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Weighted Ergodic Theorems Along Subsequences
of Density Zero

Roger L. Jones, Michael Lin, and James Olsen

Abstract. We consider subsequence versions of weighted ergodic theorems,
and show that for a wide class of subsequences along which a.e. convergence
of Cesaro averages has been established, we also have a.e. convergence for the
subsequence Cesaro weighted averages, when the weights are obtained from
uniform sequences produced by a connected apparatus.
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1. Introduction

Let (X,F , µ) be a probability space. For T a linear contraction of Lp(X,F , µ) =
Lp, p ≥ 1, various ergodic theorems consider the a.e. convergence of the averages
1
N

∑N
k=1 T

kf(x) for every f ∈ Lp. More generally, for {nk} an increasing sequence
of positive integers, various authors have considered the a.e. convergence of averages
of the form 1

N

∑N
k=1 T

nkf(x). When {nk} has positive density, this convergence can
be represented (e.g., [3]) as convergence of weighted averages 1

N

∑N
k=1 a(k)T kf(x),

with {a(k)} a 0-1 sequence. We will be interested in subsequence versions of these
weighted averages. That is, for a sequence {a(k)} of complex numbers for which the
weighted averages converge, we will be interested in studying the almost everywhere
convergence of subsequence averages of the form

1
N

N∑
k=1

a(nk)Tnkf.(1)

Received November 21, 1997.
Mathematics Subject Classification. 47A35; 28A65.
Key words and phrases. Besicovitch sequences, uniform sequences, Dunford-Schwartz opera-

tors, amplitude modulation, pointwise subsequence ergodic theorem.
R. Jones is partially supported by NSF Grant DMS—9531526.
M. Lin is partially supported by the Israel Science Foundation.
J. Olsen is partially supported by ND EPSCoR through NSF Grant # OSR-5452892.

c©1998 State University of New York
ISSN 1076-9803/98

89

http://nyjm.albany.edu:8000/nyjm.html
http://nyjm.albany.edu:8000/j/Vol3A.html
http://nyjm.albany.edu:8000/j/1998/3A-7.html


90 Roger L. Jones, Michael Lin, and James Olsen

The types of integer sequences {nk} which we will be interested in are those
for which we have a.e. convergence of the unweighted Cesaro averages in the mea-
sure preserving case, that is, for fixed p > 1, sequences for which the averages
1
N

∑N
k=1 f(τnkx) converge a.e. for all f in Lp, and for all measure preserving trans-

formations τ . Such sequences include the sequence {nk} where nk = k2, or, more
generally, nk = kt, t a positive integer, or nk = k-th prime, or any of the sequences
studied in [5] or [20], as well as a variety of other sequences. We will call such
sequences good universal in Lp. If {nk} is good universal in Lp, and also has the
property that for every measure preserving transformation τ on a non-atomic prob-
ability space, the maximal operator f?(x) = supN

1
N

∑N
k=1 |f(τnkx)| is strong type

(p, p) (that is, ‖f?‖p ≤ cp‖f‖p for every f ∈ Lp), then we will say that the sequence
{nk} is strongly good universal in Lp.

The types of operators we will consider are those induced by measure preserving
point transformations (i.e., Tf = f ◦ τ , where τ is a measure preserving point
transformation of X), Dunford-Schwartz operators (i.e., linear operators of Lp, all
p, 1 ≤ p ≤ ∞ such that ‖T‖∞ ≤ 1 and ‖T‖1 ≤ 1), and positively dominated
contractions of Lp, p fixed, 1 < p <∞ (i.e., an operator T of Lp such that there is
a positive operator S of Lp norm less than or equal to one that takes non-negative
functions to non-negative functions and |Tf(x)| ≤ S|f |(x) a.e.).

When the limit of the averages given in (1) exists for all f ∈ Lp for a particular
sequence {nk}, a particular sequence of weights {a(k)}, and all T in some class C
of operators of Lp, we will say that {a(k)} is a good weight sequence along {nk}
for C on Lp. In this terminology, we know that the sequence {a(k) = 1} is a good
weight sequence along {nk} for C when {nk} is good universal in Lp, p > 1, and C is
the class of measure preserving transformations. Moreover, for the sequences {nk}
mentioned earlier and p > 1, we can enlarge the class C to include the operators
mentioned above ([4], [5], [20], [11], [13]). We will investigate how much of this is
true for some other previously considered sequences of weights {a(k)}, which are
good weights along {nk = k}.

