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Geometric K-Homology and Controlled Paths

Navin Keswani

Abstract. We show that K-homologous differential operators on an oriented,
Riemannian manifold M can be connected by a “controlled path” of operators.
The analytic properties of these paths allows us to measure a winding number
(in the sense of de la Harpe and Skandalis). To aid in the exposition we develop
a variant of Baum’s (M,E, f) model for K-homology. Our model removes the
need for Spinc structures in the description of geometric K-homology.
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1. Introduction

The topological K-theory of a locally compact, Hausdorff space is a well un-
derstood generalized cohomology theory defined in terms of equivalence classes of
stable vector bundles over the space. Its dual theory, K-homology, has been defined
in several ways, some of which are very analytical in their flavour. Atiyah [Ati69]
provided the first clue for the definition of K-homology in terms of elliptic pseu-
dodifferential operators on the space—Brown, Douglas and Fillmore provided an
analytic definition by developing the theory of extensions of C∗-algebras [BDF77]
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and Kasparov formalised Atiyah’s suggestion by using equivalence classes of gener-
alized elliptic operators to realise K-homology [Kas75]. These definitions essentially
equate K∗(M), the K-homology of a compact manifold M , to the group of exten-
sions of the algebra C(M) (of complex valued, continuous functions on M) by
the compact operators K (on an infinite dimensional, complex, separable Hilbert
space). For a Schatten ideal Lp, the notion of Lp-smooth elements in K∗(M) was
introduced and studied in [Dou81]. These results were extended in [Sal83, Gon90]
and more recently, in [Wan92].

Our work in this paper started in an attempt to develop an L1-smooth model
for the K-homology of a compact manifold M . Cycles for this model were to be
pairs (H,F) where

(1) H is a Hilbert space satisfying the same conditions as in Kasparov’s model
(see Definition 2.1);

(2) F is a bounded operator on H satisfying the following conditions:
(a) F2 − 1 ∈ L1 or F∗ −F ∈ L1 (these would correspond to the groups K0

or K1 respectively);
(b) [F, f ] ∈ L1 for f ∈ C(M); and
(c) F satisfies the condition of polynomial growth (when represented as

an integral operator, its kernel blows up at a polynomial rate as we
approach the diagonal—see Definition 3.3).

The concept of a degenerate cycle was to be as in Kasparov’s definition and the
equivalence relation was to be by norm-continuous paths of operators which satisfy
the conditions on F above and which also satisfy uniformly, the polynomial growth
condition.

We were unable to prove a suitable technical theorem [Hig87] necessary to define
the product in this model. However, what came out of our investigation was the
discovery that our equivalence relation (through controlled paths of operators of
the form (H,F)) is a suitable substitute for the usual notion of norm-continuous
paths of generalized elliptic operators [Kas75], at least for the K-homology of a
compact Riemannian manifold (Theorem 3.8).

The key property of controlled paths is that they have a winding number in
the sense of de la Harpe and Skandalis (see [Kes99, Lemma 4.1.7]). We have used
this in [Kes99] (see also [Kes98]) to prove the homotopy invariance of the relative
eta-invariant for manifolds whose fundamental group is torsion-free and for which
the assembly map µmax : K∗(Bπ1(M)) → K∗(C∗max(π1(M))) is an isomorphism
[BCH94] (see also [Wei88]).

Higson has pointed out that another application of this result would be a more
functorial proof of the Connes-Moscovici index theorem [CM90].

In proving the main theorem (3.8) we initially used Baum’s (M,E, f) model for
K-homology . The presence of Spinc structures in this theory meant that to prove
our result for the case of oriented manifolds we had to work with sphere bundles etc.
To improve the exposition we have developed an “(M,S, g)” model for geometric
K-homology in which the basic cycles are made up of manifolds which are only
oriented (see Definition 2.6).

This paper is organized as follows: Section 2 defines Kasparov’s analytic K-
homology (denoted Ka

∗ ), Baum’s topological model (denoted Ktop
∗ ) and following

Higson, the “(M,S, g)” model (denoted Kh
∗ ). We show that they all define the
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same theory and then proceed to use Kh
∗ for our model of K-homology in the rest

of the paper. Section 3 defines the notion of a controlled path and states the main
theorem. Section 4 is a technical section into which we have collected the technical
results necessary to prove the main theorem and in Section 5 we give the proof.

This work along with [Kes98, Kes99] is based on the author’s PhD thesis [Kes97].
We would like to thank Jonathan Rosenberg and Nigel Higson for their suggestions,
guidance and moral support, without which it is difficult to imagine this work
coming to fruition.

2. Geometric K-homology: (M,S, g) theory

In this section we will review Kasparov and Baum’s definitions of K-homology
and present a variant of Baum’s definition that removes the dependence on Spinc

structures. We start with Kasparov’s definition [Kas75].
Let K = K(H) be the algebra of compact operators on a Hilbert space H (which

is infinite-dimensional, complex and separable).

Definition 2.1. Let A be a C∗-algebra. Consider triples (H, φ, F ), where H is a
Hilbert space, φ : A → B(H) is a ∗-homomorphism and F ∈ B(H) is an operator
satisfying the following conditions :

(1) φ(a)(F − F ∗) ∈ K,
(2) φ(a)(F 2 − 1) ∈ K,
(3) [φ(a), F ] ∈ K.

A triple (H, φ, F ) is called degenerate if the compact operators appearing in (1), (2)
and (3) are 0. Two such triples are regarded as equivalent if there is a continuous
map [0, 1] → B(H) : t → Ft such that for all t, the triple (H, φ, Ft) satisfies the
conditions above. A commutative semigroup (with respect to the operation of direct
sum) is constructed from these equivalence classes and K1(A) is the abelian group
obtained by taking the quotient of this semigroup by the degenerates.
K0(A) is defined similarly, except we require H to be a Z2-graded Hilbert space,

φ to be degree zero (φ(a) preserves the grading for every a ∈ A), and F to be degree
1 (it reverses the grading of H).

If X is a locally compact topological space then the (analytic) K-homology of
X, Ka

∗ (X) is defined by
Ka
∗ (X) = K∗(C0(X)).

This definition is modelled on the properties of elliptic pseudodifferential oper-
ators on manifolds (see [Ati69]). Condition (2) above codes the property of the
existence of a parametrix while condition (3) codes the property of pseudolocality
[Tay81]. For this reason, we shall henceforth call an operator satisfying the above
conditions (1) through (3), an abstract elliptic operator.

Paul Baum’s (M,E, f) theory (as it is commonly known), provides a manifold
theoretic definition of K-homology [BD82, BDb82].

Definition 2.2. A Ktop-cycle on a topological space X is a triple (M,E, f) such
that:

(1) M is a compact, Riemannian, Spinc manifold without boundary. Let SM
be the spinor bundle of M . We require that there be a connection on SM
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that is compatible with the Levi-Civita connection on M in the sense that
for vector fields X,Y and s ∈ C∞(SM ),

∇X(Y s) = (∇XY )s+ Y∇Xs;(2.1)

(2) E is a complex Hermitian vector bundle on M equipped with a connection
that is compatible with the inner product on E (see [Roe88, 1.27]);

(3) f is a continuous map from M to X.

M is not required to be connected and its components need not have the same
dimension; E may have different fiber dimension on different connected components
of M . Thus for Ktop-cycles on X, there is the evident disjoint union operation. De-
note this by (M1, E1, f1)∪(M2, E2, f2). Two Ktop-cycles (M,E, f) and (M ′, E′, f ′)
are isomorphic if there exists a diffeomorphism h mapping M onto M ′, preserving
the Riemannian and Spinc structures, h∗(E′) ∼= E (the connections on E and S
are the pullbacks of the connections on E′ and S′ respectively), and the following
diagram commutes

M
h−−−−→ M ′

f

y yf ′
X X.

Let Π(X) be the collection of all Ktop-cycles on X. Define an equivalence relation
∼ on Π(X) generated by the following three elementary steps.

(1) Bordism: (M0, E0, f0) ∼ (M1, E1, f1) if there exists a compact Riemannian,
Spinc manifold W with boundary, a complex Hermitian vector bundle E
on W and a continuous map f : W → X such that (∂W,E|∂W , f |∂W ) is
isomorphic to the disjoint union (M0, E0, f0) ∪ (−M1, E1, f1). Here −M1

denotes M1 with the Spinc structure on TM1 reversed [BDb82, Appendix].
We require that the connection on the Spinc structure on ∂W is isomorphic
to the connection on the Spinc structure on the disjoint union M0 ∪ −M1

and that the connection on E|Mi
is isomorphic to that on the bundles Ei

(for i = 0, 1). Also, we require that there be a collaring neighborhood of the
boundary ∂W over which the cycle (W,E, f) is a Riemannian product, in
the natural sense of the term.

(2) Direct sum: Suppose given (M,E, f) and also given a direct sum decompo-
sition E = E1 ⊕ E2. Then,

(M,E1 ⊕ E2, f) ∼ (M,E1, f) ∪ (M,E2, f).

(3) Vector bundle modification: Let M be a Spinc manifold. On M let H be
a C∞ Spinc vector bundle with even dimensional fibers. Let 1 denote the
trivial real line bundle on M—so 1 = M × R. Choose a smooth, positive-
definite symmetric inner product on H and hence on H ⊕ 1. Let M̂ =
S(H ⊕ 1) be the unit sphere bundle of H ⊕ 1. The Spinc structures on TM
and H give a Spinc structure on TM̂ and so M̂ is a Spinc manifold. Let
ρ : M̂ →M denote the projection to the zero section.

Fix a point p ∈ M and let n = dim(H). Since H has a Spinc structure,
there is a given associated bundle SH of Clifford modules over TM such
that Cl(H) ⊗ C ∼= End(SH). There is a natural grading on SH induced
by Clifford multiplication by the volume element that allows us to write



Geometric K-Homology and Controlled Paths 57

SH = S+
H ⊕ S−H . Let H0 and H1 denote the pullbacks of S+

H and S−H to H.
Then, H acts on H0, H1 by Clifford multiplication and this gives a vector
bundle map σ : H0 → H1.

