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Buildings and Non�positively Curved Polygons of

Finite Groups

Paul R� Brown

Abstract� Let P be a nonpositively curved polygon of �nite groups� The
group P acts on a contractible �complex XP � and we prove that this complex
is a building if and only if the links have �angular� diameter �� When P has
zero group theoretic curvature� a geometric argument shows that the periodic
apartments are dense in the set of all apartments�
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�� Introduction

Theorem 	�� �below� connects local combinatorial properties �the metric diam�
eter of vertex links� with global geometric properties �being a building� of the
developing complex of a non�positively curved polygon of groups� The technique of
the proof of Theorem 	�� is used to prove several results� Theorem 
�� shows that
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for a non�positively curved polygon G of nite groups acting on a two�dimensional
Euclidean building B� a positive power of almost every element of innite order in
G lies in a Z�Z subgroup of G� It follows �Corollary 
��� that the set of periodic
apartments is dense in the set of all apartments in the sense that any �at in B
intersects some �at stabilized by a Z�Z� G in a ball of arbitrarily large radius�

���� Related results� Presenting these results at conferences� I was kindly di�
rected to a number of related results in the literature� Roger Alperin and Jon Cor�
son directed me to two papers of Jacque Tits ���� ���� By di�erent means and
in more general circumstances� Theorem 	�� was rst proved by Tits� Tits�s tech�
niques are combinatorial in nature� Fr�ed�eric Paulin brought to my attention a
paper of Sylvain Barr�e ��� where he gives a similar characterization of buildings in
two dimensions�

�� Polygons of groups

A polygon of groups or k�gon of groups P is the colimit of a commutative diagram
of groups and proper inclusions modelled on the poset of faces of the rst barycentric
subdivision of a polygonal ��cell with k � � sides� For instance� a square of groups
is the colimit of a diagram of the form

P � colim

�
BBBBBBBBB�

V� ����� E��� ����� V�x��
x��

x��
E��� ����� F ����� E�����y

��y
��y

V� ����� E��� ����� V�

�
CCCCCCCCCA

It is a convenient abuse of notation to confuse the diagram and the colimit� and for
the purposes of this paper� such abuse is harmless� The Vi are vertex groups� the
Ei�j are edge groups� and F is the face group� The diagram denes projections

pj � Ei�j �
F
Ej�k �� Vj �

If pj is not injective� let wj be a shortest non�trivial word in ker pj � The angle at
Vj is dened to be ���jwj j if pj is not injective and � if pj is injective�
Let G be a group and fG�g be a set of subgroups� The coset complex of G relative

to fG�g is the nerve of the covering of G by cosets of theG�� The canonical example
of a coset complex is the tree for a free product of non�trivial nite groups� the tree
upon which F � G �H acts is the coset complex for F relative to fG�Hg� If the
vertex groups of a polygon of groups inject into the colimit� the polygon of groups is
developable� The developing complex XP for a developable polygon of groups is the
coset complex of P relative to the set of vertex groups� i�e�� the combinatorial cell
complex whose vertices are the left cosets of P modulo the vertex groups� whose
edges are the left cosets of P modulo the edge groups� and whose faces are the
elements of P�F � the incidence relation is non�empty intersection� and P acts on
the complex by multiplication�
Angles can also be �equivalently� dened combinatorially in terms of the coset

complex of Vj relative to fEi�j � Ej�kg� this coset graph is simply a quotient of the tree
on which Ei�j �F Ej�k acts� If pj fails to be injective� the angle at Vj is �� divided
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by the girth� of the coset graph� If pj is injective� the angle is dened to be zero�
Supposing that P is developable� the coset graph of Vj relative to fEi�j � Ej�kg is
the link of a vertex corresponding to a coset of Vj � With this in mind� the link of
a pair of distinct proper subgroups H�K � G� abbreviated Lk �H �� G�� K�� is
the coset complex for G relative to fH�Kg� When the angle is non�zero� the link
carries a natural metric such that the girth of the graph is ���
A k�gon of groups is non�positively curved if the sum of the angles at the vertex

groups is no more than �k � ���� note that the denition of polygon of groups
guarantees that the angle at a vertex of a polygon of groups is no larger than
���� so every k�gon of groups for k � 	 is non�positively curved� Gersten and
Stallings ���� proved�

Theorem ��� �Gersten�Stallings�� Let P be a non�positively curved polygon of

groups� Then�

�� P is developable�

�� The developing complex XP is contractible and carries a CAT��� or CAT����
metric�

The metric on XP is obtained by equivariantly metrizing each ��cell as though
it were a polygon in E� or H � with geodesic boundary and geometric angles corre�
sponding to the angles at the vertex groups of P �

�� Links of diameter �

The rst essential ingredient is a characterization of vertex links whose metric
diameter is ��

���� Diameter� girth� and completing partial circuits� Let � be a nite�
connected bipartite graph with no vertices of valence one� the bipartition implies
that the girth � of � is even� Use a path metric that assigns each edge equal length
to metrize � so that � has metric girth ��� The angle associated to �� �� � ���� is
well�dened �namely the length of an edge�� The diameter of �� denoted diam��� is
the maximum distance between any two vertices� Note that diam��� � �� because
the shortest circuit in � has length ���
The situation where � has �minimal� diameter � can be characterized in terms

of �simplicial� rays of length � � ���

Proposition ���� Let � be a �nite� connected bipartite graph with with no vertices

of valence one� Then� diam��� � � if and only if every simplicial ray 	 of length

� ��� is part of a unique circuit of length ���

Proof� Suppose that the diameter of � is �� Then� there is a geodesic segment 

of length less than or equal to � connecting the endpoints of 	� If the length of 

is �� then the circuit 	 � 
 contains an odd number of edges �which is impossible
in a bipartite graph�� If 
 is shorter than ����� then the circuit 	� 
 has length
shorter than ��� contradicting the assumed girth of �� Thus� the length of 
 is
� � �� as claimed� Conversely� if � contains a geodesic of length strictly larger
than �� then that geodesic is not part of any circuit of length ���

�The girth of a graph is the length of the shortest nontrivial circuit�
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To establish uniqueness� observe that the intersection of two circuits � and �� of
length �� is a geodesic segment� otherwise�

�� � ��� n �� 	 ���

would contain a circuit of length �� � ���� �

Having diameter � has strong consequences for the structure of �� For example�
a deep theorem of Walter Feit and Graham Higman ��� states that if � is nite and
the valence of each vertex is at least three� then

diam��� � � �
 �� �
n�
�
�
�

�
�
�

	
�
�

�
�
�

�

o
�

The statement of the theorem also gives algebraic relations between the valences of
the two types of vertices� Bipartite graphs with girth �m� diameter m �each edge
has length one�� and no vertices of valence one are called generalized m�gons in the
literature� See� e�g�� Ronan ���� pp� �������������
For present purposes� � will be the link of a vertex in the developing complex

for some polygon of nite groups� in which case the vertex stabilizer G will act
transitively and without inversion on the edges of �� It is convenient to be able
to check the diameter of � with knowledge only of G� The following proposition
provides one method�

Proposition ���� Let G be a group acting on a �nite bipartite graph � so that ��G
is a single edge� Suppose diam��� � �� �� � �

m
� and let the edge e � �u� v� be a

fundamental domain for the action of G on �� Then� G is a quotient of Gu �Ge
Gv

and�

� G �

m factorsz 	
 �
GuGvGuGv � � � �

� The order of G is jGej times the volume �in edges� of a ball of radius � in the

tree on which Gu �Ge
Gv acts�

Proof� Consider the universal cover �� of �� The diameter of � is � and the girth
of � is ��� so the number of edges in a ball of radius � �about a vertex� in �� equals
the number of edges in �� The rst statement follows from Bass�Serre theory� and
the second statement follows from the fact that the number of elements in G is jGej
times the number of edges in �� �

Corollary ��� �Uniqueness of F���� The Frobenius group of order ���

F�� �
�
x� y � x�� y�� xy�x�yx�y

�
���
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and Z��Z� are the only �nite groups generated by two Z� subgroups forming a link

of diameter ��

Proof� If two distinct Z� subgroups form a link of diameter � and angle
�
� within

a group G� then Proposition ��� implies that G has order nine� the cylic group of
order nine does not contain two distinct cyclic subgroups of order three� so Z��Z�

is the only possiblity� If two distinct subgroups of order � form a link of diameter
� and angle �

� within a group G� then Proposition ��� implies that G has order ���
The Frobenius group of order �� is the only possibility for G� as the other group
of order �� is abelian and any two subgroups of an abelian group form an angle no
smaller than �

� � �The link of �Z� �� F�� �� Z�� appears in Figure ��� The Sylow
theorems and some straightforward observations are su�cient to rule out groups of
orders 	
� ���� and ��
 �corresponding to the possible angles of ��	� ���� and ����
and the Feit�Higman Theorem guarantees that there exist no groups G �such that
the link would have diameter �� for angles smaller than �

� � so F�� and Z��Z� are
the only nite groups where two Z� subgroups can form a link of diameter �� �

If the restriction on the diameter of the link is removed� then the possibilities
vary widely� For example� consider the following pair of subgroups of a group of
order ���� �

hxi ��
�
x� y � x�� y�� xyxyx � yxyxy

�
�� hyi

�
����

The two specied Z� subgroups form an angle of
�
� � so the corollary implies that

the diameter of the corresponding link is greater than �� �The diameter is ���
� ��

Equivalently� the order of the group is ���� signicantly larger than the ��� required
for the link to have diameter ��

���� Expanding planar disks� Let P be a non�positively curved polygon of
groups such the vertex links all have diameter �� A planar disk �respectively� a
plane� D in XP is a subcomplex which is convex� homeomorphic to a closed disk in
R
� �respectively� to R� � and such that the total angular measure around an interior
vertex is ��� For example� in the case of a square of groups with all angles �

� � a
planar disk would be an n�m rectangular grid of squares meeting four per interior
vertex� For any subgraph L  Lk v� the cellular hull of L is the corresponding
subcomplex of St v�
The lemma and propositions which follow describe the connection between link

diameter � and planar subspaces of the developing complex XP �

Lemma ���� Let P be a non�positively curved polygon of groups with links of di�

ameter �� Given any convex planar disk   XP � there exists a convex planar disk

 � �  such that �  int ��

Proof� The idea of the proof is depicted in Figure � for the case of a ��� �
�
� �

�
� �

Euclidean triangle of groups� Any planar disk  is the union of planar neighbor�
hoods of the interior vertices and planar neighborhoods of edges� so enlarging  is
equivalent to choosing a compatible set of planar neighborhoods of the vertices of
� �
Set  � �  and choose a vertex u � � such that the angle of � at u is less

than �� Let u� be the next vertex of � in counterclockwise order from u and choose
a minimal circuit � of Lk u� that contains Lk�u

�� add the cellular hull of � to  ��
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Figure �� !Proof" of Lemma ��	

Fix an orientation on  and let u�� be the next vertex of � in counterclockwise
order from u�� The angle of � at u�� was at most �� so Lk��u�� is a segment
of length less than or equal to � � �Lk v��� Choose a compatible minimal circuit
��  Lk u�� and add the cellular hull of �� to  �� Proceed in this fashion around � 
until it is necessary to adjoin a planar neighborhood of u� The vertex u was chosen
so that the angle of � � at u would be � or less at this stage� so there is a minimal
circuit in Lku containing Lk��u� add the corresponding planar neighborhood to
 ��
The only possible complication at this point is caused by orphaned vertices as

shown in Figure �� Three adjacent ��cells around a �
� vertex are not a convex

conguration for a link of girth ��� At each orphaned vertex� there exist unique
cells to complete planar neighborhoods of the orphaned vertices� and once these
cells are added� an interior angle of � � is no more than twice one of the angles of
P � Thus�  � is the desired convex planar disk� �Note that a local embedding of a
planar disk into the developing complex must be an embedding� as otherwise there
would be a closed geodesic�� �

v

initial disk

after one round of added hulls

Figure �� The disk  � with an orphaned vertex v�

If all vertex links have diameter �� this lemma can be used to isometrically embed
a plane in the developing complex by successively expanding an embedded convex
cellular disk� If the diameter of one of the links is larger than �� it is possible that
the process of !growing" a plane by successive applications of Lemma ��	 stalls at
some point� The following proposition will prove useful later�

Proposition ���� Let P be a non�positively curved polygon of �nite groups with a

vertex link L with diam�L�  �� There exist a pair of ��cells in XP which can not

both lie in a single plane�
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Proof� There is a geodesic in L with length � � �L� so the initial and terminal
edges can not both be on a minimal circuit of L� i�e�� the corresponding two ��cells
can not both lie in any planar subset of XP � �

�� Buildings

	��� Diameter � and buildings� After dening buildings� we prove one of the
main theorems�
A Coxeter group is a group with a presentation of the form�

x�� � � � � xk � x�
�� � � � � xk

�� �x�x��
m��� � � � � � �xixj�

mi�j � � � � � �xkxk���
mk�k��

�
���

subject to the requirements that the mi�j are from a symmetric matrix with coef�
cients in Z� � f�g and ��s down the diagonal� When the order of xixj is !�"�
the relation is omitted�
For any k�gon P in the ��sphere S�� E� or H � with interior angles ��	�� � � � � ��	k�

there is an associated Coxeter group

 �	� �
�
x�� � � � � xk � x�

�� � � � � xk
�� �x�x��

�� � � � � � �xixi���
�i � � � � � �xkx��

�k
�
��	�

where 	 � �	�� � � � � 	k� and 	i � �� In the context of polygons of groups� the
Coxeter group  �	� is a polygon of nite groups with Z� edge groups and dihedral
vertex groups� and the Coxeter complex of  �	� is X�	�
� In the study of two�
dimensional buildings� only the Coxeter complexes for planar re�ection groups are
necessary� so the technicalities of a more general denition can be sidestepped� Ken
Brown�s book on buildings ���� ch� III�� contains a general discussion�

De	nition ���� A cell complex X is a building if

�� X is the union of a set of apartments� i�e�� subcomplexes� isomorphic to X�	�


for some planar polygon P �
�� Given any pair of cells f�� �g� there is an apartment A � �� � ���
�� If � and � are two top�dimensional cells of X contained in the intersection of
two apartments A and B� then there is a cellular isomorphism A �� B xing
� and � �

These conditions guarantee that the apartments of X are all the same Coxeter
complex� Spherical buildings and Euclidean buildings �also called a�ne buildings

in the literature� buildings� named for the structure of their underlying Coxeter
complexes� are well�known for their applications in the study of Lie groups and
algebraic number theory� �See� e�g�� Ken Brown�s book ��� ch� VI�VII��� The theory
of hyperbolic buildings� i�e�� buildings in which each apartment is an H n tessellated
by the action of a hyperbolic re�ection group� is less well developed� �See� e�g��
Gaboriau and Paulin �����

Theorem ��� �J� Tits ���� ����� Let P be a non�positively curved polygon of �nite

groups� The vertex links all have diameter � if and only if XP is a building�

Proof� We verify the conditions in Denition 	���
Let fP�g be the set of all planes in XP � We take these to be the apartments of

XP � The rst condition follows from Lemma ��	� as any ��cell is trivially a convex�
isometrically embedded cellular disk�
The metric ��complex XP is geodesic� so the centers of any two ��cells � and