2. Besicovitch Weights

For a sequence of complex numbers {a(k)}, define for 1 ≤ p < ∞, the p semi-
norms

‖{a(k)}‖p = (lim sup
N→∞

1
N

N∑
k=1

|a(k)|p) 1
p .

If {a(k)} is defined by a(k) =
∑m
j=1 bjλ

k
j , where λj , j = 1, . . . ,m are complex

numbers of modulus one and bj are complex numbers , we call {a(k)} a trigono-
metric polynomial. The p-Besicovitch sequences will be the closure in the p-semi-
norm of the trigonometric polynomials. Besicovitch sequences, as good sequences of
weights, have already been extensively studied. We give just a few of the references
that contain some of the results we will need ([17], [12], [15], [19], [3]).

Note that the p-semi-norm of a bounded sequence does not change if the values
of the sequence are changed, in a bounded way, on a subsequence of the integers
of density zero. It is clear that a set of trigonometric polynomials can be used
to approximate bounded functions that exhibit any behavior whatever along a
sequence of density zero. Therefore, we cannot in general expect a Besicovitch
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sequence {a(k)} to be a good weight sequence along good universal sequences {nk}
of density zero.

In [15], Besicovitch sequences defined only on subsets of the integers are intro-
duced. In the terminology introduced there, the class Bp,{nk} of p, {nk}-Besicovitch
sequences is defined to be the closure of the trigonometric polynomials in the p
semi-norm defined by

‖{a(k)}‖pp,{nk} = lim sup
N→∞

1
N

N∑
k=1

|a(nk)|p .

Since the integers are an abelian group, the closure of the trigonometric polynomials
is the same as the closure of the almost periodic functions on the integers (see [15]).

Unfortunately, when we consider good universal sequences of zero density, the
measures on the integers induced by such sequences {nk}, i.e., the measures µN
that give the measure 1

N to the first N terms of the sequence {nk} and zero to the
rest of the integers, are not ergodic. Hence, most of the results of [15] will not apply.
We do have, however, that for a fixed {nk}, all the Bp,{nk} classes contain the same
bounded sequences, that is, Bp,{nk}∩ `∞ = B1,{nk} ∩ `∞ for all p, 1 ≤ p <∞ ([15],
Theorem 2.1). We will refer to this class as bounded {nk}-Besicovitch sequences.

Routine arguments give the following results.

Theorem 2.1. Fix p, 1 ≤ p <∞. If {nk} is a strongly good universal sequence in
Lp, then the bounded {nk}-Besicovitch sequences are good weight sequences along
{nk} for all Dunford-Schwartz operators on Lp.

Proof. We only sketch the proof. More details of the argument can be found in the
proof of Theorem 1.2 in [12]. By (the proof of) Theorem 4.1 in [11], the constant
sequence {a(k) = 1} is a good weight sequence along any strongly good universal
sequence, for Dunford-Schwartz operators in Lp (p is fixed). Thus the constant
sequence is a good weight sequence along {nk} for operators of the form λT , where
λ is a complex number with |λ| = 1, since these operators are Dunford-Schwartz as
well. We then have convergence a.e. for the averages given by (1) when {a(k)} is a
trigonometric polynomial.

Let {a(k)} be a bounded {nk}-Besicovitch sequence. Fix f ∈ L∞. If {b(k)} is a
trigonometric polynomial with ‖a(k)− b(k)‖1,{nk} < ε, then we have a.e.

lim sup
N→∞

| 1
N

N∑
k=1

a(nk)Tnkf − 1
N

N∑
k=1

b(nk)Tnkf | ≤ ε‖f‖∞.

Since ε > 0 is arbitrary, we obtain a.e. convergence of the weighted averages given
by (1) for f bounded, using the convergence for trigonometric polynomials. Since
{a(k)} is bounded and {nk} is good universal for Lp, we have for f ∈ Lp

| sup
N

1
N

N∑
k=1

a(nk)Tnkf | ≤ ‖{a(k)}‖∞ sup
N

1
N

N∑
k=1

|T |nk |f |

which is finite a.e. An application of the Banach principle completes the proof. �
Remarks. 1. The proof required only that {nk} be good universal in Lp,

with the constant sequence {a(k) = 1} a good weight along {nk} for all Dunford-
Schwartz operators on Lp. For p = 1 and {nk = k}, this is satisfied with {nk} not
strongly good universal.
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2. A. Bellow [2] proved that for any fixed p > 1, there are subsequences {nk}
which are good universal sequences in Lp, but not in Lr with 1 ≤ r < p.