Now M̂ = S(H⊕1) can be thought of as two copies of the unit ball bundle
of H, B0(H) and B1(H), glued together by the identity map of S(H)—i.e
M̂ = B0(H) ∪S(H) B1(H). Form a vector bundle Ĥ on M̂ by putting H0

on B0(H) and H1 on B1(H) and then clutching these two bundles along
S(H) by the map σ [Kar78]. So, Ĥ is constructed by gluing together the
two Clifford bundles S+

H and S−H , one over the northern hemisphere, the
other over the southern hemisphere—the gluing operation being described
by Clifford multiplication.

Notice that starting with M,H this clutching construction has produced
M̂, Ĥ, ρ.

Suppose now given (M,E, f) and a C∞ Spinc vector bundle H on M

with even-dimensional fibers. Use the above construction to obtain M̂, Ĥ, ρ.
Then the relation of vector bundle modification is given by:

(M,E, f) ∼ (M̂, Ĥ ⊗ ρ∗(E), f ◦ ρ).

Definition 2.3. Set
Ktop
∗ (X) = Π(X)/ ∼ .

Ktop
∗ (X) is an abelian group with respect to the operation of disjoint union.

Note that for a Ktop-cycle (M,E, f) on X, the equivalence relation ∼ preserves the
parity of the dimension of M . In Ktop

∗ (X) let Ktop
0 (X) (respectively Ktop

1 (X)), be
the subgroups given by all (M,E, f) with each connected component of M even
dimensional (respectively odd dimensional). Then

Ktop
∗ (X) = Ktop

0 (X)⊕Ktop
1 (X).

2.1. Isomorphism with analytic K-homology. The isomorphism

ξ : Ktop
∗ (X)→ Ka

∗ (X)

has a description in terms of the Dirac operator D on a Spinc-manifold M . Recall
that this is an order 1, elliptic differential operator on M defined on the space of
smooth sections of the spinor bundle SM on M [BD82, Roe88, LM90]. Given a
vector bundle E over M with a connection, we can form the Dirac operator on M
with coefficients in E,

DE
S : C∞(SM ⊗ E)→ C∞(SM ⊗ E)

and this is also an order 1, elliptic differential operator on M [BD82, BDb82].

Definition 2.4. A chopping function is a function χ : R→ R such that
(1) χ is a continuous odd function; and
(2) limx→∞ χ(x) = 1.

By the functional calculus for pseudodifferential operators [Tay81, Ch. 12], χ(D)
and χ(DE

S ) define abstract elliptic operators in the sense of Kasparov (see Defini-
tion 2.1).

The isomorphism between Baum’s topological K-homology and analytic K-
homology ξ : Ktop

∗ (X)→ Ka
∗ (X) is given by [BD82],

ξ(M,E, f) = [f∗(χ(DE
S ))].
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2.2. (M,S, g) theory. We now define a variant of Baum’s theory. The main
difference is that this theory will not use Spinc manifolds, instead the manifolds
appearing here will only need to be orientable. The aim is to represent fundamental
geometric operators such as the signature operator or the deRham operator on non
Spinc manifolds directly as K-cycles. Our model is motivated by Guentner’s use of
K-homology to prove the index theorem [Gue93] and also by suggestions of Higson.

Let Cl(TM) denote the bundle of Clifford algebras on a Riemannian manifold
M—so, the fiber of Cl(TM) at a point m ∈M is the Clifford algebra Cl(TmM) of
the inner-product space TmM [Roe88].

Definition 2.5. [Roe88, (2.3)] Let S be a bundle of Clifford modules over a Rie-
mannian manifold M . S is a Clifford bundle if it is equipped with a Hermitian
metric and compatible connection such that

(1) The Clifford action of a vector v ∈ TmM on Sm is skew-adjoint:

(vs1, s2) + (s1, vs2) = 0;

(2) The connection on S is compatible with the Levi-Civita connection on M as
in (2.1).

Let S be a Clifford bundle over a Riemannian manifold M and let γ : Cl(TM)⊗
S → S be the Clifford module structure. Define a new module structure γ̃ :
Cl(TM)⊗ S → S by

γ̃(v ⊗ s) = −γ(v ⊗ s), v ∈ TmM, s ∈ Sm.
S with the new module structure γ̃ is denoted by −S. −S is said to have the
opposite Clifford structure to S.

Definition 2.6. Let X be a topological space. A Kh-cycle 1 for X is a triple
(M,S, g) such that:

(1) M is a smooth, compact, oriented Riemannian manifold of dimension n;
(2) S is a Clifford bundle on M ; and
(3) g : M → X is a continuous map.

As in Baum’s theory, M is not required to be connected and its components need
not have the same dimension; S must have locally constant fiber dimension. Thus
there is an evident disjoint union operation between the Kh-cycles on X—denote
this by (M1, S1, g1)∪ (M2, S2, g2). The notion of isomorphism of Kh-cycles is as in
Baum’s definition.

If M is an even-dimensional, oriented, Riemannian manifold then a Clifford
bundle S over M has a Z2-grading given by Clifford multiplication by the volume
element [LM90, II.6]. In this case we will denote the decomposition of S as S =
S+ ⊕ S−. If M is odd-dimensional then such a grading does not exist.

Let Σ(X) be the collection of all Kh-cycles on X. Define an equivalence relation
∼ on Σ(X) generated by the following three elementary steps.

(1) Bordism: (M0, S0, g0) ∼ (M1, S1, g1) if there exists a compact, oriented
Riemannian manifold W with boundary ∂W , a Clifford bundle S on W and
a map g : W → X such that:

1The superscript h if for Higson who suggested this definition to us.
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(a) If M0,M1 are even-dimensional then

(∂W,S|∂W , g|∂W ) = (M0, S0, g0) ∪ (−M1, S1, g1) and;

(b) If M0,M1 are odd-dimensional then

(∂W,S+|∂W , g|∂W ) = (M0, S0, g0) ∪ (−M1,−S1, g1).

Here −M1 denotes M1 with the orientation on M1 reversed. We also
require that the connection on S|Mi

is isomorphic to the connection on the
bundles Si (for i = 0, 1). Finally, we require that there be a collaring neigh-
borhood of the boundary ∂W over which (W,S, g) is a Riemannian product
in the natural sense of the term. This definition is motivated by Baum’s
definition of Bordism—see [BD82], [BDb82, Appendix].

(2) Direct Sum: Suppose given (M,S, g) and also given a direct sum decompo-
sition S = S1 ⊕ S2. Then,

(M,S1 ⊕ S2, g) ∼ (M,S1, g) ∪ (M,S2, g).

(3) Vector bundle modification: (cf. [Gue93, §4.3]) Let (M,S, g) be a K-cycle on
X. A sphere bundle over M is a fiber bundle with fiber S2n and structure
group SO(2n)—for example it is the unit sphere bundle of H ⊕ 1 where H
is an even dimensional, oriented Riemannian vector bundle over M and 1
is the trivial complex line bundle over M . Let M̂ be a sphere bundle over
M with projection π : M̂ → M . The bundle of vertical tangent vectors is
TvertM̂ = ker π∗ ⊂ TM̂ . Suppose M̂ is equipped with an orientation and
Riemannian structure compatible with those of M and S2n, meaning that:
(a) The restriction of the metric to each fiber of M̂ gives the standard metric

on the sphere S2n.
(b) The projection π : M → M̂ is a Riemannian submersion. That is,

if the bundle of horizontal tangent vectors is defined by ThorizM̂ =
(TvertM̂)⊥ ⊂ TM̂ , then for p̂ ∈ M̂ the restriction of π∗ to ThorizM̂p̂ is
an isometry onto TMπ(p̂).

(c) If Tvert(M̂) and Thoriz(M̂) are equipped with orientations such that
the inclusion of the fiber in (a) and submersion in (b) are orientation
preserving, then TM̂ is oriented as the direct sum Tvert(M̂)⊕Thoriz(M̂).
The complexified exterior algebra Λ∗CTvert(M̂) is a Hermitian bundle on
M̂ . There are decompositions:

Λ∗CTvert(M̂) = ΛevenC Tvert(M̂)⊕ ΛoddC Tvert(M̂)

Λ∗CTvert(M̂) = Λ+
CTvert(M̂)⊕ Λ−CTvert(M̂),

corresponding to the deRham grading operator ε1 and the signature
grading operator ε2 (Clifford multiplication by the volume element) re-
spectively.

Let V be the +1 eigenbundle of ε1ε2. Equip V with a connection that
is compatible with the metric and with the Levi-Civita connection on M̂ .
Let cV denote “Clifford multiplication” of Tvert(M̂) on V (via internal and
external multiplication [Roe88, Lemma 1.12]) and let cS denote “Clifford
multiplication” of TM on S. Let εV be the grading operator on V given
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by the restriction of ε1 to V and define a Clifford multiplication on Ŝ =
π∗(S)⊗ V by,

ε̂ = ε⊗ εV
ĉ(v) = cS(π∗v)⊗ 1⊕ ε⊗ cV (vvert), v ∈ TM̂,

where v = vhoriz ⊕ vvert ∈ ThorizM̂ ⊕ TvertM̂ is the decomposition into
horizontal and vertical components. Finally equip Ŝ with the inner product
and compatible connection induced by those on V and E—thus we make Ŝ
a Clifford bundle over M̂ .

Letting ĝ = g ◦ π, the vector bundle modification relation is

(M,S, g) ∼ (M̂, Ŝ, ĝ).

As in Baum’s (M,E, f)-theory define

Kh
∗ (X) = Σ(X)/ ∼ .

