG�
yj � yj���P �b
�yj ��
�
�

We can see as before that Tn is a bounded operator on L
�
Zd���M� and

kTnk � kbkm���n�
�����

Observe now from 
����� that  � 
the expression inside the norm in the last line
of 
������ is given by

X
y������ym��

bf
y��b
�y� ���m��Y
j��

r�rG�
yj�yj���Pb
�yj ��
�
r�rkG�
r�ym����
�r ��

� �T�Am��
r� ��ek��
�r ���
mX
n��

��
T�TnA

ran

n 
r� ��ek
�
�
�r ��

�
�

where Aran

n denotes that An
x� ��� x � Zd� � � � is to be regarded as a function
of x only� with parameter �� on which Tn acts� We have now


���d
X
r�Zd

k �T�Am��
r� ��ek��
�r��k� � k�k��
�kAm��
�� ��k�M

�
� k�k��dkbk��m���kfk���

where we have used 
������ Similarly we have


���d
X
r�Zd

k ��T�TnAran

n 
r� ��ek
�
�
�r��

� k� � k�k��
�kT�TnAran

n 
��k�M�ran

�
�

where � denotes the random parameter for Aran

n � The expectation is then to be
taken with respect to this parameter� If we use now 
������ 
����� we have


���d
X
r�Zd

k ��T�TnAran

n 
r� ��ek
�
�
�r ��

� k� � k�k��dkbk��m���kfk�� �
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We conclude therefore from 
����� thatZ
�����	d

d
k
X
x�Zd

bf
x�eix���x�b
��
PTb�����m Tk����� k�

� d
m� �� k�k�� kbk��m���kfk��� m � ��
It follows that�Z

�����	d
d
kT	�b��
f�

�k�

����
�
p
dk�k�kfk�

�X
m��

p
m� � kbkm��

�
p
dk�k�kfk�kbk	
�� kbk�� �

�

It follows from Lemma ��� and the Riesz�Thorin Interpolation Theorem ���� that
if � � L�
�� and kbk � � then T	�b�� is a bounded operator from Lp
���� ��d� to
Hp 
�� ���� ��d�� � � p �
 and the norm of T	�b�� satis�es the inequality�

kT	�b��k � Cdkbkk�k�

�� kbk�� �

where Cd is a constant depending only on d� Consider next the weak spaces
Lpw
���� ��d� and Hp

w
�� ���� ��d�� � � p � 
� Thus f � Lpw
���� ��d� if for
all � � � there is the inequality�

measf
 � ���� ��d � jf

�j � �g � Cp	�p�
�����

The weak Lp norm of f� kfkp�w is then the minimum constant C such that 
�����
holds for all � � �� Similarly �

� �� � Hp

w
�� ���� ��d� if for all � � � there is the
inequality�

measf
 � ���� ��d � k�

� ��k � �g � Cp	�p�
�����

The weak Lp norm of �� k�kp�w is again the minimum constant C such that 
�����
holds� Lemmas ���� ��	 and Hunt�s Interpolation Theorem ���� then imply the
following�

Lemma ���� Suppose � � p �
� Then


a� There is a constant Cp depending only on p such that T	 is a bounded operator

from Lpw
���� ��d� to Lpw
�� ���� ��d� and kT	k � Cpk�k�

b� There is a constant Cp�d depending only on p and d such that T	�b�� is a

bounded operator from Lpw
���� ��d� to Hp
w
�� ���� ��d� and

kT	�b��k � Cp�dkbkk�k�

�� kbk�� �

We can use Lemma ��� to obtain bounds on the �rst two derivatives with respect
to 
 of the function q

� 
� de�ned by 
�����

Lemma ���� Let d � �� 
 � �� � � k� k� � d� Then qk�k� 

� 
� is a C� function

of 
 � Rd and for any i� j� � � i� j � d the function �qk�k�	�
i � L�
w
���� ��d� and

��qk�k�	�
i�
j � L
���
w 
���� ��d�� Further� there is a constant C��
� depending only

on ��� such that

k�qk�k�	�
ik��w � C��
� k��qk�k�	�
i�
jk����w � C��
�
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Proof� Observe that the function "k� occurring in 
���� satis�es 
���� and hence
corresponds to the function " of Lemma ��� with � � L�
��� Observe next from

����� that

�

�
i
Tk��k����� � T	
f��

where T	 is de�ned by 
����� and the function f is

f

� �
�

�
i
�e�iek�� � ��
eiek� �� � �� bG�

���
�����

Clearly f � L�
w
���� ��d� and kfk��w � C� where C is universal� Consider now the

formula 
���� for the derivative of "� For the �rst term on the RHS of 
���� we
have

k
I � PTb�����
��


�

�
i
Tk����� �
��k � �

�� kbkk
�

�
i
Tk���� �
��k�

It follows from Lemma ��� 
a� that

�

�
i
Tk�����
�� � L�

w
�� ���� ���� �

k �

�
i
Tk�����
��k��w � C� �

for some universal constant C� since k�k is bounded by a constant times �� Hence
the �rst term on the RHS of 
���� is in L�

w
�� ���� ���� with norm bounded by a
constant depending only on ���� Similarly the second term on the RHS of 
���� is
bounded by

�

�� kbkk
�

�

�
i
Tb����

�

I � PTb�����

��Tk�����k �

It follows from 
������
����� that�
�

�
i
Tb����

�

I � PTb�����

��Tk����� � T	�b��
f��

where T	�b�� is like the operator 
����� but acts on matrix valued functions f

� �
�fi�j

��� 
 � ���� ��d� The functions fi�j

� are similar to 
����� and hence are in
L�
w
���� ����� It follows by the argument of Lemma ��	 and Lemma ��� 
b� that
the second term on the RHS of 
���� is in L�

w
�� ���� ���� with norm bounded by a
constant depending only on ���� We conclude that �qk�k�	�
i � L�

w
���� ��d� with
norm bounded by a constant depending only on ����
Next we turn to the second derivative� ��qk�k�	�
i�
j � To estimate this we need

a formula for the second derivative of the function " of Lemma ���� One can see
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from 
���� that

��"

�
i�
j


� �� � �

I � PTb����
����

P
�

�
j
Tb����

�
�
I � PTb����

���� �

�
i
Tk����

�
�
�� � �I � PTb����

���� ��

�
i�
j
Tk����

�
�
��

�
�
I � PTb����

����
P

�

�
i
Tb����

��
I � PTb����

���� �

�
j
Tk����

�
�
��

�
�
I�PTb����

����
P

�

�
j
Tb����

��
I�PTb����

����
P

�

�
i
Tb����

��
I�PTb����

���
Tk�����
��

�
�
I � PTb����

����
P

��

�
i�
j
Tb����

��
I � PTb����

���
Tk�����
���

Let �� � H�
�� and consider the expectation value
D
��
����"

� 
� ��	�
i�
j

E
�

From above this is a sum of �ve terms� The �rst term is given byD
��
��
I � PTb�����

��
P
�

�
j
Tb�����
I � PTb�����

��

�

�
i
Tk������
��

E
�
Dh

P

�

�
j
Tb�����
I � PTb���������
��

i

I � PTb�����

��

�

�
i
Tk������
��

E
�

whence we have���D��
��
I � PTb�����
��
P

�

�
j
Tb�����
I � PTb�����

��

�

�
i
Tk������
��

E���
� k
P �

�
j
Tb�����
I � PTb�����

����
��k k
 �
�
i

Tk������
��k	
�� kbk��

We have already seen that both

k
�
P

�

�
j
Tb����

�

I � PTb�����

����
��k� k
 �
�
i

Tk����� �
��k

are in L�
w
���� ����� We conclude that the �rst term in

D
��
����"

� 
� ��	�
i�
j

E
is in L

���
w 
���� ���� with norm depending only on ���� Consider now the second

term� To estimate this observe that if T	 is given by 
����� then

T	
fg�

� �� �
X
x�Zd

bf
x�eix��T	
g�
�x�� �
�����

We have from 
����� that

��

�
i�
j
Tk��k����� � T	
fg��

where fg � L
���
w 
���� ���� � whence we can choose f� g so that f� g � L�

w
���� �����
With this choice of f� g and using the formula 
����� we can argue as for the �rst

term of
D
��
����"

� 
� ��	�
i �
j

E
to conclude that the second term is also in

L
���
w 
���� ���� with norm depending only on ���� One can estimate the other

three terms of
D
��
����"

� 
� ��	�
i �
j

E
similarly� �
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Proposition ���� Let d � �� Then the function Ga
x� de�ned by 
���� satis�es
the inequalities

� � Ga
x� � C��
�� � jxj���d� x � Z
d�
���	�

jrGa
x�j � C��
 log �� � jxj�	
� � jxj��� x � Z
d�
�����

The constant C��
 depends only on ����

Proof� For 
 � � let Ga��
x� be de�ned by

Ga��
x� �
�


���d

Z
�����	d

d
e�ix��	e

�q

� 
�e
�
�� x � Z
d�

Then by Lemma ��� it follows that lim���Ga��
x� � Ga
x�� It will be su�cient
therefore for us to obtain bounds on Ga��
x��rGa��
x� which are uniform as 
 � ��
Since q

� 
� � �Id� 
 � ���� ��d� we clearly have Ga��
x� � Cd� where Cd is a
constant depending only on d � �� To obtain the decay in 
���	� we write

Ga��
x� �

Z
j�j�
�jxj

�

Z
j�j�
�jxj

�
�����

where � is a parameter� � � � � �� Evidently there is a constant C such thatZ
j�j�
�jxj

d
 � C	jxj�

To bound the second integral in 
����� we integrate by parts� ThusZ
j�j�
�jxj

�
�

ix�

�


���d

Z
j�j�
�jxj

d


e

�q

� 
�e
�
�
�
� �

�
�
e�ix��

�

�����

�
��
ix�

�


���d

Z
j�j�
�jxj

d

e�ix��

�e

�q

� 
�e
�
���
�

�
�
�e

�q

� 
�e
�
��

�
�

ix�

�


���d

Z
j�j�
�jxj

d

e�ix��
�

�e

�q

� 
�e
�
��j
j �

where we have assumed wlog that jx�j � max�jx�j� � � � � jxdj�� Evidently the surface
integral on the RHS of the last expression is bounded by C	jxj� We estimate the
volume integral by integrating by parts again� Thus�

Z
j�j�
�jxj

d

e�ix��

�e

�q

� 
�e
�
���
�

�
�

�
e

�q

� 
�e
�
��


�����

�
�

ix�

Z
j�j�
�jxj

d

�

�e

�q

� 
�e
�
���
�

�
�

�
e

�q

� 
�e
�
�� �� �

�
�
e�ix��

�
�

�

ix�

Z
j�j�
�jxj

d
e�ix��
�

�
�

�
�

�e

�q

� 
�e
�
���
�

�
�

�
e

�q

� 
�e
�
���

�
�

ix�

Z
j�j�
�jxj

d
e�ix��

�

�e

�q

� 
�e
�
���j
j
�

�
�

�
e

�q

� 
�e
�
���
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We divide the surface integral in the last expression into three parts corresponding
to the three terms in the expression�

�

�
�

�
e

�q

� 
�e
�
�� � �e

�

�
�
q

� 
�e
�
� � e

�

�q

�
�


� 
�e
�
�

� e

�q

� 
�
�e
�
�
�
�

�

The surface integral corresponding to the �rst and third terms in this expansion is
bounded by

C

jxj
Z
j�j�
�jxj

�d


��j
j� � C ��	���

where C�C � are universal constants� The surface integral corresponding to the
middle term is bounded by

C

jxj
Z
j�j�
�jxj

�

��j
j� k�q

� 
�	�
�kd
�
�����

for some universal constant C� To bound this we use the well known fact that if
f � Lpw
���� ����� � � p �
� then for any measurable set E one hasZ

