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On the Self Crossing Six Sided Figure Problem

Nets Hawk Katz

Abstract. It was shown by Carbery, Christ, and Wright that any measurable
set E in the unit square in R2 not containing the corners of a rectangle with

area greater than λ has measure bounded by O(
√
λ log 1

λ
). We remove the

log under the additional assumption that the set does not contain the corners
of any axis-parallel, possibly self-crossing hexagon with unsigned area bigger
than λ. Our proof may be viewed as a bilinearization of Carbery, Christ, and
Wright’s argument.
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0. Introduction

We say that four points in R2 are the vertices of an axis parallel rectangle if they
are of the form (x1, y1), (x1, y2), (x2, y1), (x2, y2) with x1 6= x2 and y1 6= y2. We
say that the area of the rectangle is |x1 − x2||y1 − y2|.

We say that six points in R2 are the vertices of a right angled, axis parallel
hexagon (possibly self-crossing) if they are of the form (x1, y2), (x1, y3), (x2, y1),
(x2, y3), (x3, y1), (x3, y2) with x1, x2, x3 pairwise distinct and with y1, y2, y3 pairwise
distinct. We say that the area of the hexagon is

A = max(|xi − xj |) min(|yi − yj |) + max(|yi − yj |) min(|xi − xj |).
While not exactly the geometrical area (by which we mean the absolute area rather
than the oriented area), the quantity A is comparable to it.

The purpose of this paper is to prove the following theorem.
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Theorem. There exists a constant C > 0 so that for any number µ > 0, whenever
E ⊂ [0, 1] × [0, 1] is a set which does not contain the vertices of any axis parallel
rectangle with area greater than µ2 and does not contain the vertices of any axis
parallel hexagon with area greater than µ2 then |E| ≤ Cµ.

We explain the motivation of the theorem, which arose in the study of Fourier
integrals. Carbery, Christ, and Wright [CCW] were studying the sublevel sets
of phase functions for Fourier integral operators. They were looking for higher
dimensional analogues of the statement that a real valued function f on the reals
satisfying f ′ > λ has small sublevel sets. (I.e., the set of x for which |f(x)| ≤ 1 has
measure smaller than 2

λ .) This fact is the underlying idea behind Van der Corput’s
Lemma and the method of stationary phase, (see [S, Chapter 8]).

They observed that a function f on the unit square in R2 satisfying ∂2f
∂x∂y > λ

must satisfy the estimate

|{(x, y) : |f(x, y)| ≤ 1}| ≤ C
√

log λ√
λ

.(−1)

The question arose whether (−1) is sharp. A simple example shows one can find
such an f for which the sublevel set is as large as 1√

λ
. The question, as is often the

case, is whether the log is really there. This question is open.
The question is related to another more geometrical question. Suppose we are

given a set E with the property that it does not contain the vertices of any axis
parallel rectangle with area larger than µ2. We then trivially have the estimate

|E| ≤ Cµ
√

log
1
µ
.(−2)

The question is again whether the log is really there. The estimate (−2) implies the
estimate (−1). We may see this by letting E be the sublevel set, by letting λ = 1

µ2 .
We see that E satisfies the geometric condition we have stated by integrating dω
over any axis parallel rectangle with vertices in the set, where ω is the one-form

ω =
∂f

∂x
dx− ∂f

∂y
dy.

The same argument shows that when E is the sublevel set of f , it satisfies more
stringent geometrical conditions. Indeed it cannot contain the vertices of large non
self-crossing axis parallel hexagons. (Or for that matter 2n-sided polygons where
large depends inversely on n.) One might suppose that with the exclusion of these
six sided polygons, one might improve (−2) which would imply an improvement of
(−1). This, unfortunately, is also an open problem.

The theorem we prove says that when we exclude also those axis parallel hexagons
which are not polygons, i.e., those which self-cross, one gets the sharp improvement
on (−2).

