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An Example of Fourier Transforms of Orbital
Integrals and their Endoscopic Transfer

Ulrich Everling

Abstract. For the Lie algebra sl2 over a p-adic field, the Fourier transform of a
regular orbital integral is expressed as an integral over all regular orbital integrals,
with explicit coefficients. This expression, unlike the Shalika germ expansion, is not
restricted to orbits of small elements. The result gives quite an elementary access
to a simple example of Waldspurger’s recent theorem on endoscopic transfer of the
Fourier transforms.
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1. Introduction

Integrals over conjugation classes in Lie groups, called orbital integrals, are funda-
mental objects of harmonic analysis. They occur in the “geometric side” of Selberg’s
trace formula; the “spectral side” contains traces of representations. For applica-
tions to automorphic forms, it is useful to consider not just Lie groups but both
real and p-adic (and also adelic) algebraic groups. Howe [11] conjectured and Clozel
[7] proved, for reductive p-adic Lie groups or Lie algebras, that the invariant dis-
tributions of given compactly generated support, restricted to a space of uniformly
locally constant functions, make a finite dimensional space. Harish-Chandra [10]
uses this principle in his study of Fourier transforms and characters of admissible
representations. Shalika germs [24] describe the orbital integrals of small regular
elements as combinations of unipotent orbital integrals, with coefficients difficult
to get hold of.
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Endoscopic transfer tries to relate instable orbital integrals of a group and stable
orbital integrals of so-called endoscopic groups attached to it via L-groups. It was
developed by Shelstad, Langlands, Labesse, Kottwitz, and stated in final though
conjectural form by [20]. To explain it roughly: Given an algebraic group G over
a field F , with algebraic closure F ; elements in G(F ) which are conjugate in G(F )
make a “stable orbit”, which may contain several orbits of G(F )-conjugacy (more
precisely, see [14]). A stable orbital integral is the sum of integrals of the orbits in
one stable orbit; certain other linear combinations of these integrals, such as their
difference when the stable orbit contains two orbits, are called instable orbital in-
tegrals. Stable orbits have the advantage of being compatible when two groups are
inner forms of each other. Transfer means that an instable integral of a function
on G(F ) may be expressed as stable integral of another function on another group,
called an endoscopic group; the construction of that group is based on L-groups,
defined by a duality of root systems using the structure theory of reductive alge-
braic groups. For G = SL2 the non-trivial endoscopic groups are one-dimensional
algebraic tori defined by quadratic extensions E|F and a stable orbital integral in
such a torus is just evaluation at an element.

Arthur developed trace formulae introducing truncation operators and weighted
orbital integrals. Waldspurger [29] established a p-adic trace formula and suggested
a transfer formula for the Fourier transforms of regular orbital integrals in the
Lie algebra, (9) below, which would imply the transfer for the orbital integrals
themselves; recently he reduced this conjecture to the fundamental lemma and
proved it for many groups [30, Théorème 1.5], among them SLn; in general, transfer
remains a conjecture.

Let F be a p-adic field (p 6= 2). Fourier transformation was thoroughly studied for
orbital integrals on the group SL2(F ) by Sally and Shalika [22], and for nilpotent
orbital integrals on the Lie algebra sl`(F ) by Assem [4]. Now for X ∈ sl2(F )
semi-simple regular, we consider the orbital integral over Ad(SL2(F )) · X. Its
Fourier transform is invariant with respect to Ad(SL2(F )) and is known to be an
integral (over the space of regular orbits) of orbital integrals; we explicitly specify
the coefficients (Propositions 4 and 10). This expression, unlike Shalika’s germ
expansion, is not limited to orbits of small elements. In the last two sections we
translate our Corollary 11 into the context of formula (9) recently proved by [30]
for certain groups, of which SL2 is but one example; our elementary computation
yields this example directly.

Our discussion, up to Corollary 11, does not presume knowledge of the works
mentioned above; in the last two sections we quote from [20] and [29] respectively.