E

jf jd
 � Cpkfkp�wm
E�����p�
�����

where the constant Cp depends only on p� If we average the expression 
����� over
�� � � � � �� then we have from Lemma ��� that

Z �

�

d�
C

jxj
Z
j�j�
�jxj

�

��j
j� k�q

� 
�	�
�kd


� C �jxj�
��

Z
jxj���j�j��jxj��

d
k�q

� 
�	�
�k � C��
 �

where we have used 
����� with p � ��
Next we consider the volume integral on the RHS of 
������ For any �� � � � � ��

this is bounded by


�����
C
����

jxj
Z
j�j���jxj

d

n
j
j�� � j
j��k�q

� 
�	�
�k

� j
j���k��q

� 
�	�
��k� k�q

� 
�	�
�k��
o
�

for some constant C
���� depending only on ���� Evidently there is a constant
C �
���� such that

C
����

jxj
Z
j�j���jxj

d


j
j� � C �
�����
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Also we have

C
����

jxj
Z
j�j���jxj

d


j
j� k�q

� 
�	�
�k

�
C
����

jxj
�X
n��

Z
�n���jxj�j�j��n�jxj

d


� C
����jxj�
�X
n��

���n
Z
�n���jxj�j�j��n�jxj

k�q

� 
�	�
�k d


� C �
����jxj�
�X
n��

���n
�
�n	jxj�� � C ��
���� �

where we have used Lemma ��� and 
������ We can similarly bound the third
term in 
����� using Lemma ��� and 
������ We conclude that 
����� is bounded
by a constant depending only on ���� If we put this inequality together with the
previous inequalities we obtain 
���	��
The proof of 
����� is similar� For any unit vector n � Rd we have

n�rGa��
x� �
�


���d

Z
�����	d

d
e�ix�� ��n � e
�
��	e

�q

� 
�e
�
� �
�����

We do a decomposition similar to 
����� and it is clear thatZ
j�j�
�jxj

� C	jxj��

For the fj
j � �	jxjg integral we do a decomposition analogous to 
������ It is clear
the surface integral which appears is bounded by C	jxj�� For the other integral we
do a separate integration by parts as in 
������ The average of the corresponding
surface integral over �� � � � � �� is bounded by C
����	jxj� The volume integral
is bounded analogously to 
����� by

C
����

jxj
Z
j�j���jxj

d

�j
j�� � j
j��k�q

� 
�	�
�k

� j
j���k��q

� 
�	�
��k� k�q

� 
�	�
�k��
�
�

Arguing as before we see this is bounded by C �
����log�� � jxj�	jxj� Putting this
inequality together with the previous inequalities yields 
����� �

Proposition ��� gives an improvement of the estimate 
���	� when d � �� We
wish now to obtain a corresponding improvement for all d � �� To do this we need
generalizations of Lemmas ��	���� appropriate for all d � �� Let A �M� the space
of complex d� d matrices� The norm of A is de�ned to be

kAk� � Tr
A�A��

Similarly if A � ��M is a random function we de�ne kA
��k by
kA
��k� � hTr
A�
��A
���i �
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Consider now functions A � ���� ��d �M� For � � p � 
 we can de�ne the space
Lp
���� ��d�M� with norm kAkp given by

kAkpp �
Z
�����	d

kA

�kpd
�

Similarly we can consider functions A � ���� ��d���M and associate with them
spaces Lp
���� ��d ���M� with norm kAkp given by

kAkpp �
Z
�����	d

kA

� ��kpd
�

We de�ne an operator which generalizes the operator given in 
������ For n �
�� �� � � � the operator Tn�	�b�� acts on n functions Ar � ���� ��d � M� � � r � n�
The resulting quantity Tn�	�b��
A�� � � � An� is a function from ���� ��d � � � M�
Speci�cally we de�ne


����� Tn�	�b��
A�� � � � � An�

� �� �X
x������xn�Zd

n��Y
r��

� bAr
xr�e
�ixr���xr

n
Pb
��
I � PTb�����

��
o� bAn
xn�e

�ixn���xn�
���

Evidently the operators 
������
����� correspond to the cases n � � and n � � in

������

Lemma ��	� Suppose 
 � p�� � � � � pn� p � � and �
p�
� � � �� �

pn
� �

p � Then if Ar �
Lpr
���� ��d�M�� � � r � n� the function Tn�	�b��
A�� � � � � An� � Lp
���� ��d �
��M� and

kTn�	�b��
A�� � � � An�kp � kbkn��k�k�
Qn

r�� kArkpr

�� kbk��n �
���	�

Proof� Consider �rst the case n � �� If A�� A� � L�
���� ��d�M� then it is clear
that T��	�b��
A�� A�� � L�
���� ��d ���M� and

kT��	�b��
A�� A��k� � kbkk�k�kA�k�kA�k�

�� kbk� �

If A� � L�� A� � L� then we can see by the argument of Lemma ��	 that
T��	�b��
A�� A�� � L� and

kT��	�b��
A�� A��k� � kbkk�k�kA�k�kA�k�

�� kbk�� �
�����

It follows therefore by interpolation theory that if A� � L�� A� � Lp� p � �� then
T��	�b��
A�� A�� � Lp and

kT��	�b��
A�� A��kp � kbkk�k�kA�k�kA�kp

�� kbk�� �
�����
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Suppose next that A� � Lp� � A� � Lp� and �	p� � �	p� � �	�� We have now that


�����

�Z
�����	d

d
 kT��	�b��
A�� A��

� ��k�
����

�
�X

m��

� Z
�����	d

d
k
X

x��x��Zd
bA�
x��e

�ix����x�

Pb
��
PTb�����m bA�
x��e
�ix����x��
��k�

����
�

Observe now that as in 
����� one hasZ
�����	d

d
k
X

x��x���Zd
bA�
x��e

�ix����x�b
��
Tb�����m bA�
x��e
�ix����x��
��k�

� 
���d
X
r�Zd

k
X

y������ym��

bA�
y��b
�y� ��
�m��Y
j��

r�rG�
yj � yj���b
�yj ��
�

bA�
r � ym����
�r ��k�

� 
���dk�k��
X
r�Zd

jj
X

y������ym��

bA�
y��b
�y� ��
�m��Y
j��

r�rG�
yj � yj���b
�yj ��
�

bA�
r � ym���jj�

� k�k��
Z
�����	d

d
k
� X
x��Zd

bA�
x��e
�ix����x�b
��
Tb�����mId

�
A�

�k�

� k�k��
Z
�����	d

d
k
X
x��Zd

bA�
x��e
�ix����x�b
��
Tb�����mIdjj�jjA�

�k�

� k�k��
� Z

�����	d
d
k

X
x��Zd

bA�
x��e
�ix����x�b
��
Tb�����mIdkp�

���p�
kA�k�p� �

We have already seen from interpolation theory that� Z
�����	d

d
k
X
x��Zd

bA�
x��e
�ix����x�b
��
Tb�����mIdkp�

���p�
� kbkm��kA�kp� �

We conclude therefore thatZ
�����	d

d
k
X
x��Zd

bA�
x��e
�ix����x�b
��
Tb�����m bA�
x��e

�ix����x��
��k�

� kbk�m��k�k��kA�k�p�kA� k�p� �
Arguing as in Lemma ��	 we also see thatZ

�����	d
d
k

X
x��x��Zd

bA�
x��e
�ix����x�Pb
��
PTb�����m bA�
x��e

�ix����x��
��k�

� 
m� ���kbk�m��k�k��kA�k�p�kA�k�p� �
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It follows now from 
����� that

kT��	�b��
A�� A��k� � kbkk�k�kA�kp�kA�kp�

�� kbk�� �
�����

provided �	p� � �	p� � �	�� We can now use the inequalities 
������
����� to do a
further interpolation� Thus we have if p � � and �	p� � �	p� � �	p then

kT��	�b��
A�� A��kp � kbkk�k�kA�kp�kA�kp�

�� kbk�� �

This proves the result for n � ��
To deal with n � � we subdivide into � cases�


a� �	p� � �� �	p� � �� �	p� � ��

b� �	p� � �	�� �	p� � �� �	p� � ��

c� �	p� � �	�� �	p� � �� �	p� � ��

d� �	p� � �	p� � �	�� �	p� � ��

e� �	p� � �	p� � �	�� �	p� � ��

f� �	p� � �	p� � �	p� � �	��

g� �	p� � �	p� � �	p� � �	��

For 
a� it is easy to see that

kT��	�b��
A�� A�� A��k� � kbk�k�k�kA�k�kA�k�kA�k�

�� kbk�� �

For 
b� we use the argument of Lemma ��	 to conclude

kT��	�b��
A�� A�� A��k� � kbk�k�k�kA�k�kA�k�kA�k�

�� kbk�� �

The Riesz�Thorin Theorem applied to 
a�� 
b� yield for 
c� the inequality�

kT��	�b��
A�� A�� A��kp � kbk�k�k�kA�kp�kA�k�kA�k�

�� kbk�� �

where p � p�� For 
d� we use the argument to obtain 
����� to conclude that

kT��	�b��
A�� A�� A��k� � kbk�k�k�kA�kp�kA�kp�kA�k�

�� kbk�� �

Now the Riesz�Thorin Theorem applied to 
c� and 
d� yield for 
e� the inequality

kT��	�b��
A�� A�� A��kp � kbk�k�k�kA�kp�kA�kp�kA�k�

�� kbk�� �

where �	p � �	p� � �	p�� To obtain an inequality for 
f� we use the argument to
obtain 
������ This reduces us to the case dealt with in 
e�� Hence we can use the
inequality for 
e� to obtain the bound

kT��	�b��
A�� A�� A��k� � kbk�k�k�kA�kp�kA�kp�kA�kp�

�� kbk�� �

Finally the Riesz�Thorin Theorem applied to 
e� and 
f� yields the inequality 
���	�
with n � � for 
g�� Since it is clear we can generalize the method for n � � to all
n� the result follows� �
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Lemma ��
� Suppose 
 � p�� � � � � pn� p � � and
�
p�
� � � �� �

pn
� �

p � Then if Ar �
Lprw 
���� ��d�M�� � � r � n� the function Tn�	�b��
A�� � � � � An� � Lpw
���� ��d �
��M� and

kTn�	�b��
A�� � � � � An�kp�w � Ckbkn��k�k�
Qn

r�� kArkpr�w

�� kbk��n �
�����

where the constant C depends only on p�� � � � pn�

Proof� We use Lemma ��� and Hunt�s Interpolation Theorem ����� Suppose n � ��
Now from Lemma ��� we know that for a given p�� � � p� �
� then

kT��	�b��
A�� A��kp� �
kbkk�k�kA�kp�kA�k�


�� kbk�� �

kT��	�b��
A�� A��k� � kbkk�k�kA�kp�kA�kq�

�� kbk�� �

where �	p� � �	q� � �	�� Hence the Hunt Theorem implies that

kT��	�b��
A�� A��kp�w � C
p�� p��kbkk�k�kA�kp�kA�kp��w

�� kbk�� �
��	��

provided �	p� � �	p� � �	p � �	�� p� �
� and C
p�� p�� is a constant depending
only on p�� p�� Suppose now that A� is �xed with kA�kp��w �nite for some p�� � �
p� �
� We consider the mapping

A� � T��	�b��
A�� A���

We see from 
��	�� that this maps L� to Lp�w � For � � � let p�
�� satisfy �	p�
�� �

�	p� � �	� � � � �	p
��� From 
��	�� we also see that it maps Lp���� to L
p���
w � It

follows again from interpolation theory that for any p�� p�
�� � p� � 
 it maps
Lp�w to Lpw where �	p� � �	p� � �	p� The inequality 
����� for n � � follows from
this� It is clear this method can be generalised to all n� �

Lemma ���� Let d � �� 
 � �� � � k� k� � d� Then qk�k� 

� 
� is a C� function

of 
 � ���� ��d� Further� let � � 
��� � � � � �d�� where �i � �� � � i � d� and j�j �
�� � � � �� �d � d� Then the function

Qd
i��


�
��i
��iqk�k� 

� 
� is in L

d�j�j
w 
���� ��d��

and kQd
i��


�
��i
��iqk�k�kd�j�j�w � C��
�d� where the constant C��
�d depends only on

���� d�

Proof� We argue as in Lemma ���� It is easy to see that the function " of
Lemma ��� has the property that

dY
i��



�

�
i
��i"

� 
� ��

is a sum of terms Tn�	�b��
A�� � � � � An�

� ��ek� where � � n � j�j� Ar � Lprw � � �
r � n� and �	p� � � � � � �	pn � j�j	d� The result follows now from Lemma ��� if
j�j � d	�� To deal with the case d	� � j�j � d� we argue exactly as for the d � �
case with j�j � �� �
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Proposition ���� Let d � �� Then the function Ga
x� de�ned by 
���� satis�es
the inequalities

� � Ga
x� � C��
�d�� � jxj���d� x � Zd�

jrGa
x�j � C��
�dlog�� � jxj�
� � jxj���d� x � Z
d�

where the constant C��
�d depends only on ���� d�

Proof� We argue as in Proposition ���� using Lemma ���� �

Proposition ��� gives an alternative derivation of the inequality 
���	�� We can
extend the argument in the proposition to obtain Theorem ���� To do this we need
the following improvement of Lemma ����

Lemma ����� Let qk�k�

� 
� be the function of Lemma ��� and j�j � d��� Suppose
� � Rd � j�j � �� Then for any �� � � � � � the function

dY
i��



�

�
i
��i
�
qk�k� 

 � �� 
�� qk�k�

� 
�

�
	j�j���

is in L
d��d���
w 
���� ��d�� and���� dY
i��



�

�
i
��i
�
qk�k�

 � �� 
�� qk�k� 

� 
�

�
	j�j���

����
d��d����w

� C��
�d�� �

where the constant C��
�d�� depends only on ���� d� ��

Before proving Lemma ���� we �rst show how Theorem ��� follows from it�

Proof of Theorem ���� We shall con�ne ourselves to the case d � � since the
argument for d � � is similar� Consider the representation 
����� for n�rGa��
x��
We have now�Z

j�j�
�jxj
�

�

ix�

�


���d

Z
j�j�
�jxj

d
e�ix��
�

�
�

� �n � e
�
�
e

�q

� 
�e
�
�

�
� �

ix�

�


���d

Z
j�j�
�jxj

d
e�ix��
n � e
�
�

e

�q

� 
�e
�
�

�
j
j �

Evidently one has a bound for the surface integral������
Z
j�j�
�jxj

����� � C	jxj��

If we integrate by parts again in the volume integral we have

�

ix�

�


���d

Z
j�j�
�jxj

d
e�ix��
�

�
�

� �n � e
�
�
e

�q

� 
�e
�
�

�
�
�

x��

�


���d

Z
j�j�
�jxj

d
e�ix��
�

�

�
�

���
n � e
�
�

e

�q

� 
�e
�
�
�

�
�

x��

�


���d

Z
j�j�
�jxj

d
e�ix��
�

�
�

�
n � e
�
�

e

�q

� 
�e
�
�
�

�
j
j �

Since q

� 
� is bounded and �q

� 
�	�
i is in L
�
w it follows that the average of the

surface integral over �� � � � � �� is bounded by C	jxj� for some constant C� To
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bound the volume integral let � � R� be such that e�ix�� � �� and � has minimal
magnitude� Then j�j � ��	jxj and

�

x��

�


���d

Z
j�j�
�jxj

d
e�ix��
�

�

�
�

���
n � e
�
�

e

�q

� 
�e
�
�
�

�
�

�x��

�


���d

Z
j�j�����jxj

d
e�ix���
�

�
�

���
n � e
�
�

e

�q

� 
�e
�
� �
n � e
�
 � ��

e

 � ��q

 � �� 
�e
�
 � ��

�
�
�

x��

Z
��jxj�j�j�����jxj

R

�e�ix��d
 �

whereR

� is the remainder term� Using the fact that �q	�
� � L�
w� �

�q	�
�� � L
���
w

we can easily see that

�

x��

Z
��jxj�������jxj

jR

�jd
 � C	jxj�

for some constant C� We can bound the �rst term above using Lemma ��� and
Lemma ����� Evidently we will get a term

Cj�j���
jxj�

Z
j�j�����jxj

�����
�

�

�
�

���
q

 � �� 
�� q

� 
�

�
	j�j���

����� d
j
j �
From Lemma ���� this is bounded by

Cj�j���
jxj�

�X
n��

Z
�n���jxj�j�j��n�jxj

� C �j�j���
jxj� jxj���

�X
n��

��n����� � ��C �

jxj� �

for some constant C �� Other terms are bounded using Lemma ���� We have proved
the �rst inequality of Theorem ���� The second inequality of the theorem for d � �
is proved similarly� �

Proof of Lemma ����� The argument follows the same lines as in Lemma ����
The main point to observe is that if f

� is given by

f

� �

dY
i��

�
�

�
i

��i�
ek
�
�ek� 

� bG�

�

�
�

with j�j � d then for any �� � � � � �� the function �f

 � �� � f

��	j�j���
is in L

d����j�j���
w and there is a constant Cd�� depending only on d� � such that

k�f

 � ��� f

��	j�j���kd����j�j����w � Cd��� provided j�j � � � �

�� Proof of Theorem ����Diagonal Case

Here we shall prove the inequalities of Theorem ��	� but without the exponential
fallo� term� We shall call this the diagonal case� First we show that Theorem ���
already gives us the diagonal case of the inequality 
����� in dimension d � ��

Corollary ���� The function Ga
x� t� satis�es the inequality

� � Ga
x� t� � C
����	�� �
p
t�� if d � ��
	���
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where the constant C
���� depends only on ���� If d � �� it satis�es an inequality�

� � Ga
x� t� � C�
d� ����	�� � t�����
	���

where � can be any number� � � � � �� and C�
d� ���� is a constant depending only

on �� d� ����

Proof� We have

Ga
x� t� � �


���d

Z
�����	d

j �Ga

� t�jd


� �


���d

Z
j�j���pt

d
 �
�


���d

Z
j�j���pt

d
 �

Since �Ga

� t� is bounded on ���� ��d it follows that
�


���d

Z
j�j���pt

d
 � C
d� ����	�� � td����
	���

The integral over fj
j � �	ptg is nonzero only if t � �	��d� In that case one has
from Theorem ����

�


���d

Z
j�j���pt

d
 � C
�� ����

Z
j�j���pt

d




�t��
�

for any � satisfying � � � � �� For d � � we have on taking � � �	� an inequalityZ
j�j���pt

d




�t��
� Cp

t
�

The inequality 
	��� follows from this and 
	���� For d � � and any p � d	� we
have Z

j�j���pt

d




�t��
� 
���d�����p�

�Z
j�j���pt

d




�t��p

���p
� Cp	t

d��p �

where the constant Cp depends only on p and we have chosen � to satisfy � �
� � d	�p� The inequality 
	��� follows now from this last inequality and 
	��� on
choosing p to satisfy d	�p � �� �� �

We can similarly use Theorem ��� to obtain estimates on the t derivative of
Ga
x� t��

Corollary ���� The function Ga
x� t� is di�erentiable w�r� to t for t � � and the

derivative satis�es the inequality�����Ga
x� t�

�t

���� � C
����	�� � t���� � if d � � �

where the constant C
���� depends only on ���� If d � �� it satis�es an inequality�����Ga
x� t�

�t

���� � C�
d� ����	�� � t���� �

where � can be any number� � � � � �� and C�
d� ���� is a constant depending only

on �� d� ����
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Observe now that Corollary 	�� almost obtains the diagonal case of the inequality

����� for d � �� In order to obtain this inequality for d � � we shall have to use
the methods of Section ��

Lemma ���� For d � �� there is a constant C
���� depending only on ��� such

that

� � Ga
x� t� � C
����	�� � t� � t � � �

Proof� We shall use the notation of Section �� in particular the functions h� k
de�ned by 
������ It is easy to see that
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where we have used the fact that the LHS of 
	�	� is bounded by a universal
constant� Evidently the �rst two terms on the RHS of the last inequality are
bounded by C	t� so we concentrate on the third term�
In view of 
��		� and the inequalities following it we haveZ
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for some constant C��
 depending only on ���� Now for Re

� � � and � � p �

let h��p

�� 
 � ���� ���� be the function

h��p

� � jIm
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�
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where �k

� 
� �� is given by 
����� We shall show that h��p � Lpw
���� ���� and there
is a constant Cp���
 depending only on p� ��� such that

kh��pkp�w � Cp���
� Re

� � �� � � p �
�
	���



Green�s Functions for Equations with Random Coe�cients ���

Observe now from 
�����
����� that
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for some universal constant C� Next we have that
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����� it follows thatZ
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If we use the inequality 
	��� we see from the last inequality that the RHS of 
	���
is bounded by Cp���
	t for some constant Cp���
 depending only on p� ���� We
conclude that if 
	��� holds thenZ

�����	�
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for some constant C��
 depending only on ����
To prove 
	��� note that �k

� 
� �� is a sum of terms PT	�b��
f� where T	�b�� is

the operator 
������ � is an entry of the matrix a
�� and f is the Fourier transform
of rjG�
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���� ���� with norm bounded by a constant times jIm
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The inequality 
	��� follows now from Lemma ����
Next� observe that for �nite N �Z N
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Since the estimates on ��k

� 
�	��Im

��� are similar to those on ��h

� 
�	��Im

���

we can argue as previously to conclude thatZ
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for some constant C��
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We can similarly sharpen the result of Corollary 	�� when d � ��

Lemma ���� For d � �� there is a constant C
���� depending only on ��� such

that �����Ga
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Proof� Integrating by parts in 
��	�� we have that

�

�t

Z �

�

h

� 
� cos�Im

�t�d�Im

�� �

lim
N��

��
t�

Z N

�

�
�
��h

� 
�

��Im

���
� Im

�

��h

� 
�

��Im

���

�
f�� cos�Im

�t�gd�Im

�� �

We can compute ��h
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estimates on Im
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used in the proof of Lemma 	��� We conclude therefore that there is a constant
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where we have used the fact that k
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parts we conclude that
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We can then argue just as for the integral in h thatZ
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So far we have not obtained diagonal estimates� even in dimension �� on spatial
derivatives of Ga
x� t�� which correspond to the estimates of Theorem ��	� Next we
shall prove these estimates for the case d � �� The method readily extends to the
case d � ��

Lemma ���� For d � � there is a constant C
���� depending only on ��� such

that

jriGa
x� t�j � C
����	�� � t���� �

Let � satisfy � � � � �� Then there is a constant C
�� ���� depending only on

�� ��� such that
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Proof� If we use the fact that for � � � � �� jej
�
�j � ����jej
�
�j� � then we see
from the proof of Lemma 	�� that it is su�cient to show that for t � ��

Z
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	���

This follows by the argument of Lemma 	�� if we can choose h��p � Lpw with
p � �	
����� We cannot do this since h��p � Lpw only for p � �� To get around this

we can argue similarly to Lemma ��� in the proof that k��qk�k�	�
i�
jk � L
���
w �

For Re

� � � and � � p �
� let g��p

�� 
 � ���� ��� be the function
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� � jIm