Kh
∗ (X) is an abelian group with respect to the operation of disjoint union. Note

that for a K-cycle (M,S, g) on X, the equivalence relation ∼ preserves the parity
of the dimension of M . In Kh

∗ (X) let Kh
0 (X) (respectively Kh

1 (X)), be the sub-
groups given by all (M,S, g) with each connected component of M even dimensional
(respectively odd dimensional). Then

Kh
∗ (X) = Kh

0 (X)⊕Kh
1 (X).

2.3. Isomorphism between Ktop
∗ (X) and Kh

∗ (X). Let

Φ : Ktop
∗ (X)→ Kh

∗ (X)

be given by
Π(X) 3 [(M,E, f)]→ [(M,E ⊗ SM , f)] ∈ Σ(X),

where SM is the Spinc structure on the Spinc manifold M . Since SM is naturally
a Clifford bundle [LM90, II.7], E ⊗ SM is also a Clifford bundle [Roe88, 2.14] and
so the triple (M,E ⊗ S, f) ∈ Σ(X).

We need to check that Φ is well defined and we will show that it is an isomor-
phism. To do this we will first establish some crucial links between the equivalence
relation on Π(X) and Σ(X).

Lemma 2.7. If (M1, E1, f1) ∼ (M2, E2, f2) in Π(X), then (M1, E1 ⊗ SM1 , f1) ∼
(M2, E2 ⊗ SM2 , f2) in Σ(X).

Proof. We treat each of the three steps of bordism, direct sum and vector bundle
modification separately:

Bordism: Suppose given a bordism (W,E, f) in Π(X) between cycles (M1, E1, f1),
(M2, E2, f2) ∈ Π(X) (so W,M1 and M2 are Spinc manifolds). Then by tracing
through the definition of Baum’s bordism equivalence relation [BD82], [BDb82,
Appendix] it follows that (W,E ⊗ SW , f) is a bordism in Σ(X) between the cycles
(M1, E1⊗SM1 , f1), (M2, E2⊗SM2 , f2) ∈ Σ(X). The key point is that reversing the
Spinc structure on an even dimensional Spinc manifold is tantamount to reversing
the orientation of the manifold while on an odd dimensional Spinc manifold it
involves reversing the orientation and using the opposite Clifford structure on the
spinor bundle (see [BDb82, Appendix]).
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Direct sum: This operation is identical in both Π(X) and Σ(X) and so there is
nothing to show here.

Vector bundle modification: Let (M,E, f) be a Baum K-cycle and let H be a
2n dimensional C∞ Spinc vector bundle over M . As above let SM be the Spinc

structure on M and SH the Spinc structure on H. Let (M̂, Ê, f̂) be the result of
the construction described in (3) of the equivalence relation on Π(X). Recall that
M̂ = S(H ⊕ 1) and Ê = π∗(E) ⊗ Ĥ where Ĥ = S+

H ∪σ S−H . The following claim
completes the proof. �

Claim.
(1) The Spinc structure on M̂ , S

M̂
, is isomorphic to π∗(SM )⊗ π∗(SH).

(2) Let π∗(SH) = π∗(SH)+ ⊕ π∗(SH)− be the decomposition of π∗(SH) given
by Clifford multiplication. Then, Ĥ ' (π∗(SH)+)∗.

(3) The +1 eigenbundle V of the grading ε1ε2 (see (3) of the equivalence relation
on Σ(X)) is isomorphic to π∗(SH)⊗ (π∗(SH)+)∗.

(4) Let (M,S, f) = (M,E ⊗ SM , f) = Φ(M,E, f) and M̂ = S(H ⊕ 1). If
(M̂, Ŝ, f̂) is obtained from (M,S, f) using vector bundle modification in
Σ(X), then

(M̂, Ŝ, ĝ) ' (M̂,S
M̂
⊗ Ê, f̂) = Φ(M̂, Ê, f̂).

Proof of Claim. (1): Consider the diagram

M̂ S(H ⊕ 1) ⊂−−−−→ H ⊕ 1y yπ
M M.

So,
TM̂ ⊂ T (H ⊕ 1)|

M̂
= π∗(TM)⊕ π∗(H ⊕ 1).

We will call the summands the horizontal and vertical components of TM̂ respec-
tively. Thus,

Cl(TM̂) ⊂ π∗(Cl(TM))⊗ π∗(Cl(H ⊕ 1).

In this manner we get an action of Cl(TM̂) on π∗(SM )⊗ π∗(SH). If dim(M) = m

then the dimension of Cl(TM̂) is 22n+m and this is exactly the same as that of
End(π∗(SM )⊗ π∗(SH)). Thus, π∗(SM )⊗ π∗(SH) is a Spinc structure on M̂ .

(2): It is a straightforward though tedious calculation to show that the clutching
map for the bundle (π∗(SH)+)∗ is exactly the same as that for Ĥ and so as vector
bundles over M̂ , they are isomorphic.

(3): A consequence of (1) is that π∗(SH) is a Spinc structure for Tvert(M̂).
Recall that V is the +1 eigenbundle of the grading operator ε1ε2 on the exterior
bundle Λ∗C(Tvert(M̂)). To streamline notation, let Λ∗ denote the exterior bundle
and let S denote π∗(SH). Further, let S± denote π∗(SH)±. Recall (see [LM90,
II.5]), that Λ∗ ' S ⊗ S∗. Under the de Rham grading ε1,

S ⊗ S∗ ' (S+ ⊗ (S+)∗ ⊕ S− ⊗ (S−)∗)

⊕ (S+ ⊗ (S−)∗ ⊕ S− ⊗ (S+)∗),
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where we have grouped together first the even-degree terms, then the odd-degree
terms. Similarly, under the signature grading ε2,

S ⊗ S∗ ' (S+ ⊗ S+)∗ ⊕ S+ ⊗ (S−)∗)

⊕ (S− ⊗ (S−)∗ ⊕ S− ⊗ (S−)∗).

Thus, the +1 eigenspace of the grading operator ε1ε2 is

(S+ ⊕ S−)⊗ (S−)∗ = S ⊗ (S+)∗.

Reverting to the notation of the lemma,

V ' π∗(SH)⊗ (π∗(SH)+)∗.

(4): By (2),

Ê = π∗(E)⊗ Ĥ ' π∗(E)⊗ (π∗(SH)+)∗.

Thus, by (1) and (3),

S
M̂
⊗ Ê ' π∗(SM )⊗ π∗(SH)⊗ π∗(E)⊗ (π∗(SH)+)∗

' V ⊗ π∗(SM ⊗ E)

' Ŝ
�

Lemma 2.8. Φ is an isomorphism of abelian groups.

Proof. It is clear that Φ respects the operation of disjoint union of cycles and so
it is a group homomorphism.

That Φ is injective follows from methods identical to those used in the above
lemma.

To see that Φ is onto, let (N,S, g) be an arbitrary Kh-cycle (note in particular
that N is not necessarily a Spinc manifold). If N is even dimensional, use N̂ =
S(T ∗N ⊕ 1) and if N is odd dimensional, use N̂ = S(T ∗N). Then N̂ is a Spinc

manifold [BD82, §22, 24] and by vector bundle modification (N,S, g) ∼ (N̂ , Ŝ, ĝ)
which is now a Ktop-cycle and so is in the image of Φ. �

Note that the map Kh
∗ (X)→ Ka

∗ (X) is given by

(M,S, g)→ g∗([DS ]),

where DS is the Dirac operator on the Clifford bundle S [Roe88, 2.4].

Example 2.9. The K-homology class of the signature operator on an oriented,
Riemannian manifold M is given by (M,Λ∗C(M), id). Here Λ∗C(M) is the exterior
bundle on M which is naturally a Clifford bundle [Roe88, 2.12]. Also, the Dirac
operator of this bundle is the signature operator on M [Roe88, 2.13].

For the rest of this paper we will use the (M,S, g) model for geometric K-
homology.
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3. Controlled paths of unitary operators

In this section we will give a realisation of the equivalence in analyticK-homology
through what we call “controlled paths”.

Definition 3.1. [HR95] Let Y be a metric space. An operator F on a Hilbert
space H equipped with an action of C(Y ) is said to have finite propagation if
there is a constant R > 0 such that φFψ = 0 whenever φ, ψ ∈ C(Y ) have
d(Supp(φ), Supp(ψ)) > R (meaning that the distance between any point in Supp(φ)
and any point in Supp(ψ) is greater than R). The smallest such constant R is called
the propagation of F .

If F is an operator represented by a Schwartz kernel and acting on the L2-
sections of a vector bundle over a manifold M , then this condition is equivalent to
saying that the Schwartz kernel of F is supported within an R-neighborhood of the
diagonal in M ×M .

Definition 3.2. Let ε > 0. An ε-compression of a bounded operator F is an
operator Fε satisfying the following conditions:

(1) Fε is a trace class perturbation of F ;
(2) The propagation of Fε is no more than ε.

Following Higson and Roe [HR95], if F satisfies φFψ ∈ L1 when Supp(φ) ∩
Supp(ψ) = ∅ (which is the case for an order zero pseudodifferential operator on a
smooth, closed manifold), we construct an ε-compression Fε of F as follows: Let
{Uα} be a cover of M consisting of balls of diameter ε/2 and let {φα} be a partition
of unity of M subordinate to the Uα. Define

Fε =
∑

Supp(φα)∩Supp(φβ)6=∅
φαFφβ ,(3.1)

then Fε will be a trace class perturbation of F . Notice also that Fε is an operator
of propagation no more than ε.

Definition 3.3. An operator F is said to have polynomial growth if there is a
polynomial p such that for each ε > 0, there is an ε-compression of F , Fε, satisfying

||F − Fε||1 < p

(
1
ε

)
.