1. Proof of the Theorem

The main point of the proof is the following jigsaw puzzle lemma.
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Lemma (jigsaw puzzle). There exist universal constants C, ε > 0 so that for any
large N , one has that if A1, . . . , AK , B1, . . . , BK ⊂ [0, 1] satisfying

1
N1+ε

≤ |Aj |, |Bj | ≤ 1
N

(1)

and further that if Aj ∩ Ak 6= ∅ then Bj ∩ Bk = ∅ (note this is symmetric in A
and B) and further still if Aj ∩ Ak 6= ∅, and Ak ∩ Al 6= ∅ then Bj ∩ Bl = ∅ and
analogously if Bj ∩Bk 6= ∅ and Bk ∩Bl 6= ∅ then Aj ∩Al = ∅ and finally if we have

|Aj ∩Ak|, |Bj ∩Bk| ≤ 1
|j − k| ,(2)

then we reach the following conclusion: We have

K ≤ CN2−ε.

In proving the jigsaw puzzle lemma, we will frequently make use of the following
lemma.

Lemma X. Let a1, . . . , aN be nonnegative real numbers. Suppose that for all j,
one has

aj < M.

Suppose further that
N∑
j=1

aj > S.

Then there exist at least S
2M values of j for which

aj ≥ S

2N
.

Proof. Define G to be the subset of {1, . . . , N} so that for any j ∈ G, one has
aj ≥ S

2N . One has ∑
j∈G

aj ≥ S

2
.

But since each aj is bounded above by M , we have

#(G) ≥ S

2M
.

�

Now before proving the jigsaw puzzle lemma, we spend a moment explaining the
philosophy and the logic of the proof. If we remove the hypothesis (which is what
relates to hexagons) that Aj ∩Ak 6= ∅ and Ak ∩Al 6= ∅ imply that Bj ∩Bl = ∅ and
vice versa, K can be as large as N2. However, all examples for which K is even
within a factor of N ε of N2 (for ε sufficiently small) share certain properties which
force the hexagon condition to be violated.

The precise logic as far as quantifiers is as follows. We suppose that for any ε > 0
a counterexample can be found with C as large as desired, provided N is sufficiently
large. (In other words, we choose things so that powers of N which arise always
dominate C.) We choose ε sufficiently small and reach a contradiction, thus proving
the lemma. We abuse the notation slightly, as is the custom in analysis, changing
the ε in every line with the understanding that it remains small. (This means
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we must have chosen it very, very small at the beginning.) We also occasionally
introduce new constants C which are small compared to any power of N which
arises.

Proof of jigsaw puzzle lemma. We suppose the conclusion of the lemma is false.
Then there exist sets for which we have K ≥ CN2−ε with C arbitrarily large. (By
the pairwise disjointness of the product sets Aj × Bj , however, we certainly have
K ≤ N2+ε.) (We have changed the ε and simply applied the lower bound on |Aj |
and |Bj |.)

Now, we have that
K∑
j=1

|Aj | ≥ K

N1+ε
≥ N1−ε,

but
K∑
j=1

|Aj | =
K∑
j=1

∫ 1

0

χAj (x)dx

=
∫ 1

0

(
K∑
j=1

χAj (x))dx

≤ (
∫ 1

0

(
K∑
j=1

χAj (x))2dx)
1
2

≤ (
K∑
j=1

K∑
k=1

|Aj ∩Ak|) 1
2 .

We conclude
K∑
j=1

K∑
k=1

|Aj ∩Ak| ≥ K2 1
N2+ε

.(3)

Fixing j arbitrary, we observe that

K∑
k=1

|Aj ∩Ak| ≤
K∑
k=1

1
|j − k| ≤ C logN ≤ C 1

2N ε.(4)

Now combining (3), (4), and Lemma X, we conclude there are at least K2

2C
1
2N2+ε

values of j for which

K∑
k=1

|Aj ∩Ak| ≥ K

2N2+ε
.(5)

We refer to the set of j’s for which (5) holds as G1, the first good set.
Using our estimate on K, we rewrite (5) as