2. Conjugacy Classes

Matrices in the Lie algebra sl2 will always be denoted

X =
(
x

z

y

−x
)

or U =
(
u

w

v

−u
)
,

and the letters U, u, v, w,X, x, y, z, bare or decorated like X ′ or Xm, will always
mean this. The action of GL2 on sl2 by Ad(g)(X) := gXg−1 leaves the bilinear
form

〈U,X〉 := 2ux+ vz + wy



Fourier Transforms and Endoscopic Transfer 19

invariant; it will be used for Fourier transforms.
Let us classify the orbits of G := SL2(F ) acting on g := sl2(F ), where F is a

field in which 2 6= 0; integrals over these orbits will then be the basic objects to
study. The group G acts in the set of regular semi-simple elements

greg = {X ∈ g detX 6= 0}
and in each of the stable orbits

g t := {X ∈ gr {0} detX = −t} , t ∈ F.

Each X ∈ g is G-conjugate to some
(

0 t/β
β 0

)
where t = −detX and β ∈ F×,

the latter unique up to a factor in

Nt := NtF×2 :=
{
λ2 − µ2t λ, µ ∈ F}r {0} ⊆ F×,

which is the norm group of the algebra

Et := F [ϑ]/(ϑ2 − t);
in fact the orbits are parametrized by the bijection

Orb(gr {0}) := {(t, b) t ∈ F, b ∈ F×/Nt} ∼−→ Ad(G)\(gr {0})
(t, b) 7→ g t,b := {X ∈ g t z ∈ b ∪ {0} 3 −y} ,

and Orb(greg) := {(t, b) t 6= 0} corresponds to Ad(G)\greg. Each stable orbit g t is
the union of all the g t,b where b ∈ F×/Nt, and

(1) ∀g ∈ GL2(F ) : Ad(g)g t,b = g t,det(g)b.

(Each group F×/Nt can also be considered as Galois cohomology group of the
stabilizer in SL2 of the matrix

(
0
1
t
0

) ∈ g t; in this guise they appear in [18, p. 728]
when orbits in G are parametrized.)

From now on let F be a non-archimedean local field [6]; it comes with the
valuation ring O ⊂ F , the maximal ideal p ⊂ O, the residue field κ = O/p with q
elements, the valuation exponent ν : F � Z ∪ {+∞} and the absolute value | · | so
that |π| = 1/q for any uniformizing element π ∈ pr p2. We shall assume 2 /∈ p.

(Example: F = Qp, O = Zp, p = pZp, κ = Fp, π = p.)
The group F×/F×2 has four elements and fits in the exact sequence

1→ O×/O×2 −→F×/F×2 ν−→Z/2Z→ 0
↓∼=

κ×/κ×2

and for each τ = tF×2 ∈ F×/F×2 there is a canonical isomorphism

F×/Nτ ∼=
 {1} if 1 ∈ τ ,
Z/2Z if τ = ν−1(2Z)r F×2,
κ×/κ×2 if ν(τ) = Z r 2Z.

Thus for t ∈ F× r F×2, the stable orbit g t contains two orbits g t,b.
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3. Orbital Integrals

On each G-orbit in g, we need a G-invariant measure to define integrals. Instead
of referring to the general fact that a quotient space of a unimodular locally compact
groupG by a unimodular closed subgroup has aG-invariant positive measure unique
up to a positive constant, we shall construct such measures on each g t,b so as to
have an explicit formula to work with.

The additive Haar measure on F such that vol(O) = 1, as well as its restriction
to subsets of F , will be denoted dt, or dx, dy, dz respectively; for example, dt/|t|
is a Haar measure on the multiplicative group F×. The F -rational points of a
smooth algebraic variety over F form a totally disconnected topological space, on
which measures can be defined by means of differential forms, as explained in [31,
p. 13–14]. For any complex-valued locally constant compactly supported function
(in short, C∞c function), integrals are finite sums. The characteristic function of an
open set A will be called fA.

For each t ∈ F , the variety
{
X ∈ sl2 r {0} x2 + yz = t

}
carries a GL2-invariant

algebraic 2-form
dy ∧ dz

2x
=
dx ∧ dy

y
=
dz ∧ dx

z

(the relation 0 = d(x2 + yz) = 2x dx+ z dy + y dz implies that all three terms are
equal and invariant). This 2-form defines a measure dX on g t. The orbital integrals

It,b(f) :=
∫
g t,b

f(X)dX ∈ C (f ∈ C∞c (g), (t, b) ∈ Orb(gr {0}))

are finite sums if t 6= 0, or still convergent for t = 0, see the proof of Proposition 2
below. Let Λ0 := sl2(O) = {X x, y, z ∈ O} and Λn := pnΛ0 for each n ∈ Z.