If F has a kernel representation via k(x, y) then this condition basically says
that the speed with which k(x, y) becomes singular as we approach the diagonal
is polynomial. If k(x, y) is locally integrable off the diagonal and if k(x, y) ≤
C · d(x, y)−n for a constant C, then the operator has polynomial growth.

The proof of Lemma 2.2, chapter II of [Tay81] shows that pseudodifferential
operators on Rn of order 0 satisfy the following property: for any compact K ⊂ Rn,
there is a constant C > 0 such that for x, y ∈ K,

|k(x, y)| ≤ C|x− y|−n.
Thus, compactly supported pseudodifferential operators are examples of operators
having polynomial growth.

Lemma 3.4. Let X,Y be a compact metric spaces and suppose that there is a
Lipschitz map f : X → Y . Let H be a Hilbert space equipped with an action of
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C(X) and let F be an operator of polynomial growth on H. Define f∗H to be the
Hilbert space H with an action of C(Y ) obtained by pulling back functions on Y
to functions on X via f , and then using the action of C(X). Then, F is also an
operator of polynomial growth on f∗H.

Remark 1. The condition that f be Lipschitz is not optimal—having f be Lipα
(for any α) would suffice.

Proof of Lemma 3.4. The Lipschitz condition provides the control necessary to
relate distances of supports of functions on Y with the distances of supports of
their pullbacks to X, so that if K is the Lipschitz constant for f then

d(Supp(φ), Supp(ψ)) = R =⇒ d(Supp(f∗φ), Supp(f∗ψ)) ≤ KR.
The lemma is an immediate consequence of this. �

Definition 3.5. Let Y be a metric space. If Ft is a path of bounded operators
on a Hilbert space H equipped with an action of C(Y ) then we say that Ft has
polynomial growth if there is a polynomial p such that given ε > 0, for every t there
is an ε-compression of Ft, Ft,ε, satisfying,

‖Ft − Ft,ε‖1 ≤ p
(

1
ε

)
.

We also require that the path Ft,ε have the same continuity and differentiability
conditions as the path Ft.

Definition 3.6. Let Y be a metric space. A path Ft of bounded operators on
a Hilbert space H equipped with an action of C(Y ) is called a controlled path
provided the following are true:

(1) The path Ft has polynomial growth in the sense of Definition 3.5;
(2) The paths F 2

t − 1 and Ft(F 2
t − 1) are paths made up of trace class operators

and are trace-norm continuous and piecewise continuously differentiable in
the trace norm.

Remark 2. It is not required that one-sided derivatives exist at the “breaks” in
the piecewise differentiable paths. The usefulness of controlled paths is illustrated
by the following lemma:

Lemma 3.7. If Ft, t ∈ [a, b] is a controlled path of self-adjoint operators on a
Hilbert space H, then [− exp(iπFt)] is a path of unitary operators on H such that :

(1) The path [− exp(iπFt)] is piecewise continuously differentiable in the trace
norm;

(2) The path [− exp(iπFt)] has a well defined winding number (in the sense of
de la Harpe and Skandalis [HS84]).

Remark 3. (1) The proof of this lemma is found in [Kes97, Lemma 5.1.7],
[Kes99, Lemma 4.1.7].

(2) The polynomial growth condition on a controlled path is in place so that
we can make estimates on the winding number of (− exp(iπFt)). This is
the key property that provides the control necessary to make estimates on
the winding number of the small time path that arises in our proof of the
homotopy invariance of relative η-invariants [Kes99, Theorem 4.2.1].
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The following is the main theorem of this paper:

Theorem 3.8. Let Y be a compact Riemannian manifold with boundary. Let
(M,S, g) and (M ′, S′, g′) be two equivalent K-cycles on Y (in the sense of Defi-
nition 2.6) and suppose that g : M → Y and g′ : M ′ → Y are Lipschitz maps. Let
χ(x) be a chopping function such that :

(1) The derivative of χ is Schwartz class.
(2) The Fourier transform of χ is smooth and is supported in [−1, 1].
(3) The functions χ2 − 1 and χ(χ2 − 1) are Schwartz class and their Fourier

transforms are supported in [−1, 1].
Let DS , DS′ be the Dirac operators of the Clifford bundles S and S′ respectively.
Then there are degenerate operators A,A′ such that the following properties hold.

(1) χ(DS)⊕A and A′ ⊕ χ(DS′) are defined on the same Hilbert space H.
(2) The Hilbert space H has an action of C(Y ).
(3) χ(DS)⊕A is connected to A′ ⊕ χ(DS′) by a controlled path (in the sense of

Definition 3.6).

Remark 4. The condition that Y be Riemannian is in place so that we can ap-
proximate certain continuous maps by Lipschitz maps. The boundary of Y can
be empty although the application of this theorem in [Kes99] uses the case when
∂Y 6= ∅. Also, note that this theorem is essentially a generalisation of Proposi-
tion 18.2 of [BD82].

We will devote Section 5 to the proof of this theorem. In Section 4 we prove
some technical results which are used in the proof.

4. Some technical results

Definition 4.1. [RS80, VIII.7] Let An, n = 1, 2, . . . and A be self-adjoint opera-
tors. Then, An is said to converge to A in the norm resolvent sense if (An + i)−1

converges to (A+ i)−1 in norm.

The following is a technical lemma that will be used several times in establishing
convergence in the norm resolvent sense.

Lemma 4.2. Let D,X be unbounded self-adjoint operators on a Hilbert space H.
Let C be a dense subset of H such that C ⊆ dom(D) ∩ dom(X). Suppose further
that

(1) D and X map C into itself.
(2) There is a bounded, self-adjoint operator B such that (DX + XD)v = Bv

for any v ∈ C.
(3) (D + t−1X) is essentially self-adjoint.
(4) X is bounded below on C—i.e for some ε > 0, ‖Xv‖2 ≥ ε‖v‖2.

Then:
(1) ‖X(D + t−1X + i)−1w‖ ≤ √

t2 + t‖B‖‖w‖ for any w ∈ C and the path
Ds = D + s−1X is continuous in the norm resolvent sense at any s 6= 0.

(2) ‖(D + t−1X + i)−1‖ → 0 as t→ 0.
(3) For any continuous function f on R that vanishes at ∞,

‖f(D + t−1X)‖ → 0 as t→ 0.
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Proof. By the hypotheses of the lemma, on C,
(D + t−1X)2 = D2 + t−2X2 + t−1B.

So, for v ∈ C,
‖(D + t−1X + i)v‖2 ≥ t−2‖Xv‖2 + t−1〈Bv, v〉.(4.1)

Thus,

‖Xv‖2 ≤ t2(‖(D + t−1X + i)v‖2 − t〈Bv, v〉
≤ t2‖(D + t−1X + i)v‖2 + t|〈Bv, v〉|.

Now by the Cauchy-Schwarz inequality and the assumption that B is bounded and
self-adjoint,

‖Xv‖2 ≤ t2‖(D + t−1X + i)v‖2 + t‖B‖‖v‖2.
Let w ∈ (D + t−1X + i)C and let v = (i+D + t−1X)−1w ∈ C . By the spectral

radius formula, ‖(i+D + t−1X)−1‖ ≤ 1, so ‖v‖ ≤ ‖w‖. Thus,

‖X(i+D + t−1X)−1w‖2 = ‖Xv‖2

≤ (
√
t2 + t‖B‖‖w‖)2.

Thus, ‖X(i+D+ t−1X)−1w‖ ≤√t2 + t‖B‖‖w‖. To establish the norm continuity
of the resolvents of the Dt, notice that for w ∈ (D + t−1X + i)C,
‖((Ds + i)−1 − (Dt + i)−1)w‖ = ‖(Ds + i)−1(Dt −Ds)(Dt + i)−1w‖

≤ ‖(Ds + i)−1‖ · |t−1 − s−1|
√
t2 + t‖B‖‖w‖.(4.2)

By the spectral radius formula, ‖(Ds + i)−1‖ ≤ 1. Therefore, by (4.2),

‖((Ds + i)−1 − (Dt + i)−1)w‖ ≤ |t−1 − s−1|
√
t2 + t‖B‖‖w‖

for w ∈ (D+t−1X+ i)C. Since D+t−1X is essentially self-adjoint, (D+t−1X+ i)C
is dense in H. Using this and the fact that the resolvents (Ds + i)−1 are bounded
it follows that this inequality extends to all w ∈ H. Thus, as t→ s, ‖(Ds + i)−1 −
(Dt + i)−1‖ → 0. So, for s 6= 0, the path Ds is continuous in the norm resolvent
sense at s, thus establishing (1).

For (2) we recall that from (4.1), for v ∈ C,
‖(D + t−1X + i)v‖2 ≥ ‖v‖2 + εt−2‖v‖2 + t−1〈Bv, v〉

which, by the assumptions on X and B

≥ (1 + εt−2 − t−1‖B‖)‖v‖2.
Thus, for w ∈ C, if we set v = (i+D + t−1X)−1w, then v ∈ C also and so,

‖w‖2 = ‖(i+D + t−1X)v‖2
≥ (1 + εt−2 − t−1‖B‖)‖v‖2.

So,

‖(i+D + t−1X)−1w‖2 ≤ 1
(1 + εt−2 − t−1‖B‖)‖w‖

2.

Thus since (i+D + t−1X)−1 is bounded and C is dense in H,

‖(i+D + t−1X)−1‖ ≤ 1√
1 + εt−2 − t−1‖B‖ → 0

as t→ 0.
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Finally for (3), we use the essence of the proof of Theorem VIII.20, [RS80]: By
the Stone-Weierstrass theorem, polynomials in (x + i)−1 and (x − i)−1 are dense
in C0(R), the continuous functions vanishing at ∞. Note that the methods used in
proving (2) apply to prove that

‖(D + t−1X − i)−1‖ → 0 as t→ 0.