3. In Theorem 4.1 of [11], the following lemma is implicitly applied to sequences
which are good universal in Lp for every 1 < p <∞.

Lemma 2.2. Let {nk} be a good universal sequence in Lp, for all p in an open
interval (r, s), 1 ≤ r < s. Then {nk} is a strongly good universal sequence in Lp
for every p ∈ (r, s).

Proof. Let τ be an ergodic measure preserving transformation. By Sawyer’s the-
orem ([18] or [10]), the a.e. convergence of the averages 1

N

∑N
k=1 f(τnkx) for every

f ∈ Lp implies that the corresponding maximal operator is of weak type (p, p), for
every p ∈ (r, s). Let r < p1 < p < p2 < s. Then this maximal operator is of weak
types (p1, p1) and (p2, p2), so by (a special case of) the Marcinkiewicz interpola-
tion theorem [8], it is of strong type (p, p). By Corollary 2.2 of [11], the maximal
operator along {nk} of any positively dominated contraction of Lp, particularly of
any measure preserving transformation, is of strong type (p, p). Since {nk} is good
universal, it is strongly good universal. �

Theorem 2.3. Let {nk} be a good universal sequence in Lp for all 1 < p < ∞.
For a fixed p, if the sequence {a(k) = 1} is a good weight sequence along {nk} for
all positive [positively dominated ] contractions of Lp, then the r, {nk}-Besicovitch
sequences with r > p/(p − 1) are good weight sequences along {nk} for positive
[positively dominated ] contractions of Lp.

Proof. Again we only sketch the proof. More details can be found in the proof
of Theorem 2.4 of [12]. By the previous lemma, {nk} is strongly good universal in
Lp for every p, 1 < p < ∞. By Corollary 2.4 of [11], for any positively dominated
contraction T of Lp, 1 < p < ∞, the maximal operator supN

1
N

∑N
k=1 |Tnkf | is

strong type (p, p).
Fix p such that {a(k) = 1} is a good weight sequence along {nk} for all positively

dominated contractions of Lp, which means we have a.e. convergence of the averages
along {nk} for these operators. If T is a positively dominated contraction of Lp,
so is the operator λT when λ is a complex number of absolute value 1, so we
have a.e. convergence of its averages along {nk}, which is convergence in (1) for
{a(k) = λk}.

We now look at the case that {a(k) = 1} is a good weight sequence along {nk}
only for positive contractions of Lp. Following [17], for T a positive contraction of
Lp(X) we take the product space of the unit circle with X, and define P [g(z)f(x)] =
g(λz)Tf(x). Then P extends to a positive contraction of Lp of the product space,
and applying to P the assumed convergence for positive operators, with g(z) = z
and f ∈ Lp(X), we obtain a.e. convergence in (1) for {a(k) = λk}.

We now prove the part of the theorem when {a(k) = 1} is a good weight sequence
along {nk} for all positively dominated contractions of Lp; the restricted case of
positive contractions is obtained by putting S = T in the proof. Let q = p/(p− 1)
be the dual index of p, i.e., 1

p + 1
q = 1, fix r > q, and let T be dominated by a

positive contraction S on Lp. By [1], there exists a larger L′p, a positive isometric
embedding D of Lp into L′p, a conditional expectation operator E and a positive
invertible isometry Q such that for each n ∈ Z+ we have DSnf = EQnDf . Since Q
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can be written in the form Qnf(x′) = wn(x′)f(τx′), where τ is a non-singular point
transformation, |Qnf(x)|s = Rn|f |s where R is an L′p/s isometry for s = r/(r−1) <

p. Since the maximal operator supN
1
N

∑N
k=1R

nk |f | is strong type (ps ,
p
s ), we have

that the maximal operator supN
1
N

∑N
k=1[Snk |f |]s is strong type (p, p) and hence is

finite a.e. Thus, if {bj(k)} is a sequence of trigonometric polynomials that approach
{a(k)} in the ‖ � ‖r,{nk} semi-norm, then for a.e. x Hölder’s inequality shows that
the sequence {a(k)T kf(x)} will converge in the ‖ � ‖1,{nk} semi-norm. �

Corollary 2.4. Fix p, 1 < p < ∞. Let nk = kt (fixed t ∈ N), or let nk denote
the k-th prime, then the r, {nk}-Besicovitch sequences, for r > p/(p− 1), are good
weight sequences along {nk} for Dunford-Schwartz operators in Lp and for positive
contractions of Lp.