Proposition 1. Let m < ` ∈ Z, Xm ∈ Λm r Λm+1, and (t, b) ∈ Orb(gr {0}). If
(i) t+ det(Xm) ∈ p`+m and

(ii) {zm,−ym} ⊂ b ∪ pm+1,
then It,b(fXm+Λ`) = qm−2`. Otherwise the integral is zero.

Proposition 2. Let ` ∈ Z, (t, b) ∈ Orb(gr {0}). Then

It,b(fΛ`) =



1
2q
−` if t = 0, ` ∈ ν(b)

1
2q
−`−1 if t = 0, ` /∈ ν(b)

0 if 2` > ν(t)
q−` + q−1−` if 2` ≤ ν(t), t ∈ F×2

q−` − q−1−h if 2` ≤ ν(t) = 2h, 0 6= t /∈ F×2, ` ∈ ν(b)
q−1−` − q−1−h if 2` ≤ ν(t) = 2h, 0 6= t /∈ F×2, ` /∈ ν(b)
(q−`−q−h) q+1

2q if 2` < ν(t) = 2h− 1.

Corollary 3. For every f ∈ C∞c (greg) the function

Orb(greg) 3 (t, b) 7→ It,b(f)

belongs to C∞c (Orb(greg)). Explicitly, let n ∈ Z, Xn ∈ ΛnrΛn+1, t = −detXn 6= 0,
j > ν(t)− n. Then f = fXn+Λj corresponds to the function qn−2jf(t+pn+j)×{b}.
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Proofs. For Proposition 1, fix a prime element π ∈ p r p2, no matter which, so
that πO = p, let Xm = πmX0 and let X ′ run through Λ0 so that X = Xm + π`X ′

runs through Xm + Λ`. Then

π−`−m(t+ detX) = π−`−m(t+ detXm)− 〈X0, X
′〉+ π`−m detX ′.

If this wants to be zero, the condition (i) is necessary.
If y0, z0 ∈ p, then x0 ∈ O× and one can solve the equation t = −detX for x′.

Because of t ∈ π2m(x2
0 + p) ⊂ F×2 we have g t,b = g t. The integral is∫

g t∩(Xm+Λ`)

dy dz

|2x| =
∫
O×O

|π`|dy′ · |π`|dz′
|xm| = qm−2`.

If y0 ∈ O× one can solve for z′ and then −yNt = −ymNt. If this class is the
same as b, the integral is again ∫

g t,b∩(Xm+Λ`)

dx dy

|y| = qm−2`,

otherwise it is zero. Likewise in the case z0 ∈ O×.
The second proposition follows from the first one applied to each term of the

sum
fΛm − fΛm+1 =

∑
0/∈X∈Λm/Λm+1

fX ,

by descending induction on ` if t 6= 0, or with a geometric series if t = 0.
The corollary follows immediately. �

In view of the two propositions, one recognizes the Shalika germs: Let ` ∈ Z,
(t, b) ∈ Orb(greg), ν(t) ≥ 2`, and f ∈ C∞c (g) a function that factors through g/Λ`.
Then

It,b(f) = (const)
√
|t| · f(0) +

∑
β∈b/F×2

I0,β(f)

where (const) depends only on tF×2; the right hand side consists of contributions
from the nilpotent orbits, which are the four g0,b and {0}.

4. Fourier Transforms

Let Ψ : F → C× be an unramified additive character; then

(2) Ψ(O) = 1,
∑

a∈p−1/O
Ψ(a) = 0.

The Fourier transform of functions on g is defined as

C∞c (g) −̃→C∞c (g), f̃(U) :=
∫
g

f(X)Ψ 〈U,X〉 dX
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where dX is the Haar measure such that vol(Λ0) = 1, which is self-dual in the sense

that ˜̃f (X) = f(−X).
For each orbit, labeled (s, a) ∈ Orb(greg), the distribution

C∞c (greg)→ C, f 7→ Is,a(f̃),

is G-invariant in the sense that Is,a( ˜f ◦Ad(g)) = Is,a(f̃) for each g ∈ G. This
invariant distribution can be expanded in terms of all the It,b:

Proposition 4. There exists a unique locally constant function

cG : Orb(greg)×Orb(greg)→ C

such that

(3) ∀f ∈ C∞c (greg) : Is,a(f̃) =
∫
F×

∑
b∈F×/Nt

cG(s, a; t, b)It,b(f)
dt√|t| .