Thus, (3) follows from (2). �

Definition 4.3. Let R(R) denote the space of rapidly decreasing functions on R;
thus a function f : R→ C belongs to R(R) if it is continuous and if for each N ≥ 0
there is a constant CN such that

|f(x)| ≤ CN (1 + |x|)−N
for all x ∈ R.

Lemma 4.4. Let f ∈ R(R). Suppose D is a self-adjoint operator whose jth eigen-
value λj satisfies |λj | ≥ p(j) for some non-constant polynomial p. Then, there
exists a polynomial q such that for all ε > 0,

‖f(εD)‖1 ≤ q
(

1
ε

)
.

Proof. Note that
‖f(εD)‖1 =

∑
j

|f(ελj)|.

Let the degree of the polynomial p be N ≥ 1. Since f ∈ R(R), there is a constant
C such that |f(x)| ≤ C(1 + |x|)−2. Thus,

‖f(εD)‖1 ≤
∑
j

C

(1 + |ελj |)2

≤
∑
j

C ′

(1 + εjN )2

≤ 1
ε2
K

for constants C ′ and K. �

Lemma 4.5. Let χ̃ be a chopping function defined as follows:

χ̃(x) =

{
sign(x), |x| > 1

x, |x| ≤ 1.

If D is a self-adjoint operator whose jth eigenvalue λj satisfies |λj | ≥ p(j) for some
non-constant polynomial p, then there is a polynomial q such that for all ε > 0,

‖χ̃(εD)− χ̃(D)‖1 ≤ q
(

1
ε

)
.

Proof. Note that the function χ̃(εx) is given by

χ̃(εx) =

{
sign(x), |x| > 1/ε

εx, |x| ≤ 1/ε.
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So,

|χ̃(εx)− χ̃(x)| =


|εx− x| |x| < 1

|εx± 1| 1 ≤ |x| ≤ 1/ε

0 1/ε ≤ |x|.
Thus, assuming for simplicity that the lowest eigenvalue of D is at least 1 in absolute
value,

‖χ̃(εD)− χ̃(D)‖1 =
∑
j

|χ̃(ελj)− χ̃(λj)|

=
N∑
j=1

1− ελj ,

where the sum is over the eigenvalues λj of absolute value less than or equal to 1/ε.
Since each term is bounded by 1, and since N is bounded by a polynomial, we are
done. �

Lemma 4.6. Let Y be a compact metric space of finite dimension (i.e., Y can be
embedded as a subset of Rn for some n > 0). Let F be a bounded operator on a
Hilbert space H equipped with an action of C(Y ). Suppose there is a polynomial q
such that for any ε > 0, if φ, ψ ∈ C(Y ) are such that d(Supp(φ), Supp(ψ)) > ε,
then

‖φFψ‖1 ≤ q
(

1
ε

)
.

Then, for the ε-compression Fε of F defined in (2.1), there is a polynomial p such
that for any ε > 0,

‖F − Fε‖1 ≤ p
(

1
ε

)
.

Proof. Fix ε > 0. Recall the definition of Fε from (2.1)—Let {Uα} be a cover of
M consisting of balls of diameter ε/2 and let ϕα be a partition of unity subordinate
to the Uα. Define

Fε =
∑

Supp(ϕα)∩Supp(ϕβ)6=∅
ϕαFϕβ .

Thus,
F − Fε =

∑
Supp(ϕα)∩Supp(ϕβ)=∅

ϕαFϕβ .

Since we can cover the unit cube in Rn by const.(2/ε)n balls of diameter ε/2, for
some constant C,

‖F − Fε‖1 ≤ C
(

2
ε

)n
q

(
2
ε

)
.

Note that the right hand side of the above inequality is a polynomial p in 1/ε. �

Lemma 4.7. Let χ be a chopping function which differs from χ̃ of Lemma 4.5 by a
function f ∈ R(R) and suppose the Fourier transform of χ is compactly supported
within [−1, 1]. Let Y be a compact metric space. Let Dt, 0 ≤ t ≤ 1 be a path
of self-adjoint elliptic, first order differential operators on a complete Riemannian
manifold Z such that there is a Lipschitz map Z → Y and the jth eigenvalue λt,j
of Dt satisfies either of the following conditions:
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(1) λt,j ≥ t−1p(j), or
(2) λt,j ≥ p(j) + t−1C

for some constant C and polynomial p. Then χ(Dt) is a path of operators of poly-
nomial growth on a Hilbert space equipped with an action of C(Y ).

Proof. Fix ε > 0. Let Ft = χ(Dt) and let F εt = χ(εDt). Note that from our
assumption on χ, Ft will have propagation 1 and F εt will have propagation ε, (see
[Roe89, §2]).

Let ψ, φ ∈ C(Y ) so that |φ(y)| ≤ 1 and |ψ(y)| ≤ 1 and so that d(Supp(φ),
Supp(ψ)) > ε. For technical convenience we will assume that the Lipschitz constant
for the map Z → Y is 1. Then, by finite propagation speed considerations, φF εt ψ =
0. Thus,

‖φFtψ‖1 = ‖φ(Ft − F εt )ψ‖1
≤ ‖Ft − F εt ‖1.(4.3)

Let χ̃ be as in Lemma 4.5 and let

γε(Dt) = χ(Dt)− χ(εDt), γ̃ε(Dt) = χ̃(Dt)− χ̃(εDt).

Then, letting f = χ− χ̃,

γε(Dt)− γ̃ε(Dt) = f(Dt)− f(εDt).(4.4)

By an argument similar to Lemma 4.4, ‖f(Dt)−f(εDt)‖1 is uniformly bounded by
a polynomial in 1/ε and by Lemma 4.5, ‖γ̃ε(Dt)‖1 is also bounded by a polynomial
in 1/ε; (examining the proof of the lemma, as t→ 0 we see that ‖γ̃ε(Dt)‖1 → 0 and
so this estimate is uniform). Thus, from (4.4) we may conclude that ‖γε(Dt)‖1 is
uniformly bounded by a polynomial in 1/ε and so by (4.3) and Lemma 4.6 we are
done. �

5. Proof of the main theorem

We will first show that a controlled path can be made to implement each of
the equivalence relations of bordism, direct sum and vector bundle modification.
The techniques used here are motivated by the works of Higson and Roe ([Hig91],
[Hig90] and [Roe89]).

5.1. Bordism. Recall the definition of the step of bordism in the equivalence re-
lation on Π(X).

Theorem 5.1.0. Suppose that (M,S, g) is a K-cycle over a compact, Riemannian
manifold Y such that g : M → Y is Lipschitz. Suppose further that (M,S, g) is
null bordant via a triple (Z ′, F ′, ω) and that χ is a chopping function that satisfies
the conditions on the chopping function in Theorem 3.8. Then, there is a Hilbert
space H equipped with an action of C(Y ) and degenerate operators A,A′ such that
there is a path of controlled operators on H connecting χ(DS)⊕A to A′.

Remark 5. Note that it is implicit that the Hilbert space H contains L2(M,S) as
a direct summand.

Scheme of Proof. We proceed in the spirit of the argument from Higson’s work
on the cobordism invariance of the index [Hig91]. Notice first that since Y is
Riemannian and g is Lipschitz, we can perturb ω : Z ′ → Y to a Lipschitz map.
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Modify Z ′ by attaching the cylinder M × [−10,∞) to the boundary of Z ′ and call
the resulting complete, non-compact manifold Z. There is a Lipschitz map Z → Y
obtained by taking ω on Z ′ and g composed with projection onto the first factor
on the product part. Let F = F ′ on Z ′ extended by S ⊕ 1 on the product part.
Let W = M ×R and S′ = S⊕ 1. We will construct a controlled path that connects
the operator χ(DS) to a degenerate as follows:

(I) Connect (χ(DS)⊕ degenerate) to an operator χ(DS′,x) .

(II) Connect
(
χ(DS′,x) 0

0 χ(−DF,x)

)
to a degenerate.

(III) Notice that from (II),χ(DS′,x) 0 0
0 χ(−DF,x) 0
0 0 χ(DF,x)

 ∼ degenerate⊕ χ(DF,x).(5.1.1)

We will show that
(
χ(−DF,x) 0

0 χ(DF,x)

)
is connected to a degenerate and

so the left hand side of (5.1.1) is equal to (χ(DS′,x) ⊕ degenerate). Thus,
the path just constructed and the path from (II) implements an equivalence
between χ(DF,x) and χ(DS′,x).

(IV) Connect χ(DF,x) to a degenerate.

5.1.1. Step I (The case of a product). If M is odd dimensional, then W =
R×M is even dimensional and the Dirac operator of S′ can be written as

DS′ =
(

0 DS + d
dx

DS − d
dx 0

)
.

If M is even dimensional then DS acts on the Clifford bundle S which has a Z2-
grading S = S+ ⊕ S− given by Clifford multiplication. Pull back S and its con-
nection to W and extend the Clifford action of TM to a Clifford action of TW
by letting the unit tangent vector e0 for R act as −i · vol where vol is the volume
element of M . The connection is compatible with the larger Clifford action and we
call DS′ the Dirac operator of this bundle. It can be checked that DS′ is described
precisely by the same formula as in the odd case above.

Let ∂ denote the operator d/dx and let,

DS′,x =
(

x DS + ∂
DS − ∂ −x

)
.

From Chapter 10, Section C of [Roe88],

U = ker
(
x ∂
−∂ −x

)
=

(
e−x

2/2

e−x
2/2

)
.

By definition, on V the operator DS′,x =
(

0 DS

DS 0

)
. We will show that on U⊥,

DS′,x is connected to a degenerate via a path Bs defined by

Bs =
(

0 DS

DS 0

)
+ s−1

(
x ∂
−∂ x

)
, 0 < s ≤ 1.
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The main idea here is that on U⊥ the operator
(
x ∂
−∂ x

)
is bounded below and

so by taking s to be small, we can make Bs “close to being invertible”. This is made
more formal by the following lemma and the technical tools developed in Section 4.