Proof. Recall that Bourgain [6] has proved that the sequence {kt} is strongly
good universal in Lp, for every p > 1. Wierdl [20] has proved that the sequence of
primes is good universal in Lp, p > 1. In [13] it is shown that in both cases the
constant sequence is a good weight sequence along {nk} for positive contractions of
Lp, so the previous theorem yields the result for positive contractions of Lp. For T
Dunford-Schwartz the proof of the previous theorem applies, since a.e. convergence
in (1) for {a(k) = λk} holds by the first part of the proof of Theorem 2.1. �

3. Uniform Sequences

In this section we will consider the uniform sequences of Brunel-Keane [7]. These
are bounded Besicovitch sequences with some further restrictions. We will also
consider good averaging sequences {nk} such that for every irrational θ ∈ [0, 1),
{nkθ} is uniformly distributed (mod 1). We will show that in this case every
uniform sequence produced by an apparatus with a connected space is in B1,{nk}.
Since a uniform sequence is bounded, this means that those uniform sequences will
then also belong to Bp,{nk} for all p > 1, and we will be able to apply the results
of the previous section to the uniform sequences {a(k)} along the sequences {nk}.

We first give the construction of the uniform sequences of Brunel and Keane
[7], the details of which we will need. Let Ω be a compact metric space, B the
collection of Borel subsets of Ω, and φ a homeomorphism of Ω such that {φn}n≥0 is
an equicontinuous family of mappings. The system (Ω, φ) is then called uniformly
L stable. We assume that Ω possesses a dense orbit. It then follows (see [7] or [17])
that there exists a unique φ invariant probability measure on (Ω,B), denoted by ν.
Then for any w ∈ Ω, and any continuous function f on Ω,

lim
n

1
n

n−1∑
t=0

f(φtw) =
∫
f dν .

Such a system (Ω,B, ν, φ) is called strictly L stable.
If (Ω,B, ν, φ) is strictly L stable, Y ∈ B with ν(Y ) > 0, ν(∂Y ) = 0 and y ∈ Ω,

the sequence {ak(y)} = {XY (φky)} is called a uniform sequence of weights. The
entire collection {(Ω,B, ν, φ), y, Y } is called the apparatus producing the uniform
sequence of weights. The apparatus is said to be connected if Ω is connected. It
is clear that a uniform sequence is a “return times” sequence. In fact, we will
be interested in the sequences {ak(y)} for all y ∈ Ω. This should be contrasted



94 Roger L. Jones, Michael Lin, and James Olsen

with the usual situation for return times weights, where one considers only y in a
subset Ω′ of Ω, where ν(Ω′) = 1. The fact that uniform sequences of weights are
bounded Besicovitch is proved in [17], p. 149. V. Losert has shown us (private
communication) that uniform sequences need not be weakly almost periodic.

Theorem 3.1. Let {nk} be a good universal sequence in Lp, p > 1 fixed. For θ ∈
[0, 1) irrational such that {nkθ} is uniformly distributed mod 1, let T be induced by
the measure preserving transformation τx = θ+x mod 1. Then for all f ∈ Lp[0, 1),
we have

lim
N→∞

1
N

N∑
k=1

Tnkf =
∫
f a.e.(2)

Proof. We first note that if (2) holds for a dense class of functions in Lp, then we
are done: given ε > 0 and f ∈ Lp[0, 1) we can choose f ′ in our dense class such

that ‖f − f ′‖p < ε. Putting AN =
1
N

N∑
k=1

Tnk , we then have

‖ANf −
∫
f‖p ≤ ‖ANf −AN (f ′) +AN (f ′)−

∫
f ′ +

∫
f ′ −

∫
f‖p

≤ ε

3
+
ε

3
+
ε

3
.