K∑
k=1

|Aj ∩Ak| ≥ C

2N ε
.(6)
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Now we make a couple of observations. First, whenever we have distinct k1, k2 with
Aj ∩Ak1 6= ∅ and Aj ∩Ak2 6= ∅, by assumption, we must have Bk1 ∩Bk2 = ∅. But
by the lower bound on the measures of the Bj ’s, we conclude that

#({k : Aj ∩Ak 6= ∅}) ≤ N1+ε.(7)

Furthermore, by the upper bound on the measure of Aj , we have automatically
that

|Aj ∩Ak| ≤ 1
N
,(8)

for every value of k. Combining (6), (7), (8), and Lemma X, we conclude that for
every j ∈ G1 there must be at least CN1−ε

2 values of k with

|Aj ∩Ak| ≥ C

2N1+ε
.(9)

Now we repeat the same argument for the Bj ’s indexed by j ∈ G1. We observe
that ∑

j∈G1

|Bj | ≥ #(G1)
1

N1+ε
,(10)

and also that ∑
j∈G1

|Bj | =
∫ 1

0

∑
j∈G1

χBj (x)dx(11)

≤ (
∫ 1

0

(
∑
j∈G1

χBj (x))2dx)
1
2

≤ (
∫ 1

0

∑
j∈G1

∑
k∈G1

χBj (x)χBk(x)dx)
1
2

= (
∑
j∈G1

∑
k∈G1

|Bj ∩Bk|) 1
2

and of course, that for any fixed j,∑
k∈G1

|Bj ∩Bk| ≤ C 1
2N ε.(12)

Now combining (10), (11), (12), and Lemma X, we obtain as usual that there are
at least CN2−ε values of j for which∑

k∈G1

|Bj ∩Bk| ≥ CN−ε

4
.(13)

(Roughly speaking, we have shown that the sum whose square root appears in (11)
is almost as large as N2 by combining (11) and (10). The inequality (12) says that
no summand is much larger than 1. Since the sum is over N2 terms, there must be
many almost as large as 1.) We refer to those j’s for which (13) is satisfied as the
elements of G2, the second good set.

We observe, as before, that

#({k : Bj ∩Bk 6= ∅}) ≤ N1+ε,(14)
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and for any k one has

|Bj ∩Bk| ≤ 1
N
.(15)

Combining (13), (14), (15) and Lemma X, we obtain that whenever j ∈ G2 there
are at least CN1−ε values of k for which

|Bj ∩Bk| ≥ C

N1+ε
.(16)

Now we are in a position to reach a contradiction. We pick a fixed j ∈ G2. Then
we know there are CN1−ε values of k ∈ G1 for which (16) holds. Denote this set of
k by P1. Now (16) implies that for each k ∈ P1 one has

|j − k| ≤ N1+ε

C
.

Further, the Ak’s indexed by P1 are pairwise disjoint. Finally, since P1 is a subset
of G1, for each k ∈ P1, one has CN1−ε

2 values of l for which |Ak ∩Al| ≥ C
2N1+ε . We

denote the set of all these l’s by P2. Since the Ak’s are pairwise disjoint and the
Al’s have measure at most 1

N , each l may occur for at most 2Nε

C different values of
k. Thus we have

#(P2) ≥ CN2−ε.(17)

But, fixing k, we have that for each l corresponding to that k, one has

|k − l| ≤ 2N1+ε

C
,

so that for every l ∈ P2, one has

|j − l| ≤ N1+ε

C
+

2N1+ε

C
.(18)

However, (17) and (18) imply a contradiction, for otherwise there would be a set
of N2−ε distinct l’s at a distance of N1+ε from j. �

In what remains, we make use of the jigsaw puzzle lemma to prove the theorem.
Suppose η > 0 is a number. We define K(η) to be the smallest number so that if E
is any set satisfying the hypotheses of the theorem for parameter µ > η, one always
has

|E| ≤ K(η)µ.
By a well known method of extremal graph theory (essentially the application of
Cauchy Schwartz in (11) again), one can show a priori that K(η) ≤ C(1+log(| 1η |)).
We will proceed by proving a bootstrapping inequality for K(η).