Lemma 5.1.1. Bs is continuous in the norm resolvent sense and for any function
f ∈ C0(R), f(Bs) converges in norm to 0.

Proof. Let X =
(
x ∂
−∂ −x

)
. Then, Bt = DS + t−1X. Let C = C∞c (W,S′) ∩ U⊥

(the compactly supported smooth sections of S′ off the kernel of X). Notice that C
is dense in H = L2(W,S′)∩U⊥ and D and X are unbounded, self-adjoint operators
on H such that the following properties hold.

(1) C ⊆ dom(DS) ∩ dom(X).
(2) Since DS commutes with ∂ and with x, (DSX +XDS)v = 0 for any v ∈ C.
(3) Since DS′ and X are essentially self-adjoint operators, DS′ + t−1X is also

essentially self-adjoint.
(4) On V ⊥, the operator X is bounded below. This is because X is unitarily

equivalent to the harmonic oscillator H =
(

0 ∂ + x
−∂ + x 0

)
and as in Sec-

tion C, Chapter 10 of [Roe88], H has a minimum non-zero eigenvalue of 1
and so is bounded below off its kernel.

Thus, applying Lemma 4.2, our conclusion follows. �

Lemma 5.1.2. Let f ∈ R(R) and f(x) > 0 for x > 0. Then f(Bs) is continuously
differentiable in L1 and f(Bs) ∈ L1 for all 0 < s ≤ 1.

Sketch of Proof. Adopting the notation of the previous lemma, our path

Bs = DS + s−1X.

B2
s is a positive operator and

B2
s = (DS)2 + s−2X2 + s−1A,

where A =
(

0 1
1 0

)
is a bounded operator. Since X is unitarily equivalent to

the harmonic oscillator, by Section C, Chapter 10 of [Roe88] the eigenvalues of
s−2X2 are s−2(2k+ 1), for k ≥ 0. Let the corresponding (normalized) eigenvectors
of s−2X2 be {ψk}. Then, by Section C, Chapter 10 of [Roe88], the ψk form an
orthonormal basis for L2(R). Similarly, let the eigenvalues of (DS)2 be λj . Then, by
Theorem 7.3 of [Roe88], λj ∼ j2/n (n = dim(M)), and if {φj} are the corresponding
(normalized) eigenvectors, then they form a basis of L2(M,S). LetH = L2(W,S′)∩
V ⊥. Since L2(M ×R) ' L2(M)⊗L2(R), the vectors {φj ⊗ψk} form a basis for H
and are eigenvectors of Bs = DS ⊗ I + I ⊗ s−1X. The corresponding eigenvalues
of B2

s are
µj,k = λj + s−2(2k + 1) + s−1c,

where |c| ≤ ‖A‖ = 1.
Now use the rapid decay of f to show by an explicit calculation that ‖f(Bs)‖1 →

0 as s → 0 and that ‖(f(Bs) − f(Bt))/(s − t)‖1 exists as t → s and in fact goes
to 0 as s→ 0. �
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Lemma 5.1.3. Assuming the hypotheses of Theorem 5.1.0, χ(Bs) is a controlled
path on the Hilbert space L2(W,S′), connecting χ(DS′) to (χ(DS)⊕ degenerate).

Proof. W is the product manifoldM×R. The mapW → Y obtained by composing
g with projection onto the first factor is Lipschitz since it is the composition of
Lipschitz maps.

As noted in the proof of Lemma 5.1.2, the eigenvalues of B2
s are

µj,k = λj + s−2(2k + 1)± s−1c.

Since λj ∼ j2/n, the µj,k grow at a rate bounded by a polynomial in k and j.
Applying Lemma 4.7 we see that χ(Bs) has polynomial growth.

Now let f = χ2−1 and g = χ(χ2−1). Then f, g ∈ R(R) by assumption and also
f(x) and g(x) are positive for x positive, so by Lemma 4.2 we may conclude that
f(Bs) and g(Bs) are smooth in the trace norm and consist of trace class operators.

We have verified the conditions of Definition 3.6 and so we conclude that χ(Bs)
is a controlled path. �

5.1.2. Step II. Recall that (M,S, g) is null bordant via (Z ′, F ′, ω), and we con-
struct Z from Z ′ by attaching the cylinder M × [−10,∞) to the boundary of Z ′.
Accordingly, F ′ extends to a bundle F over Z by allowing the bundle over the
cylinder to be S ⊕ 1. If M is odd dimensional so that Z is even dimensional, let

DF =
(

0 D−F
D+
F 0

)
be the Dirac operator of the Clifford bundle F . If M is even

dimensional so that Z is odd dimensional then there is no natural grading on F and

so we abuse notation to call DF the operator
(

0 DF

DF 0

)
. Let DF,x be defined by

DF,x = DF + γ · x,

where γ =
(

1 0
0 −1

)
is the grading operator. For clarity we will drop the grading

operator and write DF,x = DF + x.
Let σ be a smooth bump function on Z such that σ = 1 on M × (−1/2, 1/2) and

σ = 0 off M × (−1, 1). Let A =
(
σ 0
0 σ

)
. Let

1Pt =
(
DS′,x tA
tA −DF,x

)
0 ≤ t ≤ 1.

Note that 1P0 =
(
DS′,x 0

0 −DF,x

)
and 1P1 =

(
DS′,x A
A −DF,x

)
. Let

2Ps =
(
DS′ + s−1x s−1A

s−1A −DF − s−1x

)
0 ≤ s ≤ 1.

Note that 1P1 = 2P1—set

Pt =
{

1Pt, 0 ≤ t ≤ 1

2P(2−t), 1 ≤ t < 2.

Lemma 5.1.4. Pt is continuous in the norm resolvent sense and for any function
f ∈ C0(R), f(Pt) converges in norm to 0 as t→ 2.
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Proof. It suffices to prove continuity in the norm resolvent sense for the two paths
1Pt and 2Pt separately. Note that for any t, s ∈ [0, 1],

‖(1Pt + i)−1 − (1Ps + i)−1‖ = ‖(1Pt + i)−1(1Ps − 1Pt)(1Ps + i)−1‖
= ‖(1Pt + i)−1(s− t)A(1Ps + i)−1‖
≤ |s− t|‖A‖ → 0 as s→ t.

Thus 1Pt is continuous in the norm resolvent sense.
Let

X =
(
x A
A −x

)
D =

(
DW 0

0 −DZ

)
.

Then, 2Ps = D + s−1X, for 0 ≤ s ≤ 1. D and X are unbounded, self-adjoint
operators on the Hilbert space H = L2(W,S′) ⊕ L2(Z,F ). Let C = C∞c (W,S′) ⊕
C∞c (Z,F ). Then C is dense in H and

(1) C ⊆ dom(D) ∩ dom(X);
(2) Let Bv = (DX +XD)v for v ∈ C. Then,

B =
(
xDW +DWx ADZ −DWA
ADW −DZA xDZ′ +DZ′x

)
.

We claim that B is a bounded operator:

That the diagonal entries of B are bounded follows from the grading and
the fact that the commutators of differential operators with differentiable
functions are bounded. The key point to the off diagonal entries is that
differential operators are local and so, on the support of A, the differential
operators DZ and DW are the same. Thus, the off diagonal entries are
essentially the commutators of DW with A and DZ with A—since A is
made up from the differentiable, bounded function σ, these are bounded.

(3) The operators D + t−1X are essentially self-adjoint.

(4) X2 =
(
x2 +A2 0

0 x2 +A2

)
and so is bounded below on H.

By Lemma 4.2, it follows that 2Ps is continuous in the norm resolvent sense and
for any f ∈ C0(R), f(2Ps) → 0 in norm as s → 0. Note that this is equivalent to
Pt being continuous in the norm resolvent sense and for any f ∈ C0(R), f(Pt)→ 0
in norm as t→ 2. �

We will need the following technical results to establish condition (2) of the
Definition 3.6 for the controlled path we will construct from Pt.

Theorem 5.1.5. Let f be a function on R whose Fourier transform is smooth and
compactly supported. Let Dt be a family of first order differential operators on a
compact Riemannian manifold M such that locally,

Dt =
∑

at
∂

∂xi
+ bt,

where at, bt are smooth in t. Then, f(Dt) is a family of trace class operators whose
Schwartz kernels vary smoothly in t.

In [Roe87, Thm. 2.1], Roe proves a more general version of this theorem—his
proof covers a leafwise Dirac operator for a foliation on a compact manifold. Dt
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can be regarded as such a leafwise Dirac operator if we let the parameter space be
the leaf space and take the leaves to all be M .

Lemma 5.1.6. If f is a Schwartz class function whose Fourier transform is smooth
and supported within [−1, 1], then f(Pt) is smooth in L1 and f(Pt) ∈ L1 for all
0 ≤ t < 2.

Proof. Notice first that the operators f(Pt) have finite propagation (equal to 1)
[Roe89, Prop. 2.2].

The operators Pt are defined on the Hilbert space L2(Z,F )⊕L2(W,S′). Partition
Z ∪W into a compact piece C and a non compact piece NC.

Let V1 be projection onto the sections supported on C and V2 be projection onto
the sections supported on NC. Then,

f(Pt) = f(Pt)V1 + f(Pt)V2.

The range of the projection V2 is isomorphic to the space of sections supported on
the product manifold W and since the propagation of f(Pt) is finite, the operators
f(Pt)V2 are unitarily equivalent to the operators f(Bs) on the product manifold
W . Thus, f(Pt)V2 have the same spectral theory as the operators f(Bs) considered
in Lemma 5.1.2 and so the proof of the lemma can be adapted to prove that the
operators f(Pt)V2 are smooth in the trace norm and are each of trace class.

On the range of V1, the operators Pt are unitarily equivalent to first order elliptic
operators on a compact manifold and so by the functional calculus of pseudodiffer-
ential operators [Tay81, Ch. 12], the operators f(Pt)V1 are trace class.