Explicitly, for n ∈ Z and Xn ∈ g t,b ∩ Λn r Λn+1:

(4)
cG(s, a; t, b)√|t| = Is,a(fΛ−n) +

∑
i>n

∑
Λ1−i /⊃U−i∈Λ−i/Λ−n

Ψ 〈U−i, Xn〉 Is,a(fU−i),

and the sum over i is actually finite.

The proof will be finished before Corollary 8. First we show that (3) implies (4).
Suppose cG locally constant. Given n and Xn, let j � ν(t)− n and c ∈ C so that

∀X ′ ∈ Xn + Λj : cG(s, a;−detX ′, b) = c
√
|t|.

Corollary 3 yields

c = q3j · vol(t+ pn+j) · c · qn−2j(5)

= q3j · Is,a( ˜fXn+Λj )

= Is,a
(
fΛ−n +

∑
n<i≤j

∑
Λ1−i /⊃U−i∈Λ−i/Λ−n

Ψ 〈U−i, Xn〉 fU−i
)
;

this does not depend on j and therefore the i� ν(t)− n do not contribute to (4).
It remains to show that there exists a function with the property (3). (We might

refer to [10] but the lemmas below are needed anyway for Proposition 10.) For each
(t, b) ∈ Orb(greg) let us fix n ∈ Z, y ∈ O, z ∈ O× such that

(6) Xn = πn
(

0
z

y

0

)
∈ g t,b , ν(y) ≤ 2, and (t ∈ F×2 =⇒ y ∈ O×2).

Let cG be defined by (4) with this choice of Xn. The relations (2) imply that the
apparently infinite sum (4) is actually finite as follows.
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Lemma 5. Let i > n, s′ = π2is + pi−n, h1 = i − n − 1, h2 = h1 − ν(y). The
U−i = π−iU such that

(i) ν(v) = 0 < h1 ∧ (s′ = 0 ∨ h1 + ν(w) > min{ν(s′ − vw), h1}) or
(ii) ν(w) = 0 < h2 ∧ (s′ = 0 ∨ h2 + ν(v) > min{ν(s′ − vw), h1})

contribute all in all nothing to cG(s, a; t, b) in (4).

Corollary 6. The only contributions to the sum (4) come from values of i such
that

(7) max{n+ 1,−ν(s)
2
} ≤ i ≤ imax := max{n+ 1 + ν(y),−1− n− ν(s)}.

Proofs. Let us assemble the U−i with property (i) as follows: v runs through
one class modph1 , w remains fixed, and u varies so that the equation s′ = u2 + vw
remains valid. The Is,a(fU−i) are all equal and the Ψ 〈U−i, Xn〉 = Ψ(πn−i(vz+wy))
make a total of zero.

Likewise, we can assemble the U−i such that (ii) ∧ ¬(i); this time w varies by
ph2 , and v remains fixed.

The upper bound in the corollary follows from the lemma because

i ≥ −n− ν(s) =⇒ s′ = 0 =⇒ vO + wO = O.

The two lower bounds come from (4) and from condition (i) of Proposition 1. �

By replacing X and U by λ−1X and λU we see that the definition of cG does
not depend on the choice in (6) and that

(8) ∀λ ∈ F× : cG(λ−2s, a;λ2t, b) = cG(s, a; t, b).

Lemma 7. The function cG : Orb(greg)×Orb(greg)→ C is locally constant.

Proof. First let us fix (t, b) and a, and vary s. In view of Propositions 1 and 2, each
term of (4) allows a neighbourhood where s can move. The set of terms which are
not excluded by Corollary 6 is finite and depends only on ν(s) and (t, b). Therefore
cG is locally constant with respect to s. Using (8) we can barter a small change
of t for a small change of s. Hence the lemma. �

Going back via (5), we now find that (3) is true for f = fXn+Λj when the Xn are
chosen as in (6) and when j ≥ imax as defined in (7). These functions f , and their
transforms f ◦Ad(g) by all g ∈ SL2(F ), span the whole linear space C∞c (greg). The
condition (3) being linear and SL2(F )-invariant, Proposition 4 follows.