First, we need a lemma about rescaling.

Lemma (rescaling). Let E be any set satisfying the hypotheses of the theorem with
parameter µ. Suppose that the x-projection of the set, ΠxE satisfies

|ΠxE| ≤ c,
then one has

|E| ≤ c 1
2K(µ)µ.

The main tool in proving the rescaling lemma will be the following lemma of one
dimensional measure theory.
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Lemma (compression). Let A ⊂ [0, 1] be a measurable set with |A| = c. Then there
is a map Q from a full measured subset of A one-to-one and onto a full measured
subset of (0, c) which is measure preserving and monotone and so that one always
has

|Q(y)−Q(x)| ≤ |y − x|.
Proof of the rescaling lemma. We apply the compression lemma to the x-pro-
jection of E. By applying the map Q tensored with the identity to the set E,
one obtains a new set F with |F | = |E|, with F satisfying the hypotheses of the
theorem and with F ⊂ [0, c] × [0, 1]. Denote by G, the set F dilated by 1

c . Then
G ⊂ [0, 1] × [0, 1] and G satisfies the hypotheses of the theorem with parameter
1√
c
µ which is larger than µ. Thus

|G| ≤ K(µ)
µ√
c
.

But
|E| = |F | = c|G|,

so that
|E| ≤ K(µ)

√
cµ,

which was to be shown. �

The rescaling lemma easily implies the following

Lemma (distribution). Let E be a set satisfying the hypotheses of the theorem with
parameter µ. Define

H = {(x, y) ∈ E :
∫
χE(x, z)dz ≥ K(µ)3µ}.

Then
|H| ≤ µ.

Proof. By the definition of K(µ), one has

|ΠxH| ≤ 1
K(µ)2

.

Applying the rescaling lemma, we obtain

|H| ≤ µ.
�

Observe that the same is true if we replace the x direction by the y direction.
The theorem will now be implied by the following bootstrapping lemma:

Lemma (bootstrap). Let E be a set satisfying the hypotheses of the theorem, so
that it is true for no value of x that∫

χE(x, z)dz ≥ K(µ)3µ,

and for no value of y is it true that∫
χE(z, y)dz ≥ K(µ)3µ.
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Then
|E| ≤ C(

√
1 + logK(µ))µ.

The bootstrap lemma would imply together with the distribution lemma that

K(µ) ≤ 2 + C
√

1 + logK(µ),

which in turn implies that K(µ) is bounded by a universal constant.
We will prove the bootstrap lemma by reducing it to well known methods of

extremal graph theory combined with the jigsaw puzzle lemma. We introduce some
notation.

We define
Ex = {y ∈ [0, 1] : (x, y) ∈ E},

and
Ey = {x ∈ [0, 1] : (x, y) ∈ E}.

Now we are ready to proceed.
We observe as usual that

|E| =
∫ ∫

χE(x, y)dxdy

=
∫
|Ex|dx

≤ (
∫
|Ex|2dx)

1
2

≤ (
∫ ∫

|Ey ∩ Ez|) 1
2

≤
∑

j

∫
{( 4

3 )jµ≤|y−z|≤( 4
3 )j+1µ}

|Ey ∩ Ez|
 1

2

.

Now, from the hypotheses of the theorem, we have the estimate

|Ey ∩ Ez| ≤ µ2

|y − z| ,(19)

by the hypotheses of the bootstrap lemma, we have

|Ey ∩ Ez| ≤ |Ey| ≤ K(µ)3µ.(20)

Define the constant C sufficiently large so that j ≥ C logK(µ) implies that(
4
3

)j
≥ K(µ)500.

Then it is immediate from (19) and (20) that∑
j≤C logK(µ)

∫
( 4

3 )jµ≤|y−z|≤( 4
3 )j+1µ

|Ey ∩ Ez| ≤ C logK(µ).