As noted earlier, on the range of V1 the Pt are unitarily equivalent to a family of
first order differential operators on a compact manifold, (basically C doubled) and
so Theorem 5.1.5 applies to give us smoothness in the trace norm of f(Pt)V1.

It remains to show that in fact, the operators f(Pt) go to 0 in the trace norm as
t→ 2. From the definition of the path Pt, we are required to show that f(2Ps)→ 0
in the trace norm, as s → 0. Using the notation of the proof of Lemma 5.1.2, the
path 2Ps = D + s−1X. Let Rs = (2Ps)2. Then,

Rs = D2 + s−2X2 + s−1B,

where B is a bounded operator and X2 is bounded below. Thus, for small s,
s−2X2 + s−1B ≥ I and so for small enough s, and for g(x) = 1 + x2,

g(D + s−1X) = Rs + 1 ≥ D2 + I.

Let h(x) = 1/g(x). So, h ∈ C0(R) and

h(D + s−1X) ≤ (D2 + I)−1.

Further, by Lemma 5.1.2, ‖h(D + s−1X)‖ → 0 as s → 0. By the eigenvalue
estimates for D in [Roe88, Thm. 7.3], we know that (D2 + I)−1 is in the Schatten
class Lp for p > dim(M)/2. Thus, by the dominated convergence theorem [Sim79,
Thm. 2.16], for p = [dim(M)/2 + 1],

‖h(D + s−1X)‖p → 0.

By the Hölder inequality for Schatten classes [Sim79, Thm. 2.8], this implies that

‖(h(D + s−1X))p‖1 → 0.(5.1.2)
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Notice that since g is a polynomial, the function z(x) = (g(x))pf(x) is also a
Schwartz function. Thus, f(D + s−1X) = hp(D + s−1X).z(D + s−1X). So, by
(5.1.2) and the inequality ‖AB‖1 ≤ ‖A‖1‖B‖∞, for A ∈ L1, B ∈ B(H), [Con90,
IX.2],

‖f(D + s−1X)‖1 ≤ ‖(h(D + s−1X))p‖1‖z(D + s−1X)‖∞
→ 0 as s→ 0.

�

Lemma 5.1.7. Assuming the hypotheses of Theorem 5.1.0, χ(Pt) is a controlled
path of operators on the Hilbert space L2(Z,F )⊕ L2(W,S′), connecting(

χ(DS′,x) 0
0 χ(−DF,x)

)
to a degenerate operator.

Proof. We proceed in a similar fashion to Lemma 5.1.6. Partition Z ∪W into a
compact part C and a non-compact part NC. Since χ has compactly supported
Fourier transform, the operators χ(Pt) have finite propagation (equal to 1) [Roe89,
Prop. 2.2].

Let V1 be projection onto the sections supported on C and V2 be projection onto
the sections supported on NC. Then,

χ(Pt) = χ(Pt)V1 + χ(Pt)V2.

The range of the projection V2 is isomorphic to the space of sections supported on
the product manifold W and since the propagation of χ(Pt) is finite, the operators
χ(Pt)V2 are unitarily equivalent to the operators χ(Bs) on the product manifold
W . Thus, χ(Pt)V2 have the same spectral theory as the operators χ(Bs) considered
in Lemma 5.1.3. Thus by Lemma 4.7 χ(Pt)V2 has polynomial growth.

On the range of V1 the operators Pt are unitarily equivalent to elliptic differential
operators on a compact manifold (basically C doubled). By [LM90, Rmk. 5.11],
these are Dirac type operators and thus they have the same spectral theory as
Dirac operators on a compact manifold. Thus [Roe88, Thm. 7.3], the spectrum of
the χ(Pt)V1 grow at a polynomial rate and so Lemma 4.7 applies to allow us to
conclude that χ(Pt)V1 has polynomial growth.

Since χ2 − 1 and χ(χ2 − 1) are Schwartz class functions with finitely sup-
ported, smooth Fourier transforms, by Lemma 5.1.6 we see that χ2(Pt) − 1 and
χ(Pt)(χ2(Pt) − 1) are paths of trace class operators that are differentiable in the
trace norm.

Finally, since the maps Z → Y and W → Y are Lipschitz, we may conclude
that the path χ(Pt) is a controlled path on the Hilbert space L2(Z,F )⊕L2(W,S′)
(which has an action of C(Y )). �

5.1.3. Step III. Recall from the introduction to this section that in this step we

need to establish that
(
χ(−DF,x) 0

0 χ(DF,x)

)
is connected to a degenerate. We

proceed as follows:
Let

1Qt =
(−DF,x tI

tI DF,x

)
, 0 ≤ t ≤ 1
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and

2Qs =
(−DF,x s−1I
s−1I DF,x

)
, 0 < s ≤ 1.

Notice that 1Q0 =
(−DF,x 0

0 DF,x

)
and 1Q1 = 2Q1 =

(−DF,x I
I DF,x

)
. Define

Qt =
{

1Qt, 0 ≤ t ≤ 1

2Q(2−t), 1 ≤ t < 2.

Lemma 5.1.8. The path Qt is continuous in the norm resolvent sense and for any
f ∈ C0(R), f(Qt)→ 0 in norm as t→ 2.

Proof. As with Lemma 5.1.2, we proceed by establishing that both 1Qt and 2Qs
are continuous in the norm resolvent sense and that for any f ∈ C0(R), f(2Qs)→ 0

as s→ 0. Let X =
(

0 I
I 0

)
(in this case, X turns out to be a bounded operator).

Note that for any t, s ∈ [0, 1],

‖(1Qt + i)−1 − (1Qs + i)−1‖ = ‖(1Qt + i)−1(1Qs − 1Qt)(1Qs + i)−1‖
= ‖(1Qt + i)−1(s− t)X(1Qs + i)−1‖
≤ |s− t|‖X‖ → 0 as s→ t.

So, 1Qt is continuous in the norm resolvent sense.

Let D =
(−DF,x 0

0 DF,x

)
. Then,

2Qs = D + s−1X, 0 < s ≤ 1.

Now, D and X are self-adjoint operators on the Hilbert space H = L2(Z,F ) ⊕
L2(Z,F ) and let C = C∞c (Z,F )⊕C∞c (Z,F ). Then C is dense in H and noting that
dom(X) = H, we have:

(1) C = dom(D) ∩ dom(X).
(2) (DX +XD)v = 0 for any v ∈ C.
(3) The operators (D + t−1X) are essentially self-adjoint.
(4) X is bounded below.

Thus, by Lemma 4.2 we may conclude that 2Qs is continuous in the norm resolvent
sense and that for any f ∈ C0(R), f(2Qs)→ 0 in norm as s→ 0. �

Lemma 5.1.9. Assuming the hypotheses of Theorem 5.1.0, χ(Qt) is a controlled
path of operators on the Hilbert space L2(Z,F )⊕ L2(Z,F ), connecting(

χ(−DF,x) 0
0 χ(DF,x)

)
to a degenerate.

Proof. Partition the manifold Z into a compact part C and a non compact part
NC. Let V1 be projection onto the sections supported on C and V2 be projection
onto the sections supported on NC. Then,

χ(Qt) = χ(Qt)V1 + χ(Qt)V2.

The proof now proceeds in a similar manner to that of Lemma 5.1.7. �
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5.1.4. Step IV. Recall that now we have to connect χ(DF,x) to a degenerate.
We do this as follows: Let 1Rs = DZ + x+ s for s ≥ 0. Notice that this has the

effect of sliding the function x by s units to the left. Since the manifold Z ′ (from
which Z is obtained by attaching the cylinder M × [−10,∞) to the boundary M
of Z ′) is compact, for some s0 the function x+ s0 is non zero and bounded below
on the entire manifold Z.

Let 2Rs = DZ +s−1(x+s0) for 0 < s ≤ 1. Note that 1Rs0 = 2R1 = DZ +x+s0.
Let

Rs =
{

1Rs, 0 ≤ s ≤ s0

2Q(s0+1−s), s0 ≤ s < s0 + 1.

Lemma 5.1.10. The path Rs is continuous in the norm resolvent sense and for
any f ∈ C0(R), f(Rs)→ 0 in norm as s→ s0 + 1.

Proof. Proceeding as for Lemma 5.1.8, we establish continuity in the norm resol-
vent sense for the paths 1Rs and 2Rs and show that for any f ∈ C0(R), f(2Rs)→ 0
in norm as s→ 0. Note that for any t, s ∈ [0, s0],

‖(1Rt + i)−1 − (1Rs + i)−1‖ = ‖(1Rt + i)−1(1Rs − 1Rt)(1Rs + i)−1‖
= ‖(1Rt + i)−1(s− t)I(1Rs + i)−1‖
≤ |s− t| → 0 as s→ t.

So, 1Rt is continuous in the norm resolvent sense.
Let D = DZ and X = (x + s0). Note that 2Rs = D + s−1X. Now D and

X are unbounded, self-adjoint operators on the Hilbert space H = L2(Z,F ). Let
C = C∞c (Z,F ) be a dense subset of H. Then,

(1) C ⊆ dom(D) ∩ dom(X).
(2) Let Bv = (DX + XD)v for v ∈ C. Then, B is a bounded operator since B

is made up out of the commutator of the differential operator DZ with the
function smooth function x.

(3) The operators (D + t−1X) are essentially self-adjoint.
(4) Recall that s0 was chosen so that X = x+ s0 will be bounded below on H.
Thus, by applying Lemma 4.2 we may conclude that 2Rs is continuous in the

norm resolvent sense and that for any f ∈ C0(R), f(2Rs)→ 0 in norm as s→ 0. �

Lemma 5.1.11. Assuming the hypotheses of Theorem 5.1.0, χ(Rs) is a controlled
path of operators on the Hilbert space L2(Z,F ), connecting χ(DF,x) to a degenerate.