�j����p
� �X
k�k���

j h�k
�
� 
� �����k� 

� 
� ��	�
�i j
����
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Then from Section � we see that g��p � Lpw
���� ���� and there is a constant Cp���


depending only on p� ��� such that

kg��pkp�w � Cp���
� Re

� � �� � � p �
 �

Observe now that the contribution of the last term on the RHS of 
��		� to the
integral on the LHS of 
	��� is bounded by a constant timesZ

je���j���pt
d

�
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Z je���j�
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je

�j���Im

�����p d�Im
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Arguing as in Lemma 	�� we see that this is bounded by the RHS of 
	��� provided
� � �� Note that as � � � the estimate diverges� Since we can make similar
estimates for the other terms on the RHS of 
��		�� the result follows� �

We wish to extend Lemmas 	��� 	��� 	�� to d � �� To do this we need the
following lemma�
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Proof� Note that we can see �h

� 
�	��Im

�� � � for real 
 � � from 
����� if we

use 
����� and the fact that �
�
� 
� �� � �

� �
� ��� More generally the result follows
from the fact that the function g
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Evidently the LHS of this identity is real for all 
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Lemma ���� For d � � there is a constant C
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We can see from 
��		� that for m � �� �� � � � � the derivative �mh
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is bounded in absolute value by a sum of terms
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where the �r� r � �� � � � �m� �� are nonnegative integers satisfying the inequality
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By di�erentiating 
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It follows therefore from 
����� that there is a constant Cm depending only on m
such that 
	���� is bounded by Cm	jIm
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Let us assume now that d is odd and that the �rst integral in 
	��� is the correct

representation of 
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The �rst two terms on the RHS of the last inequality are bounded by Cd���
	t

d��

for some constant Cd���
 depending only on d� ���� We are left therefore to deal
with the �nal term�
Consider the simplest case of 
	���� when �r � �� r � � and �� � �m� Then
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provided �� � d � �� To do this we de�ne for d � p � 
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Since �� � d�� we can �nd p � d�� such that ��
�	�� d	�p� � �� The proof of
the inequality 
	���� follows now exactly the same lines as in 
	����
Next we consider the general case of 
	����� To do this we de�ne for r �

�� �� �� � � � � Re
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The inequality 
	���� follows now from Lemma ����
For the general case of 
	���� we need to show that
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De�ne now q by
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� � j � r� � � r � m��� let �r�j be nonnegative integers satisfying the inequality

m��X
r��

rX
j��


� � r � j��r�j � m�
	����

If we de�ne �r for � � r � m� �� by

�r �

rX
j��

�r�j �

m��X
j�r

�j�r �
	����

then we see from 
	���� that �r de�ned by 
	���� satis�es 
	����� It is also easy to
see that �mh

� 
�	��Im

��m is bounded in absolute value by a sum of terms�Qm��

r��

Qr
j��

���D�r���������
��r

�j���������
��j

E����r�j
j
 � e

� q

� 
�e
�
�jm���Pm��

r�� r�r
�
	����

where the �r�j satisfy 
	���� and the �r are de�ned by 
	����� Evidently the Schwarz
inequality implies that 
	���� is bounded by 
	����� We de�ne for r� j � �� �� �� � � � �
Re

� � � and p satisfying d	
r � j � �� � p �
� functions h��p�r�j

� by

h��p�r�j

� � jIm

�j�r�j���d�p���
� dX
k�k���

���D�r�k

� 
� ��
�
r

�j�k�

� 
� ��
�
j

E��������
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We shall show that for p � max��� d	
r�j����� the function h��p�r�j � Lpw
���� ��d�
and there is a constant Cp�r�j���
�d depending only on p� r� j� ���� d such that

kh��p�r�jkp�w � Cp�r�j���
�d� Re

� � �� max��� d	
r � j � ��� � p �
�
	����

In fact it is easy to see that 
	���� follows by arguing exactly as we did in Lemma ���
for the case d	� � j�j � d�
On replacing 
	���� by 
	���� the inequality 
	���� gets replaced by


	��	�

Z
je���j���pt

d

�

t�d�����

Z je���j�

�

Q�d�����
r��

Qr
j�� h��qr�j �r�j

�

��r�j

je

�jd���
P�d�����

r�� ��r����r

d�Im

��

�Im

��
P�d�����

r��

Pr
j���r�j���d�qr�j��r�j

� Cd���


td��
�

where the �r�j � �r satisfy 
	����� 
	����� Let q be de�ned

�

q
�

�d�����X
r��

rX
j��

��r�j
qr�j

�
	����

Then from 
	���� it follows that if qr�j � max��� d	
r� j����� � � j � r� � � r �

d� ��	�� and q � � then the function

�d�����Y
r��

rY
j��

h��qr�j �r�j

�
��r�j � Lqw
���� ��d� �

with norm bounded by a constant depending only on ���� d and the qr�j � We have
now from 
	����� 
	���� that

�d�����X
r��

rX
j��


r � j � �� d	qr�j��r�j �

d� � ��
�

� d

�q
�

where d� is an integer satisfying �� � d� � d� As before� the RHS of the last
inequality is strictly less than � if d� � � or d� � �� q � d	
d� � ��� Hence
if q � d	
d� � �� the power of Im

� on the LHS of 
	��	� is strictly less than
� and hence integrable� Finally� observe that in 
	���� one has �r�j � � unless
r � j � m� � � 
d� ��	�� Note that if r � j � 
d � ��	� then d	
r � j � �� � ��
On the other hand if �r�j 	� � for some 
r� j� with r � j � m� � then �r�j � � and
�r��j� � � for 
r

�� j�� 	� 
r� j�� In that case d� � d and 
	���� becomes �	q � �	qr�j�
whence the condition q � d	
d � �� becomes qr�j � �d	
d � ��� so we may still
choose qr�j � �� Thus 
	��	� holds on appropriate choice of the qr�j �
The proof of the lemma for d odd is complete if we make the observation that

from Lemma 	�	 one has

�

t

Z �

�

�k

� 
�

��Im

��
f�� cos�Im

�t�gd�Im

�� �

� �

t�d�����

Z �

�

��d�����k

� 
�

��Im

���d�����
sin�Im

�t�d�Im

��

� �

t�d�����

Z �

�

��d�����k

� 
�

��Im

���d�����
f�� cos�Im

�t�gd�Im

���
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depending on the value of d� Since the estimates on �mk

� 
�	��Im

��m are the
same as those on �mh

� 
�	��Im

��m the argument proceeds as before� The case
for d even is similar� �

Lemma ���� For d � � there is a constant C
���� d� depending only on ���� d
such that �����Ga
x� t�

�t

���� � C
���� d�	�� � t��d���� t � ��

Proof� Suppose d is odd and the �rst integral in 
	��� is the appropriate represen�
tation for this value of d� Then we have that

�

�t

Z �

�

h

� 
� cos�Im

�t�d�Im

��

is a sum of the terms�

� 
d� ��

�t�d�����

Z �

�

��d�����h

� 
�

��Im

���d�����
sin�Im

�t�d�Im

���

� �

t�d�����

Z �

�

��d�����h

� 
�

��Im

���d�����
Im

� cos�Im

�t�d�Im

���

Evidently the �rst term is bounded by C
���� d�	�� � t��d��� by Lemma 	��� On
integration by parts we can write the second term as a sum of two integrals�

� �

t�d�����

Z �

�

��d�����h

� 
�

��Im

���d�����
sin�Im

�t�d�Im

���

� �

t�d�����

Z �

�

��d�����h

� 
�

��Im

���d�����
Im

� sin�Im

�t�d�Im

���

Again Lemma 	�� implies that the �rst integral is bounded by C
���� d�	���t��d����
so we are left to deal with the second integral� Using the method of Lemma 	�� we
see that we are left to deal withZ

je���j���pt
d


����� �

t�d�����

Z je���j�

�

��d�����h

� 
�

��Im

���d�����
Im

� sin�Im

�t�d�Im

��

����� �
Arguing exactly as in Lemma 	�� we see this integral is bounded by C
���� d�	���
t��d���� We can similarly bound the corresponding integral in k

� 
� and hence the
result follows� �

Lemma ��	� For d � � there is a constant C
���� d� depending only on ���� d
such that

jriGa
x� t�j � C
���� d�	�� � t�d������ �

Let � satisfy � � � � �� Then there is a constant C
�� ���� d� depending only on

�� ���� d such that

jrirjGa
x� t�j � C
�� ���� d�	�� � t�d�������� �

Proof� Same as for Lemma 	��� �
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�� Proof of Theorem ����O� Diagonal case

Here we shall complete the proof of Theorem ��	� Thus we need to establish the
exponential fallo� in 
����� and in the inequalities of Theorem ��	� Evidently 
�����

implies that the periodic function �Ga

� t�� 
 � Rd � can be analytically continued

to C d � Our goal will be to establish analyticity properties of �Ga

� t� and derive
from them the inequality 
����� and Theorem ��	�

Lemma ���� Suppose � satis�es � � � � �� Then the periodic function �Ga

� t�� 
 �
Rd � can be analytically continued to the strip f
 � C d � jIm

�j � �g� There are

constants C�
���� d�� C�
���� d� depending only on ���� d such that

j �Ga

� t�j � C�
���� d� exp�C�
���� d��
�t�� jIm

�j � �� t � � �

Proof� We have already seen in Section � that the matrix q

� 
� of 
���� is de�ned
for all 
 � Rd � Re

� � �� is continuous in 

� 
� and analytic in 
 for �xed 
� We
shall show now that for any � � � there exists a constant C
���� d� �� � � depending
only on ���� d� � such that if Re

� � C
���� d� ���� then q

� 
�� 
 � Rd � can be
analytically continued to the strip f
 � C d � jIm

�j � �g and

kq

� 
�� q
Re

�� 
�k � �� jIm

�j � �� Re

� � C
���� d� ���� �
����

In view of 
����� 
���� this will follow if we can show that for any � � � there exists
a constant C
d� �� � � depending only on d� �� such that if Re

� � C
d� �����
then the operator Tk�k����� of 
��	�� which is bounded on L

�
�� for 
 � Rd � extends
analytically to a bounded operator on L�
�� for jIm

�j � � and

kTk�k����� � Tk�k����Re���k � �� jIm

�j � �� Re

� � C
d� �����
����

To prove 
���� observe that the Green�s function G�
x� satis�es an inequality

jr�krk�G�
x�j �
Cd exp

�� g
Re

��jxj�
�� � jxj�d � x � Z

d�

where g
z�� z � �� is the function

g
z� �

�
cd
p
z� � � z � ��

cd log
� � z�� z � ��
Here Cd� cd are positive constants depending only on d� It follows in particular
that there is a constant C�
d�� depending only on d� such that if � � � � � and
Re