Corollary 8. ∀(s, a), (t, b) ∈ Orb(greg) ∀λ ∈ F× : cG(s, λa; t, λb) = cG(s, a; t, b).

Proof. All the ingredients of Proposition 4 being GL2(F )-invariant, so is cG; and
we remember (1). �

Corollary 9. If sF×2 = tF×2 then cG(s, a; t, b) depends on a and b only via a · b.
If sF×2 6= tF×2 then cG(s, a; t, b) does not at all depend on a or b.
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Proof. This follows from Corollary 8; if sF×2 6= tF×2 one can choose λ so as to
change a without changing b, or vice versa. �

We shall need auxiliary complex numbers depending on Ψ, namely

γ(c) := 1 if c ∈ F, ν(c) ∈ 2Z,

γ(c) :=
(

1 + 2
∑

cF×2⊃a∈p−1/O
Ψ(a)

)
/
√
q if c ∈ F, ν(c) /∈ 2Z.

If c ∈ F× and ν(c) = −1 we have

√
q · γ(c) =

∑
λ∈κ

Ψ(cλ2),

γ(c · (O× rO×2)) = −γ(c), γ(−c) = γ(c) = (−1)
q−1

2 · γ(c), |γ(c)| = 1.

In view of lemma 5 and Corollary 6 there remain only quite few U−i contributing
to (4) for the Xn chosen in (6). Counting thoroughly and using the relations (2),
we obtain:

Proposition 10. Given (s, a), (t, b) ∈ Orb(greg), let

S =
∑
r2=st

Ψ(2r), Q1 =
1
q

√
|st|, Q2 =

q + 1
2q

√
|st|/q.

Then cG(s, a; t, b) is as follows:

t ∈ F×2 t /∈ F×2, 2|ν(t) 2 - ν(t)

s ∈ F×2 S 0

st ∈ p−1 1−Q1 (−1)ν(ab) −Q1 −Q1

st /∈ p−1

2|ν(s)
s /∈ F×2

0 (−1)ν(ab)S

if ν(st)
2 ∈ ν(ab)

0 otherwise

0

st ∈ p−1 1−Q2 −Q2

γ(−ab)−Q2 if st ∈ F×2

−Q2 otherwise

st /∈ p−1

2 - ν(s)
0

γ(−ab) ∑
r2=st
r∈−ab

Ψ(2r)

if st ∈ F×2

0 otherwise

For each s ∈ F× let εs : F×/Ns ↪→ {±1} be the character. From Proposition 10
we extract the following corollary (actually some of the boxes of the table are not
needed here; in particular those where s /∈ F×2 /3 st cancel out by Corollary 9.)
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Corollary 11. Let s ∈ F× and (t, b) ∈ Orb(greg). Then

cεG(s; t, b) :=
∑

a∈F×/Ns
εs(a) · cG(s, a; t, b) = εt(b) · γ(t) ·

∑
r2=st

Ψ(2r);

this is zero if st /∈ F×2.

The corollary describes the εs-instable integral

Iεs (f̃) :=
∑

a∈F×/Ns
εs(a)Is,a(f̃) =

∫
F×

∑
b∈F×/Nt

cεG(s; t, b)It,b(f)
dt√|t|

for f ∈ C∞c (Orb(greg)).

5. Transfer Factors

In order to derive (9) below from Corollary 11, we first spell out the definition of
transfer factors which occur in IG,H . As mentioned in the introduction, an instable
integral in our case is the difference of two orbital integrals. The transfer factor
will simply assign the signs +1 and −1 to the two orbital integrals; its definition
in [20] is quite sophisticated because they make a canonical choice for all reductive
groups and in general there occur coefficients other than ±1.

Let E|F be a quadratic extension, ϑ ∈ E× an element of trace zero, and
ε = χE|F the quadratic character on F× so that kerχE|F = NE|FE×. Let

H = ker(RE|FGm
N−→Gm) the corresponding one-dimensional algebraic torus (so

that H(F ) ⊂ E× is the norm-one group); its Lie algebra h is naturally identified
with the imaginary line ker(TrE|F ) ⊂ E.