We need only consider the sum over large j.
Our strategy from this point on will be to show that there are constants C > 0

and ν > 0 so that whenever
R = SK(µ)500µ,
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with S > 1, one has that∫
3R
2 ≤|y−z|≤R

|Ey ∩ Ez| ≤ CS−νµ2.(21)

Summing the geometric series will prove the theorem.
We now make a trivial remark about the set of pairs (y, z) with

3R
2
≤ |y − z| ≤ 2R.

We cover [0,1] by disjoint intervals of width R in two ways. We define

DR = {[0, R], [R, 2R], . . . , [R[
1
R

], (R+ 1)[
1
R

]]} = {I0, I1, . . . , I[ 1
R ]},

and

D′R = {[−R
2
,
R

2
], . . . , [(R+

1
2

)[
1
R

], (R+
3
2

)[
1
R

]]} = {J−1, J0, . . . , J[ 1
R ]}.

Now, any pair y, z having the desired distance with y < z will have for some integer
j, either y ∈ Ij and z ∈ Ij+2 or y ∈ Jj and z ∈ Jj+2. Thus we obtain∫

3R
2 ≤|y−z|≤2R

|Ey∩Ez| ≤
∑
j

∫
|Ex∩Ij ||Ex∩Ij+2|dx+

∑
j

∫
|Ex∩Jj ||Ex∩Jj+2|dx.

Thus it suffices to show for fixed j that∫
|Ex ∩ Ij ||Ex ∩ Ij+2| ≤ CS−νRµ2.(22)

This is exactly what we shall do.
We divide up [0, 1] into the set of intervals Dµ2

R

which are dual to DR and we

denote these Kk’s. For each Kk, we choose an xk for which |Exk ∩ Ij ||Exk ∩ Ij+2|
is at least half as big as the supremum over x ∈ Kk. It suffices to estimate∑

k

|Exk ∩ Ij ||Exk ∩ Ij+2|µ
2

R
≤ Cµ2S−νR(23)

[We consider only k odd (and separately consider only k even).] Rescaling respec-
tively Ij and Ij+2 into [0, 1] and renaming the rescaled Exk ∩ Ij and Exk ∩ Ij+2 as
Ak and Bk respectively, we see we need only show∑

k

|Ak||Bk| ≤ CS−ν .(24)

It is easy to see from the hypotheses of the theorem that the A’s and B’s satisfy all
the hypotheses of the jigsaw puzzle lemma except for those regarding the measure
of the Aj ’s or Bj ’s. We do know from the hypotheses of the bootstrapping lemma
that these are less than 1

S . We divide the k’s into the classes CA,l and CB,l by letting
k ∈ CA,l if |Ak| > |Bk| and 2−l 1

S > |Ak| ≥ 2−l−1 1
S and k ∈ CB,l if |Bk| ≥ |Ak| and

2−l 1
S > |Bk| ≥ 2−l−1 1

S . It suffices to show∑
k∈CA,l

|Ak||Bk| ≤ CS−ν2−lν .(25)

We let 1
N = 2−l 1

S . We divide CA,l = Cg ∪ Cb, where k ∈ Cb if |Bk| ≤ 1
N1+ε .
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We claim that

#(Cb) ≤ CN2 logN ≤ CN2+ ε
2 .(26)

This is because
1
N

#(Cb) ∼
∑
j∈Cb

|Aj | ≤
√∑
j∈Cb

∑
k∈Cb

1
|j − k| .

Thus ∑
k∈Cb

|Ak||Bk| ≤ CN2+ ε
2

1
N

1
N1+ε

≤ CN −ε
2 .(27)

On the other hand, Cg satisfies the hypotheses of the jigsaw puzzle lemma, so that
applying the lemma we get

#(Cg) ≤ CN2−ε,
so that ∑

j∈Cg
|Aj ||Bj | ≤ 1

N2
CN2−ε ≤ CN−ε.(28)

The inequalities (27) and (28) together imply (25) and hence the theorem.
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