� � C�
d��

�� then the function r�krk�G�
x�e
ix�� decreases exponentially in x

as jxj � 
� provided jIm

�j � �� It follows from 
��	� that if Re

� � C�
d��
� then

the bounded operators Tk�k����� on L�
��� 
 � Rd � extend analytically to bounded
operators on L�
�� provided 
 � C

d satis�es jIm

�j � ��
To prove 
���� we use Bochner�s Theorem ���� Thus for any � � L�
�� there is

a positive �nite measure d�	 on ���� ��d such thatD
�
�x���
�y ��

E
�

Z
�����	d

ei�x�y��
d�	
���
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Hence�

kTk�k�������Tk�k����Re����k� �
Z
�����	d

d�	
����� X
x�Zd

r�krk�G�
x�
h
expfix � 
� � 
�g � expfix � 
� �Re

��g

i����
�

Z
�����	d

d�	
��
���ek
� � 
�ek�
�� � 
� �G�
� � 
�

� ek
� �Re

��ek� 
�� �Re

�� �G�
� �Re

��
���� �

We have now that

ek
� � 
�ek�
�� � 
� �G�
� � 
� �
ek
� � 
�ek�
�� � 
�Pd

j�� ej
� � 
�ej
�� � 
� � 

�

Observe that

jek
� � 
�� ek
� �Re

��j � e� � � � ��� � � ���� ��d� jIm
j � � � ��

Hence if C�
d� � �	d and Re

� � C�
d��
� then���� dX

j��

ej
� � 
�ej
�� � 
� � 


���� � �

�

���� dX
j��

ej
� �Re

��ej
�� �Re

�� � 


����
����

� �

�
C�
d��

�� � � ���� ��d� jIm
j � ��

Similarly we see that���ek
� � 
�ek�
�� � 
�� ek
� �Re

��ek� 
�� �Re

��
���

� ������ � ����
� dX
j��

ej
� �Re

��ej
�� �Re

��
����

� � � ���� ��d� jIm
j � ��

We conclude therefore that the integrand in the d�	 integral is bounded as���ek
� � 
�ek�
�� � 
� �G�
� � 
�� ek
� �Re

��ek� 
�� �Re

�� �G�
� �Re

��
���

�
������ � ����

hPd
j�� ej
� �Re

��ej
�� �Re

��

i���
jPd

j�� ej
� � 
�ej
�� � 
� � 
j

�

jek
� � Re

��jjek� 
�� �Re

��j
�
	d�� � ��

p
d
nPd

j�� jej
� �Re

��j�
o����

jPd
j�� ej
� � 
�ej
�� � 
� � 
jjPd

j�� ej
� �Re

��ej
�� �Re

�� � 
j
�

We can see from 
���� that the expression on the RHS of the last inequality is
bounded by

����

C�
d�
�

���p
C�
d�

�
	d

C�
d�
�

�
p
dp

C�
d�
�

Evidently this last expression can be made smaller than � by choosing C�
d� su��
ciently large� whence 
���� follows�
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We have shown that 
���� holds� Next consider the function h

� 
� de�ned by

����� for 
 � Rd � Re

� � �� Furthermore� 
����� holds� We show now that there
is a constant C��
�d depending only on ���� d such that if Re

� � C��
�d�

� then
h

� 
� may be analytically continued to the strip f
 � C d � jIm

�j � �g andZ �

�

jh

� 
�jd�Im

�� � C��
�d � jIm

�j � � �
��	�

To do this we need to rewrite the identities 
���	�� 
����� in such a way that they
extend analytically in 
 from 
 � Rd to the strip jIm

�j � �� First consider 
���	��
We de�ne a function Aj

� 
� �� for 
 � Rd � Re

� � �� � � �� by

Aj

� 
� �� � ej
�
� � e�iej ����j � ej

��
�

�
f�

� 
� �� � �

� �
� ��g �

where �

� 
� �� is de�ned just before 
������ It is easy to see that the complex
conjugate Aj

� 
� �� � Aj
�
� 
� ��� We conclude from this and 
���	�� 
����� that

Re�e

�q

� 
�e
�
�� �
� dX

i�j��

ai�j
��Ai
�
� 
� ��Aj

� 
� ��
�


����

�
Re

�

	
h��

� 
� �� � �

� �
� ��� ��
�
� 
� �� � �
�
� �
� ���i

�
�

	

D
��
�
� �
���� �
�
� 
� ��� �L� � Re

�� ��

� 
� �� � �

� �
� ���

E
�

Similarly we have from 
����� that

Im�e

�q

� 
�e
�
�� � �
�
Im

� h�

� 
� ���
�
� �
� ��i
����

�
�

�
Im

� h�
�
� 
� ���

� �
� ��i �

We write now h

� 
� as

h

� 
� �
Re

� � Re�e

�q

� 
�e
�
��

�Re

� � Re�e

�q

� 
�e
�
���� � �Im

� � Im�e

�q

� 
�e
�
���� �


����

and use the expressions 
����� 
���� to analytically continue h

� 
�� 
 � Rd � to
complex 
 � C d � Note now that it follows from our proof of 
���� that for any � � �
there exists a constant C
���� d� �� � � depending only on ���� d� � such that if
Re

� � C
���� d� ���� then the function �k

� 
� �� of 
���� from Rd to L�
�� can
be analytically continued to the strip f
 � Rd � jIm

�j � �g and

D���e�iej ����j � ej

���k

� 
� ��� e�iej �Re�����j � ej
Re

����k
Re

�� 
� ��
����E � ��


����

j
j �j�k

� 
� ��� �k
Re

�� 
� ��j�
� � ��

� � j� k � d� jIm

�j � �� Re

� � C
���� d� �����
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It is easy to see from this and 
����� 
����� 
���� that there is a constant C
���� d�
depending only on ���� d such that

jh

� 
�j � �min
�

�

Re

� � �je
Re

��j� �
Re

� � 	�je
Re

��j�

�Im

���

�
�
����

jIm

�j � �� Re

� � C
���� d� �����

It is clear now from this last inequality that h

� 
� as de�ned by 
����� 
����� 
����
can be analytically continued to jIm

�j � � and that 
��	� holds�
Next consider the function k

� 
� de�ned by 
������ We shall show that there is

a constant C��
�d depending only on ���� d such that the function �k

� 
�	��Im

��
can be analytically continued to the strip jIm

�j � �� provided Re

� � C��
�d�

��
Furthermore there is the inequality

j�k

� 
�	��Im

��j � �

jIm

�j� � jIm

�j � �� Re

� � C��
�d�
��
�����

To see this we use the identity�

�k

� 
�

��Im

��
� Re

�
�� � �
�
� 
� ���

� 
� �� �
�
 � e

�q

� 
�e
�
���

�
� 
 � R

d �

The inequality 
����� follows now from the proof of 
����� and the inequalities 
�����
The proof of the lemma is completed by using the representation 
����� with

Re

� � C��
�d�
� and the inequalities 
��	�� 
������ �

Corollary ���� There are constants C�
d� ���� and C�
d� ���� � � depending only
on d� ��� such that

� � Ga
x� t� � C�
d� ���� exp
��C�
d� ����minfjxj� jxj�	tg

�
� x � Z

d� t � ��

Proof� Follows from Lemma ��� on writing

Ga
x� t� �
�


���d

Z
�����	d

�Ga

� t�e
�i��xd�Re

�� �

and deforming the contour of integration to 
 � C d with jIm

�j � min��� jxj	�C�t��
where C� � C�
���� d� is the constant in the statement of Lemma ���� �

Next we extend Lemma ��� to 
 � C d �
Lemma ���� Let � satisfy � � � � � and �Ga

� t�� 
 � C d � jIm

�j � � the

function of Lemma ���� Then for any �� � � � � �� there is a constant C�
���� d� ��
depending only ���� d� � and a constant C�
���� d� depending only on ���� d such

that

j �Ga

� t�j � C�
���� d� ��

�� � je
Re

��j�t�� � exp�C�
���� d��
�t�� jIm

�j � �� t � ��

Proof� Observe that one may choose C��
�d su�ciently large� depending only on
���� d such that both 
����� holds and the inequality

j�k

� 
�	��Im

��j � �
� � ��

��je
Re

��j�j
j � jIm

�j � �� Re

� � C��
�d�
� �
�����

The inequality 
����� is analogous to 
����� and is proved using 
����� We con�
clude then from 
������ 
���� just as we did in Lemma ��� that the LHS of 
�����
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is bounded by C�
���� d� ��	�� � je
Re

��j�t�� if jIm

�j � � provided Re

� �
C��
�d�

�� Since we can do similar estimates on �h

� 
�	��Im

�� the result follows
just as in Lemma ���� �

Corollary ���� The function Ga
x� t� satis�es the inequality

� � Ga
x� t� � C�
����


� �
p
t�
exp

��C�
����minfjxj� jxj�	tg
�
� if d � ��

where the constants C�
���� and C�
���� depend only on ���� For d � � it

satis�es an inequality�

� � Ga
x� t� � C�
���� d� ��


� � t��
exp

��C�
���� d�minfjxj� jxj�	tg
�
�

for any �� � � � � �� The constant C�
���� d� �� depends only on ���� d� � and

C�
���� d� only on ���� d�

Proof� Same as for Corollary 	�� on using the method of proof of Corollary ���
and Lemma ���� �

Next we generalize Lemma ��	�

Lemma ���� Let � satisfy � � � � � and �Ga

� t�� 
 � C d � jIm

�j � �� be the

function of Lemma ���� Then �Ga

� t� is di�erentiable for t � �� For any ��
� � � � �� there is a constant C�
���� d� �� depending only ���� d� � and a constant

C�
���� d� depending only on ��� such that������ �Ga

� t�

�t

����� � C�
���� d� ��

t�� � je
Re

��j�t�� exp�C�
���� d��
�t� � jIm

�j � � � t � � �

Proof� In analogy to the proof of the inequality 
��	�� we see that there are con�
stants C�
���� d� � � and C�
���� d� � � such that

j�h

� 
�	��Im

��j � C�
���� d�

jIm

�j min

�
�

Re

� � je
Re

��j� �
Re

� � je
Re

��j�

jIm

�j�
�
�


�����

jIm

�j � �� Re

� � C�
���� d��
� �

It follows then just as in Lemma ��	 that���� ��t
Z �

�

h

� 
� cos�Im

�t�d�Im

��

���� � C��
�d	t� jIm

�j � � �
�����

We can also see that there are constants C�
���� d� � � and C�
���� d� � � such
that ���� ��h

� 
���Im

���

���� � C�
���� d�

jIm

�j� min

�
�

Re

� � je
Re

��j� �
�

jIm

�j
�
�
���	�

jIm

�j � � � Re

� � C�
���� d��
� �

We conclude from this last inequality and 
����� that for any � � � there is a
constant C
���� d� �� such that���� ��t

Z �

�

h

� 
� cos�Im

�t�d�Im

��

���� � C
���� d� ��

t�� � je
Re

��j�t�� � jIm

�j � ��
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provided Re

� � C�
���� d��
�� Arguing similarly we see also that���� ��t �t

Z �

�

�k

� 
�

��Im

��
f�� cos�Im

�t�gd�Im

��

���� � C
���� d� ��

t�� � je
Re

��j�t�� �

jIm

�j � �� Re

� � C
���� d����

The result of the lemma follows from these last two inequalities and���� ��t exp�Re

�t�
���� � �

t
exp��Re

�t��

�

Corollary ���� The function Ga
x� t� is di�erentiable with respect to t for t � �
and satis�es the inequality�����Ga
x� t�

�t

���� � C�
����

t
� �
p
t�
exp

��C�
����minfjxj� jxj�	tg
�
� if d � ��

where the constants C�
���� and C�
���� depend only on ���� For d � � it

satis�es an inequality������Ga
x� t�

�t

���� � C�
���� d� ��

t�� � t��
exp

��C�
���� d�minfjxj� jxj�	tg
�
�

for any �� � � � � �� The constant C�
���� d� �� depends only ���� d� � and

C�
���� d� only on ���� d�

Proof� Same as for Corollary ��� on using Lemma ���� �

Lemma ���� There are constants C�
���� d� and C�
���� d� depending only on

���� d such that������ �Ga

� t�

�t

����� � C�
���� d��je
Re

��j� � ��� exp�C�
���� d��
�t� � jIm

�j � �� t � ��

Proof� In analogy to the inequalities 
��	�� we have from 
����� 
����� the inequal�
ities

�

t

Z �

�

jh

� 
�jf�� cos�Im

�t�gd�Im

�� � C�
���� d� �je
Re

��j� �Re

���

�����

�

t

Z �

�

���� �h

� 
���Im

��

����jIm

�jf�� cos�Im

�t�gd�Im

�� � C�
���� d��je
Re

��j��Re

���

provided 
 � C d and 
 � C satisfy
jIm

�j � �� Re

� � C�
���� d��

��
�����

where C�
���� d� and C�
���� d� depend only on ���� d�
Next we need to deal with the integral 
����� in k