Now we borrow notations from [20, p. 222–223]. Let h =
(

1/2
1/(2ϑ)

−ϑ
1

) ∈ SL2(E),

ι : H ∼−→T := hTh−1 ⊂ B := hBh−1 ⊂ G := SL2,

ι(a+ bϑ) := h

(
a+ bϑ

0
0

a− bϑ
)
h−1 =

(
a

b

bϑ2

a

)
.

Let

s :=
(

1
0

0
−1

)
∈ T :=

(∗
0

0
∗
)
⊂ B :=

(∗
0
∗
∗
)
⊂ Ĝ = PGL2(C)

and

ξ : H → (T · {1,
(

0
1

1
0

)
})oW ⊂ LG

the embedding such that ξ−1 : T → Ĥ is dual to

H→ T, a+ bϑ 7→ h−1ι(a+ bϑ)h.

Then (H,H, s, ξ) are endoscopic data and ι is an admissible embedding. The alge-
braic character on T over E,

α :
(
a

b

bϑ2

a

)
7→ (a+ bϑ)2,
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is the root of T in B; let the a-data consist of aα := 2ϑ, a−α := −2ϑ, and choose
whichever χα : E× → C× extending χE|F .

Let 0 6= Y = ηϑ ∈ h and X =
(
x
z

y
−x
) ∈ gη2ϑ2 . Following the “Remarques”

of [29, p. 90], we evaluate the formulae (I), (II), (III1) and (III2) of [20] with
γH = exp(e2Y ) and γ = exp(e2X) for any e ∈ F× near 0. The cocycle λ(T ) of (I)
is trivial. In (II) we have α(γT )− 1 ≈ 2e2ηϑ. For the cocycle in (III1) we take

g =
(
η

0
x

z

)(
a

b

bϑ2

a

)
where a, b ∈ E, a2 − b2ϑ2 = 1/ηz. In (III2) we need not know a because γT ≈ 1.
Omitting (IV), we obtain the transfer factor

∆(Y,X) = (∆I = 1) · (∆II = ε(η)) · (∆1 = ε(ηz)) · (∆2 = 1) = χE|F (z).

(For a split torus H ∼= Gm we simply have ∆(Y,X) = 1 for all Y ∈ h, X ∈ gY 2 .)
By identifying h with the imaginary line of E|F (or with F if H splits) we may

write Y · Z ∈ F for Y, Z ∈ h. Then

∆(Y,X) =
{
εt(b) if X ∈ g t,b and t = Y 2,
0 otherwise.

6. The Transfer Formula

For fh ∈ C∞c (h) we define the Fourier transform f̃h with respect to Ψ(2Y · Z).
Now we need formulae from [29]; quotations ‘. . .’ will refer to that work.
In ‘III.1’ in the case M = G the factor vM (x) is 1, so the JGG are the ordinary or-

bital integrals; so are the IGG by ‘p.74, remarque (b)’. Now Ist
H(Y, fh) and IG,H(Y, f)

are defined by ‘VIII.7, (6) and (7)’.
Next, there are λ1, λ2 ∈ F× so that 〈·, ·〉g = λ1 〈·, ·〉 and ψ(c) = Ψ(λ2c). For the

construction of 〈·, ·〉h in ‘VIII.6’, we can simply take G∗ = G = SL2 and the same
endoscopic data as in the previous section; then the whole procedure simplifies to

〈ϑ, ϑ〉h =
〈(

0
1
ϑ2

0

)
,

(
0
1
ϑ2

0

)〉
g

= 2λ1 · ϑ · ϑ.

Consider the constant γψ(g) of ‘VIII.5’. If λ ∈ O×, we can take r = Λ0 in ‘VIII.1’
and then I(r) = 1. If ν(λ) = −1 we can still take r = Λ0 and then

I(r) = q−3
∑

x,y,z∈O/p
Ψ(λ · (x2 + yz)) = q−3

∑
x

Ψ(λx2) ·
∑
y

∑
z

Ψ(λyz);

by (2) the
∑
z

vanishes for each y 6= 0, so

I(r) = q−2
∑
x

Ψ(λx2)

whence γψ(g) = γ(λ). If ν(λ) /∈ {0,−1} we can multiply λ by a square and adapt
r accordingly.