Thus ‖ANf −
∫
f‖p → 0. Since the a.e. convergence of the sequence {ANf} is

assumed, the limit must be
∫
f .

To see the dense class, we just note that for characteristic functions of intervals,
by the assumption that (nkθ) is uniformly distributed, we have convergence to the
integral. Hence it is true for finite linear combinations of characteristic functions
of intervals, and these are dense. �

Definition. Let τ be a measure preserving point transformation. We say that
τ is totally ergodic if the transformations τn, n = 1, 2, ... are all ergodic.

We can now extend the previous theorem to totally ergodic transformations as
opposed to irrational rotations of the circle.

Theorem 3.2. Let {nk} be a good universal sequence in Lp, for every 1 < p <∞,
such that {nkθ} is uniformly distributed mod 1 for all θ ∈ [0, 1) irrational, τ a
totally ergodic measure preserving point transformation of a probability space X,
f ∈ Lp(X), p > 1. Then for a.e. x we have

lim
N→∞

1
N

N∑
k=1

f(τnkx) =
∫
f.

Proof. Let λ = e2πiθ be a complex number of modulus one that is not a root of
unity. By Theorem 3.1, for the function f(z) = z defined on the unit circle, we
have for a.e. z

lim
N→∞

1
N

N∑
k=1

λnkz =
∫
{z:|z|=1}

z = 0.
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Hence

lim
N→∞

1
N

N∑
k=1

λnk = 0.

We know that for f ∈ Lp, p > 1,

lim
N→∞

1
N

N∑
k=1

f(τnkx)

exists for a.e. x, and hence also in Lp norm. For f ∈ L2, we have

1
N

N∑
k=1

(f ◦ τnk , f) =
1
N

N∑
k=1

∫
{λ:|λ|=1}

λnkdEf (λ)

where dEf (λ) is the spectral measure of the linear operator on L2 defined by Tf =
f ◦ τ . We have shown that

lim
N→∞

1
N

N∑
k=1

λnk = 0

unless λ belongs to the countable set of the roots of unity. But since τ is totally
ergodic, no root of unity 6= 1 is an eigenvalue of T on L2. Hence, no root of unity
except 1 is an atom of the spectral measure of T , so for f ∈ L2,

lim
N→∞

1
N

N∑
k=1

f(τnkx) =
∫
f .

Since L2 ∩ Lp is dense in Lp, p > 1, the theorem follows as in the proof of Theo-
rem 3.1. �

Even for strongly good universal sequences, the requirement that τ be totally
ergodic is necessary. In fact, consider the strongly good universal sequence of the
primes. Let λ be a primitive r-th root of unity, and let X be r point space with
each point having measure 1

r . Let τ be any cyclic permutation of all the points,
and let f be defined by f(x) = 1 for one particular x and 0 otherwise. Then it is
easy to see that for some x

lim
N→∞

1
N

N∑
k=1

f(τnkx) = 0 6=
∫
f

and λ is an eigenvalue for the operator induced by τ , which is ergodic.

Lemma 3.3. If {(Ω,B, ν, φ), y, Y } is a connected apparatus producing a uniform
sequence, then φ is totally ergodic.

Proof. Suppose φ is not totally ergodic. Then some power of φ has a non-constant
invariant function, which implies that the operator S defined by Sf = f ◦ φ has an
eigenfunction in L2 with an associated eigenvalue that is a root of unity.

Let R be the operator S restricted to C(Ω). Then R is almost periodic, so for
all λ with |λ| = 1 also λR is almost periodic. Consequently, the averages

1
N

N∑
k=1

λ
k
Rkf
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converge uniformly to the projection of f onto the eigenspace of R associated with
λ.

If this projection is non-zero, which will happen if and only if λ is an eigenvalue
for S (since C(Ω) is dense in L2(Ω) ), R (and hence S) will have a continuous
eigenfunction g associated with the eigenvalue λ. Then g assumes only the values
g(x0), g(φx0), . . . , g(φr−1x0), where x0 has a dense orbit. Since g is continuous and
Ω is connected, this is a contradiction. �

Theorem 3.4. Let {nk} be a good universal sequence in L∞, such that for every
irrational θ ∈ [0, 1) the sequence {nkθ} is uniformly distributed mod 1, and let
{a(k)} be a uniform sequence produced by a connected apparatus {(Ω,B, ν, φ), y, Y }.
Then {a(k)} is {nk}-Besicovitch.