� 
�� Observe �rst from 
����

that there are constants C�
���� d� and C�
���� d� depending only on ���� d such
that if 
����� holds then

jIm

�jjk

� 
�j � C�
���� d�� jIm

�j � Re

� � je
Re

��j��
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We can write k

� 
� as in Lemma ��� to be

k

� 
� �
b

� 
�

a

� 
�� � b

� 
��
�

where a

� 
� is the sum of Re

� and the RHS of 
���� whence b

� 
� is the sum
of Im

� and the RHS of 
����� We have now from 
���� that

jb

� 
�� b
Re

�� 
�j � �

��
jIm

�j� jIm

�j � Re

� � je
Re

��j� �

provided 
����� holds and the constant C�
���� d� is su�ciently large� We also have
that

ja

� 
�� a
Re

�� 
�j � �

��
a
Re

�� 
��

provided 
����� holds and C�
���� d� is su�ciently large� It follows from these last
two inequalities thatZ �

Re����je�Re����j�
jIm

�j
jb

� 
�j

ja

� 
�j�
ja

� 
�� � b

� 
��jd�Im

�� �C
���� d��Re

��je
Re

��j��

for some constant C
���� d�� provided 
����� holds with su�ciently large constant
C�
���� d�� Now the following lemma implies thatZ �

�

�j�

� 
� ��j��d�Im

�� � C
���� d��je
Re

��j� � ��� �

for some constant C
���� d� depending only on ���� d� provided 
����� holds with
su�ciently large C�
���� d�� We conclude then from these last inequalities that

lim
m��

�����
Z �m�t

�

k

� 
�Im

� cos�Im

�t�d�Im

��

����� � C
���� d��Re

� � je
Re

��j�� �


�����

for some constant C
���� d� provided 
����� holds� The Lemma follows now from

������ 
������ �

Lemma ���� Let �k

� 
� �� be the function de�ned by 
����� and � � � � �� There
is a constant C�
���� d� depending on ���� d such that if Re

� � C�
���� d��

� then

�k

� 
� ��� regarded as a mapping from Rd to L�
��� can be analytically continued

to f
 � C d � jIm

�j � �g� Furthermore� there is a constant C
���� d� depending
only on ���� d such thatZ �

�

D
j�k

� 
� ��j�

E
d�Im

�� � C�
���� d�� Re

� � C�
���� d��

�� jIm

�j � ��

Proof� We proceed as in Lemma ���� Let �k
t� 
� ��� t � �� be the solution to the
initial value problem�

��k
t� 
� ��
�t

� �L� � Re

���k
t� 
� �� � �� t � ��
�����

�k
�� 
� �� �
dX

j��

���j � ej
�
��eiej ���ak�j
��� hak�j
��i� � ��
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It is clear that 
����� is soluble for 
 � Rd � Re

� � �� and

�k

� 
� �� �
Z �

�

e�i Im���t�k
t� 
� ��dt�
�����

Taking Re

� � C�
���� d��
� for su�ciently large C�
���� d� it is clear that one

can solve 
����� for 
 � C d with jIm

�j � � and the resulting function is analytic
in 
� Evidently the corresponding function �k

� 
� �� de�ned by 
����� is analytic
in 
 for jIm

�j � �� Furthermore� from the Plancherel Theorem we have thatZ �

�

D
j�k

� 
� ��j�

E
d�Im

�� � ��

Z �

�

D
j�k
t� 
� ��j�

E
dt�

Now for 
 � C d let L�� be the adjoint of L� acting on L�
��� Thus L�� � L�� where
�
 is the complex conjugate of 
� Let �k
t� 
� �� be the solution of the equation

�L�� � Re

���k
t� 
� �� � �k
t� 
� ��� t � �� jIm

�j � ��

It follows from 
����� that�
�k
t� 
� ����k
t� 
� ��

�t

�
�
�j�k
t� 
� ��j�� � �� t � ��
�����

We also have that

�
�k
t� 
� ����k
t� 
� ��

�t

�
� Re

�
�L� �Re

���k ��k

�t

�
� Re

�
� ��k
�t
�L� � Re

���k

�
�����

� Re

�

�L� �Re

����k

�t
�k

�
�Re

�
� ��k
�t
�L� �L�� ��k

�
�

We conclude that�
��k

��k
�t

�
�
�

�

�

�t
Re

D
�L� � Re

���k�k

E
�
�

�
Re

�
� ��k
�t
�L� �L�� ��k

�
�

Observe now that�
� ��k
�t
�L� �L�� ��k

�
�

� � ��k�L�� � Re

���L� � Re

�����L� �L�� ��L�� � Re

�����k
�
�

Hence if C�
���� d� is su�ciently large one has������ ��k�t
�L� �L�� ��k

����� � �j�k
t� 
� ��j�� � t � �� jIm

�j � ��

Putting this inequality together with 
������ 
����� we have that

�

�

�

�t
Re

D
�L� � Re

���k�k

E
�
�

�

�j�k
t� 
� ��j�� � �� jIm

�j � �� t � ��

Integrating this inequality with respect to t we concludeZ �

�

�j�k
t� 
� ��j�� dt � Re
D
�k
�� 
� ���k
�� 
� ��

E
�

Arguing as in Lemma ��� we see that the RHS of this last inequality is bounded by
a constant C
���� d� depending only on ���� d� �
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Corollary ���� There are constants C�
���� d� and C�
���� d� � � depending only
on d� ��� such that�����Ga
x� t�

�t

���� � C�
d� ���� exp
��C�
d� ����minfjxj� jxj�	tg

�
� x � Z

d� t � ��

Proof� Same as for Corollary ��� on using Lemma ��	� �

Corollary ��� proves 
����� for d � �� Following the argument of Lemma 	�� we
shall use our methods to prove 
����� for d � ��

Lemma ���� For d � � there are positive constants C�
����� C�
���� depending
only on ��� such that

� � Ga
x� t� � C�
����

� � t
exp

��C�
����minfjxj� jxj�	tg
�
� x � Z�� t � ��

Proof� It will be su�cient to show that there are constants C�
����� C�
����
such thatZ

�����	�
j �Ga

� t�jd�Re

�� � C�
����

� � t
exp�C�
�����

�t�� jIm

�j � �� t � ��
�����

In view of Lemma ��� it will be su�cient to prove 
����� for t � �� It is also evident
from Lemma ��� thatZ
je�Re����j���pt

j �Ga

� t�jd�Re

�� � C�
����

t
exp�C�
�����

�t�� jIm

�j � �� t � ��

whence we are left to show that

Z
je�Re����j���pt

j �Ga

� t�jd�Re

�� � C�
����

t
exp�C�
�����

�t�� jIm

�j � �� t � ��


�����

Now the integral on the LHS of 
����� is a sum of an integral in h

� 
� and k

� 
��
We �rst consider the integral in h

� 
�� Following the argument of Lemma 	�� and
using 
���	� we see that it is su�cient to show thatZ

je�Re����j���pt
d�Re

��

����� �t�
Z je�Re����j�

�

��h

� 
�

��Im

���
f�� cos�Im

�t�gd�Im

��

�����
� C�
����

t
� jIm

�j � �� Re

� � C�
�����

��

for su�ciently large constant C�
���� depending only on ���� Again� arguing as
in Lemma 	��� we see it is su�cient to show that


���	�Z
je�Re����j���pt

d�Re

��
�

t�

Z je�Re����j�

�

� j�

� 
� ��j� �
je
Re

��j�Im

�f�� cos�Im

�t�gd�Im

��

� C�
����

t
� jIm

�j � �� Re

� � C�
�����

��
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De�ne for � � p �
 a function h��p

� by

h��p

� � jIm

�j��� � ��p

� �X
k��

�j�k

� 
� ��j�� ��� 
 � C d � jIm

�j � ��

Suppose now Im

� � R
� is �xed and regard h��p

� as a function of Re

� �

���� ���� Then one can see just as in Lemma 	�� that if jIm

�j � � and Re

� �
C�
�����

� for su�ciently large constant C�
���� depending only on ���� then
h��p � Lpw
���� ���� and there is a constant Cp���
 such that

kh��pkp�w � Cp���
� jIm

�j � �� Re

� � C�
�����
��

The inequality 
���	� follows from this last inequality just as in Lemma 	��� Hence
we have found an appropriate bound for the contribution to the LHS of 
�����
from the integral in h

� 
�� The contribution from the integral in k

� 
� can be
estimated similarly� �

We can similarly generalize Lemma 	�� to obtain the following�

Lemma ��	� For d � � there are positive constants C�
����� C�
���� depending
only on ��� such that�����Ga
x� t�

�t

���� � C�
����


� � t��
exp

��C�
����minfjxj� jxj�	tg
�
� x � Z�� t � ��

Next we wish to consider derivatives of Ga
x� t� with respect to x � Zd� If d � �
then it is clear from Corollary ��� that

jriGa
x� t�j � C�
����


� �
p
t�
exp

��C�
����minfjxj� jxj�	tg
�
� x � Z

�� t � ��

We can use Lemma ��� to obtain an improvement on this inequality�

Lemma ��
� Suppose d � � and � � � � �� Then there exist constants C�
���� ��
depending only on ���� � and C�
���� depending only on ��� such that

jriGa
x� t�j � C�
���� ��


� � t��
exp

��C�
����minfjxj� jxj�	tg
�
� x � Z�� t � ��

Proof� The result follows from Lemma ��� and the observation thatZ �

��

je
Re

��j
�� � je
Re

��j�t��� d�Re

�� �

C
��� ��
� � t�

�

for any ��� � satisfying �	� � � � �� � �� where C
��� �� is a constant depending
only on ��� �� �

We can improve Lemma ��� by using the techniques developed in Section ��

Lemma ���� Suppose d � � and � � � � �� Then there are constants C�
�����
C�
���� depending only on ��� and a constant C�
���� �� depending on ���� �
such that

jriGa
x� t�j � C�
����


� � t�
exp

��C�
����minfjxj� jxj�	tg
�
�
�����

jrirjGa
x� t�j � C�
���� ��

�� � t������
exp

��C�
����minfjxj� jxj�	tg
�
� x � Z�� t � ��


�����
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Proof� It will be su�cient to show that for any �� � � � � �� there are constants
C�
���� �� and C�
���� such thatZ �

��
je
Re

��j��� j �Ga

� t�jd�Re

�� � C�
���� ��

� � t�����
exp�C�
�����

�t��
�����

for jIm

�j � �� t � �� Now from Lemma ��� we haveZ
je�Re����j���pt

je
Re

��j��� j �Ga

� t�jd�Re

�� � C�
����

� � t�����
exp�C�
�����

�t��

for jIm

�j � �� so we are left to prove

Z
je�Re����j���pt

je
Re

��j��� j �Ga

� t�jd�Re

�� � C�
���� ��

t�����
exp�C�
�����

�t��


�����

for jIm

�j � �� t � �� Proceeding now as in Lemma ��� we write the integral on the
LHS of 
����� as an integral in h

� 
� and an integral in k

� 
�� We �rst consider
the integral in h

� 
�� If we use 
���	� we see that it is su�cient to show that


�����

Z
je�Re����j���pt

d�Re

��je
Re

��j�������� �t�
Z je�Re����j�

�

��h

� 
�

��Im

���
f�� cos�Im

�t�gd�Im

��

�����
� C�
���� ��

t�����
� jIm

�j � �� Re

� � C�
�����

�� � � � � ��

for su�ciently large C�
���� depending only on ���� Arguing as in Lemma ��� we
see that to prove 
����� it is su�cient to show that