� can be connected with a geodesic segment L� The diameter of the link is the
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minimal �� so if � runs through a vertex� its points of entry and exit form an angle
of �� It follows from the ideas of the proof Lemma ��	 that a convex cellular disk
containing ����� can be created by growing a disk around � so that each successive
expansion contains more of �� This process might require adding a triangle in the
middle of a boundary segment of a disk and then tiling along a boundary segment
in two directions� but the program of Lemma ��	 is una�ected� this procedure
still tiles�in the boundary segment of the disk in question� and the other boundary
segments can be dealt with in counter�clockwise order as in the Lemma� This done�
repeated application of Lemma ��	 provides a family of embedded cellular disks
which is strictly increasing with respect to inclusion� the union of this family is the
desired plane�
Let Pi and Pj be such that � � �  Pi 	 Pj � The intersection of planar sub�

spaces is planar� so  � Pi 	 Pj is a possibly unbounded convex planar disk� The
planes Pi and Pj are simply expansions of  in the spirit of Lemma ��	� so the de�
sired isomorphism is simply the limit of the isomorphisms between the incremental
expansions of  as subsets of Pi and Pj �
The reverse implication follows from Proposition ��
� �

	��� Squares of groups and tree � tree� The following proposition illustrates
an application of Theorem 	�� to squares of groups�

Proposition ���� Let S be a non�positively curved 	�gon of �nite groups� The

following are equivalent�

�� The vertex links of S are connected with diameter � and angle ����
�� The vertex links of S are complete bipartite graphs�

�� XS is the product of two locally �nite� uniform bipartite trees�

	� The order of each vertex group is the product of the orders of the incident

edge groups divided by the order of the face group�

Proof� The product of buildings is again a building� so � �
 � is immediate� The
cells of a Euclidean building are either simplices or products of simplices� and when
the cells are the product of lower�dimensional simplices� the building decomposes as
a product of lower�dimensional buildings� �See ���� p� ������ In this case� the cells
of the building XS are the product of two ��simplices and XS decomposes as the
product of two ��dimensional Euclidean buildings� i�e�� trees� The local niteness
of XS implies that the trees have nite valence� and thus � �
 �� The equivalence
of � and � is elementary� and the equivalence of � and 	 follows from the order
computation in Proposition ���� �

The tree�tree developing complexes have a particularly simple topological struc�
ture� but the polygons of groups acting on these complexes exhibit widely varied
behavior� C� Y� Tang and G� Kim ��� have proven residual niteness and subgroup�
separability results for squares of nilpotent groups with cyclic edge groups and triv�
ial face group� and Dani Wise ��	� has produced non�residually nite �at squares
of nite p�groups with developing complex tree � tree� Marc Burger and Sha�
har Mozes �
� have produced nitely presented innite simple groups acting on
tree�tree�

�� Two�dimensional Euclidean buildings and Z� Z�s
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��� Flat polygons of 	nite groups acting on Euclidean buildings� A poly�
gon of groups is �at if it has the angles of a Eulcidean polygon� Let P be a �at
polygon of nite groups with XP a building� To this point� we have been concerned
with the existence and number of planes in XP � Using a number of techniques
inspired by Lemma ��	� we now focus on Z�Z subgroups of P �
We begin with a variation on the idea of Lemma ��	� Let w be an element

of P � The vertex links of a building are necessarily connected �by condition � in
Denition 	���� so the edge groups generate P and w can be expressed as a word in
elements of the edge groups in many di�erent ways� Fix an initial ��cell �  XP � A
row of ��cells in XP is the area between two parallel cellular geodesic segments at
minimum distance from each other� A zig in XP is the union of two rows where the
parallel cellular geodesics meet each other at the maximum angle� e�g�� � � �

� for a
��� �

�
� �

�
� � triangle� The cells � and w �� both lie in some plane Q  XP �condition �

in Denition 	���� and � and w � � are connected by either a zig or a row lying
entirely on Q� The element w is straight if � and w � � lie in some row and bent

otherwise�

�a� �b�

Figure �� �a� A zig connecting two cells �shaded darker� for a
��� �

�
� �

�
� � triangle� �b� a partial sequence of zigs for a �

�
� �

�
� �

�
� �

triangle with the w�translates of � shaded�

A pair of two cells on a plane Q have the same relative orientation if one is the
image of the other under a translation acting on the induced tiling of Q and this
translation preserves stabilizer types� A nontrivial element w is a translation if w
and w �� have the same relative orientation in some �and thus any� plane� A pair of
��cells occupies a nite set of relative orientations� so given an element w of innite
order� there exists a number n such that wn is a translation�
Bent translations have non�trivial centralizers�

Theorem ���� Let P be a �at polygon of �nite groups with XP a Euclidean build�

ing� For any bent element w of in�nite order� there exists an element v and n � Z
�

such that hwn� vi �� Z� Z� Equivalently� any bent translation lies in a Z� Z� P
stabilizing a plane in XP �

Proof� Suppose that w is a bent translation� x a zig representing it� a two�cell
�� and consider the subset Z��w�  XP which is the union of the zigs connecting
wi � � with wi�� � � for i � Z� The boundary of Z��w� is composed of cellular
geodesics� and the angles at the boundary vertices of Z��w� are �� � � �� or � � �
for � the smallest angle of P � Select a vertex v with angle � � �� and complete the
neighorhood of v in Z��w� to a �at disk by adding ��cells� Using the ideas of the
proof of Lemma ��	� the consequences of this addition give a new sequence of zigs
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Z��w� parallel to Z��w� as in Figure 
� Observe that Z��w� and Z��w� are the
same shape by construction�

Z0(w)

Z1(w)

Figure �� A part of Z��w� and Z��w� for a �
�
� �

�
� �

�
� � triangle

By selecting two cells in the same relative positions in Z��w� as � and w � �
occupy in Z��w�� the new sequence of zigs Z��w� represents a translation w� � P �
The translation w� is determined by w and has the same format and length as a
word in the generators of the edge groups of P �
In the same fashion� Z��w� uniquely determines a sequence of zigs Z��w� with

an associated word w� and so on� giving a sequence Zi�w� and words wi for i �
Z
�� By a mathematical headstand� the process is valid for negative indices as
well� The assumed niteness of the edge groups implies that there are only nitely
many words of the same length and format as w� Each element is determined by
the preceding element �or equivalently� the subsequent element� in the bi�innite
sequence � � � � w��� w� w�� � � � � so every element which occurs once occurs innitely
often�
Because w occurs twice� say as w� and wn� the uniform periodicity of the collec�

tions of zigs gives a !vertical" word v such that wvw��v�� xes ��
An elementary lemma completes the proof�

Lemma ���� Let x and y be two elements of in�nite order in a group G and

suppose that all of the elements f�x� yk� � k � Z
�g lie in a �nite subset of G� Then�

there exists n � Z
� such that �x� yn� � ��

Proof� Innitely many �x� yn� lie in a nite subset of G� so some two must be equal�
say �x� yj � � �x� yk� with j �� k� Then�

xyj �x�yj � xyk�x�yk

yj�k�xyk�j � �x�
�
�

and �x� yk�j � � � as desired� �

The proof of Theorem 
�� is complete� �

A plane in XP is periodic if it is stabilized by a Z�Z subgroup of P �

Corollary ���� For a �at polygon of �nite groups P with links of diameter �� any
planar disk in XP is contained in a periodic plane� i�e�� the set of periodic planes is

a system of apartments for XP �



Buildings and Polygons of Finite Groups �	�

Proof� Given any planar disk   XP � the disk can be enlarged until it is a paral�
lelogram with a pair of zigs for boundaries� this is equivalent to the parallelogram
having the sharpest possible angles at two corners� Carrying out the construction
of Theorem 
�� with either of the associated words �which both represent the same
element� gives a plane Q �  with a Z�Z subgroup of P stabilizing Q� �

Equivalently�

Corollary ���� Every plane in XP is the limit of a sequence of periodic planes�

Proof� Let Q be a plane in XP and let f ig be a sequence of compact� convex
cellular subsets of Q with  i   i�� and Q �

S
 i� Corollary 
�� implies that

there exists a sequence fQig of periodic planes with  i  �Qi 	Q� and�
�Qi 	Q� � Q�

�

It would be interesting to know whether similar results hold for hyperbolic build�
ings�

Question ���� In a cocompact ��dimensional hyperbolic building� is the set of
periodic �under the actions of hyperbolic surface groups� apartments dense# Do
the periodic apartments form a system of apartments for the building#
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