Proof. As for Lemma 5.1.9. �

5.2. Vector bundle modification. Suppose (M̂, Ŝ, ĝ) is obtained from (M,S, g)
by vector bundle modification. Using techniques from Higson’s work on Z/k index
theory [Hig90], we will construct a controlled path connecting (χ(DS)⊕ degenerate)
with χ(DŜ).

Recall that M̂ is a sphere bundle over M (with fibers spheres of dimension say
2n) with projection π : M̂ →M and Ŝ = V ⊗ π∗(S) where V is the +1 eigenspace
of the operator ε1ε2 on the complexified exterior bundle of TvertM̂ .

We work with the following decomposition of the tangent bundle of M̂ ,

TM̂ = π∗(TM)⊕ Tvert(M̂).
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Locally, M̂ = M ×N where N is the sphere of dimension 2n and locally,

DŜ = DS ⊗ 1⊕ 1⊗DV .(5.2.1)

Lemma 5.2.1. Let vol denote the volume form on N . The kernel of DV is one
dimensional and is generated by 1 + vol. Also, DV is an SO(2n) equivariant oper-
ator.

Proof. The kernel of the de Rham operator on N is two dimensional and generated
by 1 and vol. 1 + vol is in the +1 eigenspace of ε1ε1 while 1 − vol is in the -1
eigenspace. Thus, ker (DV ) is generated by 1 + vol.

Since V is “half the complexified exterior bundle of TvertM̂”, DV can be thought
of as “half the de Rham operator” in the sense that it is the de Rham operator
restricted to half of its domain. Since the de Rham operator is an SO(2n) equivari-
ant operator and the splitting of Λ∗ under ε1ε2 is SO(2n) equivariant, the operator
DV is an SO(2n) equivariant operator. �

Let {Uα} be a locally finite cover of M̂ consisting of contractible open sets and
let {φ2

α} be a smooth partition of unity subordinate to the Uα. Let φα denote
the pullbacks of the φα to Ĥ – this is also a partition of unity. Use this to splice
together the local picture (5.2.1) to write

DŜ =
∑
α

φα(DS ⊗ 1 + 1⊗DV )φα + Z0,

where Z0 is an order 0 differential operator arising from the fact that the symbols
of both sides of (5.2.1) are the same. Note that by the SO(2n) equivariance of
DV ,

∑
φα(1⊗DV )φα gives a canonical, well defined global operator on the vertical

vectors of M̂ . We will abuse notation slightly and call this global operator 1⊗DV .
Thus,

DŜ =
∑
α

φα(DS ⊗ 1)φα + 1⊗DV + Z0.

Our first homotopy will be to shrink off the order 0 term:

Bs =
∑
α

φα(DS ⊗ 1)φα + 1⊗DV + (1− s)Z0, 0 ≤ s ≤ 1.

So, B0 = DŜ and B1 =
∑
α φα(DS ⊗ 1)φα + 1 ⊗ DV . Let U = ker (1 ⊗ DV ).

By Lemma 5.2.1, U ' L2(S) ⊗ ker (DV ) which can be identified with L2(S) since
ker (DV ) is one dimensional. On U ,

B1 =
∑
α

φα(DS ⊗ 1)φα,

and by a symbol calculation similar to the one above,∑
α

φα(DS ⊗ 1)φα + Z1 = DS ,

for an order 0 operator Z1. Thus, we may connect DS to B1 by

Bs =
∑
α

φα(DS ⊗ 1)φα + (s− 1)Z1, 1 ≤ s ≤ 2.

To complete the construction of our path we will connect B1 on U⊥ to a degen-
erate using the same techniques as in stage I of the cobordism argument. On U⊥,
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the operator 1 ⊗ D2
V is bounded below (in the sense that it has a minimum, non

zero eigenvalue) and thus

Dt =
∑
α

φα(DS ⊗ 1)φα ⊕ t−1(1⊗DV ) 0 < t ≤ 1,

will connect B1 on U⊥ to a degenerate.

Lemma 5.2.2. The paths Bs, Dt are continuous in the norm resolvent sense and
for any function f ∈ C0(R), f(Dt) converges in norm to 0 as t→ 0.

Proof. For the paths Bs this is straightforward since Zk is a bounded operator for
k = 0, 1 and so

‖(Bs + i)−1 − (Bt + i)−1‖ = ‖(Bs + i)−1(t− s)Zk(Bt + i)−1‖
≤ |t− s|‖Zk‖ → 0 as t→ s.

The path Dt is of the form D+t−1X where D =
∑
α φα(DS⊗1)φα and X = 1⊗DV

on the space U⊥. Thus X is bounded below and D and X anticommute. Let
C = C∞(M̂) be the space of smooth sections of the bundle Ŝ over M̂ . This is dense
in the Hilbert space L2(M̂, Ŝ) and is also in the domains of D and X. Further,
since D and X are local operators, (i+D+t−1X)−1C ⊂ C. Thus, by Lemma 4.2 we
conclude that Dt is continuous in the norm resolvent sense and for any f ∈ C0(R),
f(Dt)→ 0 as t→ 0. �
Lemma 5.2.3. If f is a Schwartz class function whose Fourier transform is smooth
and compactly supported within [−1, 1], then f(Bs) and f(Dt) are smooth in the
trace norm and consist of trace class operators.

Proof. Since M̂ is a compact manifold we may use the functional calculus for
pseudodifferential operators [Tay81, Ch. 12] to conclude that the operators f(Bs)
and f(Dt) are trace class. For the smoothness in the trace norm we use Theo-
rem 5.1.5. �
Lemma 5.2.4. Let Y be a compact Riemannian manifold and let (M,S, g) be a
K-cycle for Y with the property that g : M → Y is Lipschitz. Suppose (M̂, Ŝ, ĝ) is
obtained from (M,S, g) by vector bundle modification. Let χ be a chopping function
such that

(1) The Fourier transform of χ is smooth and compactly supported;
(2) The functions χ2 − 1 and χ(χ2 − 1) are in the Schwartz class and their

Fourier transforms are smooth and supported in [−1, 1].

Then χ(Bs), χ(Dt) are controlled paths defined on the Hilbert space L2(M̂, Ŝ). Their
concatenation connects χ(DS)⊕ degenerate to χ(DŜ).

Proof. The operators Bs are bounded perturbations of Dirac operators on com-
pact manifolds and Dt are of the form D + t−1D′ where D and D′ are both Dirac
operators on compact manifolds. Thus, the spectra of Bs and Dt grow at a poly-
nomial rate [Roe88, Thm. 7.3]. Since the map ĝ : M̂ → Y is the composition of
Lipschitz maps, it is itself Lipschitz and so, by Lemma 4.7 we may conclude that
χ(Bs), χ(Dt) have polynomial growth.

Lemma 5.2.3 settles (2) of the Definition 3.6 and so we may conclude that χ(Bs)
and χ(Dt) are controlled paths. �
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We gather together the work of this section to prove its main theorem:

Proof of Theorem 3.8. It suffices to prove the theorem for the situation in which
(M ′, S′, g′) is obtained from (M,S, g) by one move of either bordism, vector bun-
dle modification or direct sum. Theorem 5.1.0 settles the case for bordism and
Lemma 5.2.4 settles vector bundle modification. Recall that the operation of direct
sum simply states that if S = S1 ⊕ S2 is a direct sum decomposition of a complex,
Hermitian vector bundle E over an oriented manifold M , then

(M,S, g) ∼ (M,S1, g) ∪ (M,S2, g).

Since the Hilbert space L2(M,S) of sections of S over M will split as L2(M,S1)
⊕L2(M,S2), it follows that the Dirac operator on M with coefficients in S, DS ,
can be written as

DS = DS1 ⊕DS2 .

Thus, this operation is trivially realised. �

References

[Ati69] M. F. Atiyah, Global theory of elliptic operators, Proceedings of the International Sym-
posium on Functional Analysis, University of Tokyo Press, Tokyo, 1969, pp. 21–30,
MR 42 #1154, Zbl 193.43601.

[BCH94] P. Baum, A. Connes, N. Higson, Classifying space for proper actions and K-theory
of group C∗-algebras, Proceedings of a Special Session on C∗-algebras, Contemporary
Mathematics 167 (1994), 241–291, MR 96c:46070, Zbl 830.46061.

[BD82] P. Baum and R. Douglas, K-homology and index theory, Proc. Symp. Pure Math 38
(1982), 117–173, MR 84d:58075, Zbl 532.55004.

[BDb82] P. Baum and R. Douglas, Index theory, bordism and K-homology, Contemp. Math. 10
(1982), 1–31, MR 83f:58070, Zbl 507.55004.

[BDF77] L. Brown, R. Douglas and P. Fillmore, Extensions of C∗-algebras and K-homology,
Ann. of Math. 105 (1977), 265–324, MR 56 #16399, Zbl 376.46036.

[Con90] J. B. Conway, A Course in Functional Analysis (2nd Edition), Graduate Texts in Math.
no. 96, Springer-verlag, Berlin, 1990, MR 91e:46001, Zbl 706.46003.

[CM90] A. Connes and H. Moscovici, Cyclic cohomology, the Novikov conjecture and hyperbolic
groups, Topology 29 (1990), 345–388, MR 92a:58137, Zbl 759.58047.

[Dou81] R. Douglas, On the smoothness of elements of Ext, Topics in Modern Operator Theory,
Birkhauser, Boston, 1981, pp. 63–69, MR 84f:46093, Zbl 474.46058.

[Gon90] G. Gong, Smooth extensions for a finite CW -complex , Bull. Amer. Math. Soc. 22 (1990),
73–77, MR 90i:46125, Zbl 726.46050.

[Gue93] E. Guentner, K-homology and the index theorem, Contemp. Math. 148 (1993), 47–66,
MR 94h:19006, Zbl 793.58034.
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