�����

Z
je�Re����j���pt

d�Re

��je
Re

��j���

�

t�

Z je�Re����j�

�

� j�

� 
� ��j� �
je
Re

��j�Im

�f�� cos�Im

�t�gd�Im

��

� C�
���� ��

t�����
� jIm

�j � �� Re

� � C�
�����

�� � � � � ��

De�ne for � � p �
 a function h��p

� by

h��p

� � jIm

�j�������p
�j��

� 
� ��j����� � 
 � C d � jIm

�j � ��

We �x now Im

� � R and regard h��p

� as a function of Re

� � ���� ��� Then
one can see just as in Lemma ��� that if jIm

�j � � and Re

� � C�
�����

� for
su�ciently large constant C�
���� depending only on ���� then h��p � Lpw
���� ���
and there is a constant Cp���
 such that

kh��pkp�w � Cp���
� jIm

�j � �� Re

� � C�
�����
��
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Arguing as in Lemma 	�� we see that 
����� holds ifZ
je�Re����j���pt

d�Re

��
�

je
Re

��j��� t������p
Z je�Re����j�

�

h��p

�
�

�Im

��������p
d�Im

��

� C�
���� ��

t�����
� t � ��

The LHS of this last expression is bounded by

C

t������p

�X
n��

�p
t

�n

���� Z ��n���t

�

d�Im

��

�Im

��������p

Z
je����j��n���pt

h��p

�
�d�Re

��

� Cp���


t������p

�X
n��

�p
t

�n

���� �
��n��

t

���� � ��p�
�n��p

t

�� � ��p

� C
���� ��

t�����
�

provided we choose p to satisfy � � p � 		
� � ��� Hence the contribution to the
LHS of 
����� from h

� 
� is bounded appropriately� Since we can similarly estimate
the contribution from k

� 
� we have proved 
����� and hence 
������ Now 
�����
follows by taking � � � in 
������ and 
����� by taking � close to �� �

We have proven Theorem ��	 for d � �� It is clear by now that we can use the
methods developed in Section 	 to extend the results of Lemmas ���� ���� ��� to all
dimensions d � ��

�� Proof of Theorem ��	

For 
 � �� x � Rd � let G�
x� be the Green�s function which satis�es the equation�

�
dX

i��

��G�
x�

�x�i
� 
G�
x� � �
x�� x � R

d �

where �
x� is the Dirac � function� Analogously to 
��	� we de�ne an operator
Tk�k����� on L

�
�� by

Tk�k������
�� � �
Z
Rd

dx
��G�
x�

�xk�xk�
e�ix���
�x��� � � ��
����

Evidently Tk�k����� is a bounded operator on L�
��� Just as in Section � we can
de�ne operators Tb���� and Tj����� j � �� � � � � d associated with the operators 
�����
We then have the following�

Lemma ���� Let Tb���� and Tj����� j � �� � � � � d� be the operators associated with


����� Then if kbk � � the equation 
���� has a unique solution "k

� 
� �� �
H
��� 
 � Rd � 
 � �� which satis�es an inequality�

k"k

� 
� ��k � C
���� d�	��� kbk�� k � �� � � � � d�

where the constant C
���� d� depends only on ���� d� The function 

� 
� �
"k

� 
� �� from Rd � R� to H
�� is continuous�
Next we put b
�� � ��Id � a
���	� and de�ne a d � d matrix q

� 
� by 
�����

where "k

� 
� ��� k � �� �� � � � � d are the functions of Lemma ����
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Lemma ���� For 
 � Rd � 
 � �� the matrix q

� 
� is Hermitian and is a contin�

uous function of 

� 
�� Furthermore� there is the inequality

�Id � q

� 
� � �Id�
����

Proof� We use the operators Tk�k����� of 
���� to de�ne an operator T��� on H
���
Thus if � � 
��� � � � � �d� � H
�� then


T�����k �

dX
k���

Tk�k������k� �

It is easy to see that T��� is a bounded self�adjoint operator on H
�� which is
nonnegative de�nite and has norm kT���k � �� We can see this by using Bochner�s
Theorem as in Lemma ���� Now for � � C d � we put "� to be

"� �
dX

k��

�k"k �

where "k is the solution of 
����� Then from 
���� we have that

��q

� 
�� � h��a
���� ��a
��"�

� 
� ��i �
It is also clear from 
���� that "� satis�es

"�

� 
� ��� PTb���
� �"�

� 
� �� �
�

�
T��
� � �a
���� � a
��� �� � ��
����

To obtain the upper bound in 
���� we observe thatD
��a
��"�

� 
� ��

E
� ��
��	�

To prove 
��	� we generate "� from 
���� by a Neumann series� The �rst order
approximation to the solution is then

"�

� 
� �� � � �
�
T��
� ��a
���� ha
���i� �

Putting this approximation into 
��	� yields�
�a
��

�
� �
�
T��
� � �a
���� ha
���i

��
� � �

�

�
��a
�� � hai�T��
� � �a
��� hai��

� � ��
since T��
�� is nonnegative de�nite� One can similarly argue that each term in the
Neumann series makes a negative contribution to 
��	��
To prove the lower bound in 
���� we use the fact that

T �
��� � T������ 
A��� ��

where A��� is the bounded operator on L
�
�� de�ned by

A��� �
�� �

Z
Rd

dxG�
x�e
�ix���
�x���

Note that A��� is self�adjoint� nonnegative de�nite� and commutes with T���� It
follows now from 
���� that

T��
� �"� �
h
�� 


�
A��
� �

i
"� �
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Hence if we multiply 
���� by �"� and take the expectation value we have that

k"�

� 
� ��k� �
D
"�

� 
� ��b
��"�

� 
� ��

E
�




�

D
"�

� 
� ��A��
� �b
��"�

� 
� ��

E
�
�

�

D
"�

� 
� ��

h
�� 


�
A��
� �

i
�a
��� � hai ��

E
� ��

If we de�ne the operator K by

K � �� 


�
A��
� � �

then the previous equation can be written as

k"�

� 
� ��k� �
D
K"�

� 
� ��b
��"�

� 
� ��

E
� �

�

D
K"�

� 
� ���a
��� �Id��

E
�

Applying the Schwarz inequality to this last equation� we obtain

k"�

� 
� ��k� � �

�

D
K"�

� 
� ��b
��K"�

� 
� ��

E
�
�

�

D
"�

� 
� ��b
��"�

� 
� ��

E
�
�

��

D
K"�

� 
� ���a
�� � �Id�K"�

� 
� ��

E
�
�

��
h���a
�� � �Id��i �

Observing now that K is also nonnegative de�nite and bounded above by the
identity� we see from this last inequality thatD

"�

� 
� ��a
��"�

� 
� ��
E
� h���a
�� � �Id��i �

The lower bound in 
���� follows now from the Schwarz inequality on writing

h��a
��"�

� 
� ��i � h���a
�� � �Id�"�

� 
� ��i �
�

We have de�ned the functions "k

� 
� ��� k � �� � � � � d corresponding to the
solutions of 
����� Next we wish to de�ne functions �k

� 
� �� corresponding to
the solutions of 
����� To do this we consider an equation adjoint to 
����� Since
Tb���� � T���b
��� the adjoint T �b���� of Tb���� is T �b���� � b
��T��� � For k � �� � � � � d
let "�k

� 
� �� � H
�� be the solution to the equation�

"�k

� 
� ��� PT �
b���
� �"

�
k

� 
� �� �

�

�
�ak
��� hak
��i� � ��
����

where ak
�� is the k th column vector of the matrix a
��� Just as in Lemma ���
we see that "�k regarded as a mapping from Rd � R� to H
�� is continuous� We
also de�ne an operator S��� � H
��� L�
�� by

S����
�� �

dX
k���

Z
Rd

dx
�G�
x�

�xk�
e�ix���k� 
�x���
����

where � � 
��� � � � � �d� � H
��� Evidently S��� is a bounded operator� We de�ne
the functions �k

� 
� ��� k � �� � � � � d� then by

�k

� 
� �� � S��
� �"
�
k

� 
� ��� � � ��
����

where "�k

� 
� �� is the solution to 
����� It is easy to see that there is a constant
C
���� d� depending only on ���� d� such that

k�k

� 
� ��k � C
���� d�	
p

 �
����
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Let us de�ne �Ga

� 
� similarly to 
��	� by

�Ga

� 
� �
�


 � 
q

� 
�

� 
 � Rd � 
 � ��
����

where the matrix q

� 
� is as in Lemma ���� Suppose now f � Rd � R is a C�

function with compact support and Fourier transform �f

�� We de�ne �v

� 
� �� to
be

�v

� 
� �� �

�
�� i

dX
k��


k�k

� 
� ��

�
�Ga

� 
� �f

��

Let 
 � � be �xed� Then �v

� 
� ��� regarded as a function of 
 � Rd to L�
��� is
continuous and rapidly decreasing� Hence the Fourier inverse

v
x� 
� �� �
�


���d

Z
Rd

d
e�ix���v

� 
� ��� x � R
d �

regarded as a mapping of x � Rd to L�
�� is C�� In particular it follows that
v
x� 
� ��� regarded as a function of 
x� �� � Rd � � to C � is measurable and in
L�
Rd � ��� De�ne now the function u
x� 
� �� � v
x� 
� �x��� It is clear that
u
x� 
� ��� regarded as a function of 
x� �� � Rd � � to C is measurable and in
L�
Rd ���� with the same norm as v�
Lemma ���� With probability one the function u
x� 
� ��� x � Rd � is in L�
Rd � and
its distributional gradient ru
x� 
� �� is also in L�
Rd �� Furthermore u
x� 
� �� is a

weak solution of the equation

�
dX

i�j��

�

�xi

�
ai�j
�x�� �u

�xj

x� 
� ��

�
� 
u
x� 
� �� � f
x�� x � R

d �
�����

Proof� Since u
x� 
� �� � L�
Rd���� it follows that with probability one u
x� 
� ���
x � R

d is in L�
Rd �� To see that the distributional gradient of u
x� 
� �� is also in
L�
Rd� with probability one� we shall establish a formula for ru
x� 
� ��� To do this
we de�ne for any C� function of compact support g � Rd � C � an operator Ag��

on L�
�� by

Ag���
�� �

Z
Rd

dxg
x�e�ix���
�x��� � � L�
���

Evidently Ag�� is a bounded operator on L
�
��� Suppose now "k

� 
� �� � H
�� is

the function of Lemma ��� with components "k � 
"k��� � � � �"k�d� and �k

� 
� ��
is given by 
����� Then

Arjg���k

� 
� �� � �Ag��"k�j

� 
� ���
�����

where rjg is the j th partial of g� To see that 
����� holds� observe that if S��� is
the operator of 
���� then for � � H
���

Arjg��S���� � �Ag��

dX
k���

Tj�k������k� �
�����
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where � � 
��� � � � � �d� and Tj�k����� are the operators 
����� The identity 
�����
follows now from 
����� by observing that "k

� 
� �� � T��
� �"