Fourier Transforms and Endoscopic Transfer 27

The computation of γψ(h) is similar.
Summing up, we obtain the following dictionary:

in [29] here

Ist
H(Y, fh) fh(Y )

IG,H(Y, f) Cs · Iεs (f), s = Y 2

〈·, ·〉g λ1 · 〈·, ·〉
〈Y, Z〉h 2λ1 · Y · Z
ψ(c) Ψ(λ2c)

γψ(g) γ(λ), λ = λ1λ2

γψ(h) γ(λY 2) (for any Y ∈ hr {0})
f̂(X) |λ|3/2 f̃(λX) (f ∈ C∞c (g))

f̂h(Y ) |λ|1/2 f̃h(λY ) (fh ∈ C∞c (h))

The constants Cs > 0 depend on the choice of Haar measures but Cs depends only
on sF×2; we do not need them explicitly.

For every function f ∈ C∞c (g), the function fh defined by

fh(Y ) := IG,H(Y, f) (0 6= Y ∈ h)
extends to a function fh ∈ C∞c (h); this was known to [18] and it is also clear in
view of Propositions 1 and 2.

Let 0 6= Y ∈ h and s = Y 2, and f ∈ C∞c (greg). The self-dual Haar measure dZ
on h for fh 7→ f̃h, restricted to h r {0}, corresponds, via t = Z2, to dt/

√|t| on
sF×2 ⊂ F . Then

IG,H(Y, f̂) = Cs ·
∑

a∈F×/Ns
εs(a)

∫
X∼(0

a
s/a
0 )

f̂(X)dX

= Cs ·
∑
a

εs(a)
∫

λX∼( 0
λa

λs/a
0 )

|λ|3/2 f̃(λX)
d(λX)
|λ|

= Cs
√
|λ| ·

∑
a

εs(a)Iλ2s,λa(f̃)

= Cs
√
|λ| · εs(λ)Iελ2s(f̃);

by Corollary 11 this is

= Cs
√
|λ| · εs(λ)

∫
F×

∑
b∈F×/Nt

εt(b)γ(t)
∑

r2=λ2st

Ψ(2r)It,b(f)
dt√|t|

= Cs
√
|λ| · εs(λ)γ(s)

∫
hr{0}

Ψ(2λY · Z)IεZ2(f)dZ

= εs(λ)γ(s)
√
|λ|f̃h(λY )

= εs(λ)γ(s)f̂h(Y ).
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In the four cases according to ν(λ), ν(s) mod 2 one verifies that

εs(λ)γ(s)γ(λ) = γ(λs),

and one recognizes the transfer formula of [29, VIII.7 Conj. 1] with his formulae
‘(6)’ and ‘(7)’ inserted:

(9) γψ(h)Ist
H(Y, f̂h) = γψ(g)IG,H(Y, f̂).

7. Remarks

• We have been supposing f ∈ C∞c (greg) so that the integrals are finite sums. Due
to [10, Th.8], it is known that the Fourier transforms of regular orbital integrals
are locally integrable distributions. This allows all f ∈ C∞c (g).
• As long as 2 /∈ p, we allow F to have finite characteristic.
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Norm. Sup. 4e sér. 4 (1971), 193–284.

[10] Harish-Chandra, Admissible invariant distributions on reductive p-adic groups, Queen’s Pa-
pers in Pure and Applied Math no. 48, 1978, pp. 281–347.

[11] Roger Howe, Two conjectures about reductive p-adic groups, Harmonic analysis on homoge-
neous spaces, Proc. Sympos. Pure Math. XXVI, 1973, pp. 377–380.

[12] , The Fourier Transform and Germs of Characters (Case of Gln over a p-Adic Field),
Math. Ann. 208 (1974), 305–322.

[13] Robert Edward Kottwitz, Unstable orbital integrals on SL(3), Duke Math. J. 48 (1981),
649–664.

[14] , Rational conjugacy classes in reductive groups, Duke Math. J. 49 (1982), 785–806.

[15] , Stable trace formula: cuspidal tempered terms, Duke Math. J. 51 (1984), 611–650.

[16] , Stable Trace Formula: Elliptic Singular Terms, Math. Ann. 275 (1986), 365–399.

[17] Jean-Pierre Labesse, Fonctions élémentaires et lemme fondamental pour le changement de
base stable, Duke Math. J. 61 (1990), 519–530.

[18] Jean-Pierre Labesse & Robert P. Langlands, L-indistinguishability for SL(2), Canad. J.
Math. 31 (1979), 726–785.
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