Proof. By Lemma 3.3, φ is totally ergodic. Let g ∈ C(Ω). Since {nk} is a good
universal sequence, we have from Theorem 3.2

lim
N→∞

1
N

N∑
k=1

g(φnky) =
∫
g(3)

for a.e. y ∈ Ω. Since g is uniformly continuous, {φn}n≥0 is an equicontinuous
family, and open sets have positive measure, we have that (3) holds for all y ∈ Ω.

Let g1 and g2 be continuous functions such that g1(y) ≤ XY (y) ≤ g2(y) for all
y ∈ Ω and

∫
g2 −

∫
g1 < ε, where ε > 0 is arbitrary (see [7, 17]). We then have, for

all y ∈ Ω,

lim
N→∞

1
N

N∑
k=1

g1(φnky) ≤ lim inf
N→∞

1
N

N∑
k=1

a(nk)

≤ lim sup
N→∞

1
N

N∑
k=1

a(nk) ≤ lim
N→∞

1
N

N∑
k=1

g2(φnky)

Fix y. Then {g2(φny)} is almost periodic, and using (3) we obtain

lim sup
N→∞

1
N

N∑
k=1

|g2(φnky)− a(nk)| ≤

lim
N→∞

1
N

N∑
k=1

[g2(φnky)− g1(φnky)] =
∫

(g2 − g1) < ε.

Since ε is arbitrary, {a(k)} is {nk}-Besicovitch.
Furthermore, for any ε > 0 we also have

lim sup
N→∞

1
N

N∑
k=1

a(nk)− lim inf
N→∞

1
N

N∑
k=1

a(nk) < ε .

Since ε is arbitrary, limN→∞ 1
N

∑N
k=1 a(nk) exists (and equals ν(Y ) ). �

Remark. To get a better picture of the class of sequences {a(k)} considered
in the theorem, we note that Halmos and von-Neumann proved (see Theorem 3 of
[17]) that every strictly L stable system is isomorphic to a rotation by a generator
of a compact metric monothetic group. Thus, we may assume that Ω is a compact
metric (connected) monothetic group, ν its Haar measure, and φ(x) = x+ α with
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{αn} dense in Ω. The referee has remarked that this yields an alternative proof of
Lemma 3.3.

Combining the previous theorem with the results of the previous section, we
obtain the following corollaries.

Corollary 3.5. Fix p, 1 ≤ p <∞. Let {nk} be a strongly good universal sequence
in Lp, such that {nkθ} is uniformly distributed mod 1 for every irrational θ ∈ [0, 1).
Then any uniform sequence {a(k)} produced by a connected apparatus is a good
weight sequence along {nk} for Dunford-Schwartz operators in Lp.

Corollary 3.6. Let {nk} be a good universal sequence in Ls for every 1 < s <∞,
such that {nkθ} is uniformly distributed mod 1 for every irrational θ ∈ [0, 1).
If for a fixed p the constant sequences are good weight sequences along {nk} for
positive [positively dominated ] contractions of Lp, then any uniform sequence {a(k)}
produced by a connected apparatus is a good weight sequence along {nk} for positive
[positively dominated ] contractions of Lp.

Corollary 3.7. If nk = kt (for fixed t ∈ N), or if nk denotes the k-th prime,
and T is a Dundord-Schwartz operator or a positive contraction of Lp(X), p > 1,
then for any uniform sequence {a(k)} produced by a connected apparatus and for
all f ∈ Lp(X), we have

lim
n→∞

1
N

N∑
k=1

a(nk)Tnkf

exists a.e.

Proof. Bourgain [6] has established that for fixed t ∈ N, {nk = kt} is a strongly
good universal sequence in Lp for all p > 1. Weyl’s theorem ([14], p. 27) says that
for θ irrational, {ktθ} is uniformly distributed mod 1. For {nk} the sequence of
primes, Wierdl [20] has established that it is good universal in Lp for every p > 1,
and the uniform distribution of {nkθ} for irrational θ follows from [9], Theorem 9.8.
Hence the hypotheses of Theorem 3.4 are satisfied in both cases, and Corollary 2.4
yields the result. �
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