�
k

� 
� �� � We have

now that

�
Z
Rd

dxrjg
x�u
x� 
� �� � �
Z
Rd

dxrjg
x�v
x� 
� �x��
�����

� � �


���d

Z
Rd

d
Arjg���v

� 
� ��

�
�


���d

Z
Rd

d
Ag���vj

� 
� ���

where

�vj

� 
� �� � �i
�

j �

dX
k��


k"k�j

� 
� ��

�
�Ga

� 
� �f 

��
���	�

Now we put�

vj
x� 
� �� �
�


���d

Z
Rd

d
e�ix���vj

� 
� ���

It is clear that vj
x� 
� ��� regarded as a function of 
x� ��� is in L
�
Rd ���� whence

vj
x� 
� �x�� is also in L�
Rd � ��� It follows now from 
����� that the function
rju
x� 
� �� � vj
x� 
� �x�� is in L�
Rd� with probability � in � and is the distri�
butional derivative of u
x� 
� ���
Next we wish to show that with probability �� u
x� 
� �� is a weak solution of the

equation 
������ To do that we need to observe that for any � � H
�� and C�

function g � Rd � C of compact support� one has

dX
j�k���

Arjg��Tj�k�����k� � �
Ag��S�����

dX
k���

Ark� g���k� �
�����

We have now� for any C� function g � Rd � R with compact support�

Z
Rd

dx

dX
i�j��

rig
x�ai�j
�x��rju
x� 
� �� �
Z
Rd

dx

dX
i�j��

rig
x�ai�j
�x��vj
x� 
� �x��


�����

�
�


���d

Z
Rd

d

dX

i�j��

Arig�� �ai�j
���vj

� 
� ��� �

Observe next that for any k� � � k � d�

dX
i�j��

Arig�� �ai�j
��"k�j

� 
� ��� � �
dX

i��

Arig��"k�i

� 
� ��

� �
dX
i��

Arig�� �bi�j
��"k�j

� 
� ��� �
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If we use the fact that "k � T��
�� "
�
k and 
������ then we see that

dX
i�j��

Arig��"k�i

� 
� �� � � 


�
Ag��S��
��"

�
k

� 
� �� �

dX
i��

Arig��"
�
k�i

� 
� ���

We also have from 
���� that

b
��"k

� 
� �� � b
��T��
��"
�
k

� 
� ��

� PT �
b���
� �"

�
k

� 
� �� � hb
��"k

� 
� ��i

� "�k

� 
� �� �
�

�
�ak
��� hak
��i� � hb
��"k

� 
� ��i

� "�k

� 
� �� �
�

�
ak
��� �

�
hak
�� � a
��"k

� 
� ��i �

It follows now from the last three equations that

dX
i�j��

Arig�� �ai�j
��"k�j

� 
� ��� � �
Ag���k

� 
� ���
dX

j��

Arjg��ak�j
��

� i�g

�
dX

j��


jqj�k

� 
��

Hence from 
���	�� 
����� we have thatZ
Rd

dx

dX
i�j��

rig
x�ai�j
�x��rju
x� 
� ��

� � 



���d

Z
Rd

d
Ag���v

� 
� �� � �


���d

Z
Rd

d
�
 � 
q

� 
�
� �Ga

� 
� �f 

��g

�

� �

Z
Rd

dxg
x�u
x� 
� �� �
Z
Rd

dxg
x�f
x��

where we have used 
����� The result follows from this last equation� �

Next� let Ga
x� y� 
� ��� x� y � Rd be the Green�s function for the equation 
������
It follows easily now from Lemma ��� that if Ga
x� 
� is the Fourier inverse of the

function �Ga

� 
� of 
����� then

Ga
x � y� 
� �
D
Ga
x� y� 
� ��

E
�

We can now use the methods of Section � to estimate Ga
x� 
�� We shall restrict
ourselves to the case d � � since the method generalizes to all d � �� Evidently
one can generalize Lemma ��� to obtain�

Lemma ���� Let d � �� 
 � �� � � k� k� � d� Then qk�k� 

� 
� is a C� function

of 
 � Rd and for any i� j� � � i� j � d� the function �qk�k�	�
i � L�
w
R

d � and

��qk�k�	�
i�
j � L
���
w 
Rd �� Further� there is a constant C��
� depending only on

��� such that

k�qk�k�	�
ik��w � C��
� k��qk�k�	�
i�
jk���� w � C��
 �
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We can use Lemma ��	 to estimate Ga
x� 
�� To do this suppose � � R
d � R is

a C� function of compact support satisfyingZ
Rd

�
y�dy � ��

For R � � we put �R
y� � Rd�
Ry�� Evidently the Fourier transform of �R is a
rapidly decreasing function and ��R

� � ��

	R�� where ��
�� � �� We de�ne now
the function Ga
x� 
� by

Ga
x� 
� � lim
R��

�


���d

Z
Rd

d

��R

�e

�ix��

�
 � 
q

� 
�
�
�
�����

Lemma ���� Let d � �� The function Ga
x� 
� de�ned by 
����� is continuous

in 
x� 
�� x � Rdnf�g� 
 � �� The limit Ga
x� � lim���Ga
x� 
� exists for all

x � Rdnf�g and Ga
x� is a continuous function of x� x 	� �� Further� there is a

constant C��
 depending only on ��� such that

� � Ga
x� 
� � C��
	jxj� x � Rdnf�g� 
 � ��
�����

Proof� We argue as in Proposition ���� Thus for � satisfying � � � � �� we write
Ga
x� 
� � lim

R��

Z
j�j�
�jxj

� lim
R��

Z
j�j�
�jxj

�
�����

It is clear that

lim
R��

Z
j�j�
�jxj

�
�


���d

Z
j�j�
�jxj

d

e�ix��

�
 � 
q

� 
�
�
�

To evaluate the limit as R � 
 in the second integral on the RHS of 
����� we
integrate by parts� Thus for �xed R � �� assuming x� 	� ��Z

j�j�
�jxj
�

�

ix�

�


���d

Z
j�j�
�jxj

d
e�ix��
�

�
�

�
��

	R�


 � 
q

� 
�


�
�
�����

�
�

ix�

�


���d

Z
j�j�
�jxj

d

e�ix�� ��

	R�
�
�
 � 
q

� 
�
�j
j �

Evidently for the surface integral in the last expression one has

lim
R��

Z
j�j�
�jxj

�
�

ix�

�


���d

Z
j�j�
�jxj

d

e�ix��
�

�
 � 
q

� 
�
�j
j �

To evaluate the limit of the volume integral in 
����� as R � 
� we need to
integrate by parts again� Thus� for the integral over fj
j � �	jxjg on the RHS of

����� one hasZ

j�j�
�jxj
�
��
x��

�


���d

Z
j�j�
�jxj

d
e�ix��
��

�
��

�
��

	R�


 � 
q

� 
�


�

�����

� �

x��

�


���d

Z
j�j�
�jxj

d
e�ix��
�

�
�

�
��

	R�


 � 
q

� 
�


�

�
j
j �

In view of Lemma ��	 it follows that the limit of the volume integral on the RHS
of 
����� is given by

lim
R��

Z
j�j�
�jxj

�
��
x��

�


���d

Z
j�j�
�jxj

d
e�ix��
��

�
��

�
�


 � 
q

� 
�


�
�
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We can similarly see that the limit of the average of the surface integral on the
RHS of 
����� is given by

lim
R��

Av
�	
	�

Z
j�j�
�jxj

�

Av
�	
	�

�
��
x��

�


���d

Z
j�j�
�jxj

d
e�ix��
�

�
�

�
�


 � 
q

� 
�


�

�
j
j

�
�

We have therefore established a formula for the function Ga
x� 
�� It easily follows
from this that Ga
x� 
� is continuous in 
x� 
�� x � R�nf�g� 
 � �� To show that
the function Ga
x� � lim

���
Ga
x� 
� exists we observe that q

� 
� converges as 
 � �

to a function q

� ��� This follows from the fact that the operators Tk�k����� of 
����
converge strongly as 
 � � to bounded operators Tk�k����� on L

�
��� One can prove
this last fact by using Bochner�s Theorem� Suppose p satis�es � � p � �� Then
�qk�k�

� 
�	�
i can be written as a sum�

�qk�k�

� 
�	�
i � fk�k��i

� 
� � gk�k��i

� 
��

The function fk�k��i

� 
� � L�
w
R

d � and converges in L�
w
R

d � as 
 � � to the
distributional derivative �qk�k�

� ��	�
i of the function �qk�k� 

� ��� The function
gk�k��i

� 
� � Lp
Rd � and converges as 
 � � in Lp
Rd � to �� This follows by
writing


�j
j� � 
��� � f

� 
� � g

� 
��

where f � L�
Rd � kf
�� 
�k� � 
��� and g � L�
Rd � kg
�� 
�k� � �� g

� 
� � �
if j
j � 
���� One can also make a similar statement about convergence of the
derivative ��qk�k�

� 
�	�
i�
j as 
 � �� We conclude that one can take the limit
as 
 � � in the integral formula we have established for Ga
x� 
�� In view of
Lemmas ��� and ��	 the limiting function Ga
x� is also continuous for x 	� ��
Finally the inequality 
����� follows by exactly the same argument as we used in
Proposition ���� �

We can complete the proof of Theorem ��� by applying the argument for the
proof of Theorem ��� at the end of Section ��

Lemma ���� Let d � � and Ga
x� be the function de�ned in Lemma ���� Then

Ga
x� is a C� function for x 	� � and there is a constant C��
� depending only on

��� such that

�����Ga
x�

�xi

���� � C��


jxj� � x 	� �� i � �� �� ��
�����
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Proof� Let r � � and suppose x � R� satis�es ��r � jxj � ��r� From Lemma ���
we have that

Ga
x� �
�


����

Z �

�

d�

Z
j�j�
�r

d

e�ix��


q

� ��


�����

�
�

ix�

�


����

Z �

�

d�

Z
j�j�
�r

d

e�ix��


q

� ��



�
j
j

� �

x��

�


����

Z �

�

d�

Z
j�j�
�r

d
e�ix��
�

�
�

�
�


q

� ��


�

�
j
j

� �

x��

�


����

Z �

�

d�

Z
j�j�
�r

d
e�ix��
��

�
��

�
�


q

� ��


�
�

where q

� �� is de�ned in Lemma ���� Let Ha
x� be the �nal integral on the RHS of

������ Then it follows from Lemmas ��� and ��	 that if x� 
 jxj then Ga
x��Ha
x�
is a C� function and���� �

�xj
�Ga
x��Ha
x��

���� � C��


jxj� � x 	� �� j � �� �� ��

To show the di�erentiability of Ha
x� we expand

��

�
��

�
�


q

� ��


�
�
��q���

� ��
�
q

� ��
��

�
�

�
q

� ��
��

�
Re

�X
j��

q��j

� ��
j

��
�
���	�

plus terms involving derivatives of q

� ��� The contribution of the �rst term on the
RHS of 
���	� to Ha
x� is given by

�

x��

�


����

Z �

�

d�

Z
j�j�
�r

d
e�ix��
q���

� ��

�
q

� ��
��

�����

�
�

ix��

�


����

Z �

�

d�

Z
j�j�
�r

d
e�ix��
q���

� ��

�
q

� ��
��

�
j
j

�
�

ix��

�


����

Z �

�

d�

Z
j�j�
�r

d
e�ix��
�

�
�

�
q���

� ��



q

� ��
��

�
�

Using the fact that �q���	�
� � L�
w
R

� �� it is easy to see that the RHS of 
����� is
a C� function of x� x 	� �� and its derivative is bounded by the RHS of 
������ The
same argument can be used to estimate the contribution to Ha
x� from all terms
on the RHS of 
���	� except the term involving the second derivative of q

� ��� The
contribution to Ha
x� from this term is given by Ka
x�	x
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�� where
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We can see now just as in Lemma ���� that for any � � R� � the function

���q
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where � is any number satisfying � � � � �� For h � R� we write
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where
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��q
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� gh
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f � L
���
w 
R� � and � � R� has the property that x � � � �� In view of 
����� and the

fact that f � L
���
w 
R� � it follows from the Dominated Convergence Theorem that

one can take the limit in 
����� as h � � to obtain that Ka
x� is di�erentiable in
x and
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We can see from this last expression that �Ka
x�	�xj is continuous in x and also
j�Ka
x�	�xj j � C��
� �
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