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Convergence of Moving Averages of
Multiparameter Superadditive Processes

Doğan Çömez

Abstract. It is shown that moving averages sequences are good in the mean
for multiparameter strongly superadditive processes in L1, and good in the p-
mean for multiparameter admissible superadditive processes in Lp, 1 ≤ p <∞.
Also, using a decomposition theorem in Lp-spaces, a.e. convergence of the
moving averages of multiparameter superadditive processes with respect to
positive Lp-contractions, 1 < p <∞, is obtained.
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1. Introduction

Beginning with the moving averages theorem of Bellow, Jones and Rosenblatt
[BJR1], determining the conditions that ensure a.e. convergence (or divergence) of
moving averages of various processes has been a subject of intensive study. Subse-
quently, a.e. convergence of moving averages has been obtained in several different
settings [AD, Ç2, ÇF, JO1, JO2]. In [JO1, JO2] the moving averages theorem has
been extended to the operator setting. Generalization of this theorem to (multi-
parameter) superadditive processes relative to measure preserving transformations
(MPTs) is due to Ferrando [F]. Recently, the a.e. convergence of the moving av-
erages of superadditive processes relative to positive Lp-contractions, 1 < p < ∞,
has been obtained [Ç2].

In proving the a.e. convergence of moving averages, a condition on the sequence,
called the cone condition, plays a vital role. It has been observed that the class of
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sequences satisfying the cone condition is the same as the class of B-sequences, in-
troduced by Akcoglu and Déniel [AD]. Multiparameter B-sequences are introduced
in [F]. It turns out, however, that for the norm convergence of moving averages of
the additive processes this cone condition is not necessary.

In this article we will investigate the a.e. and norm convergence of the mov-
ing averages of multiparameter superadditive processes relative to positive Lp-
contractions. Our results will generalize some results in [Ç2, F] to the multipa-
rameter operator theory setting, and the result in [JO1] and the norm convergence
result in [BJR2] to the superadditive setting.

Let (X,F, µ) be a σ-finite measure space, and let T and S be commuting positive
linear Lp(X)-contractions, 1 ≤ p <∞ fixed. A family of real-valued functions F =
{F(m,n)}m≥0,n≥0 ⊂ Lp with F(0,0) = F(1,0) = F(0,1) is called a (two parameter)
(T, S)-superadditive process if, for all m ≥ 0, n ≥ 0,

F(m+k,n) ≥ F(m,n) +TmF(k,n) if k > 0, and F(m,n+l) ≥ F(m,n) +SnF(m,l) if l > 0.

F is called a strongly (T, S)-superadditive process, if, for all 0 < k < m, 0 < l < n,

F(m+k,n+l) ≥ F(m,n) + TmF(k,n+l) + SnF(m+k,l) − TmSnF(k,l).

When both {F(m,n)} and {−F(m,n)} are (T, S)-superadditive, then {F(m,n)} is
called (T, S)-additive process. Clearly, (T, S)-additive processes are necessarily of
the form {∑m−1,n−1

i,j=0 T iSjF(1,1)}. If there exists g ∈ Lp such that, for all m,n > 0,
F(m,n) ≤

∑m−1,n−1
i,j=0 T iSjg, then F is called dominated, and the function g is called

a dominant for F . If supm,n≥1
1
mn‖F(m,n)‖p < ∞, the process is called bounded.

It is well known that, when p = 1, any bounded superadditive process relative to
MPTs has a dominant g that satisfies

∫
g = γF := supm,n≥1

1
mn‖F(m,n)‖1 < ∞,

called an exact dominant [AS3, S].

Remark 1. Any strongly superadditive process satisfying F(m,0) = F(0,n) ≡ 0,
for all m,n ≥ 0, is a superadditive process (which will be assumed throughout this
article). In one parameter case, strong superadditivity and superadditivity coincide.
Furthermore, if F is a superadditive process with F(1,1) ≥ 0, then F(m,n) ≥ 0, for
all m > 0, n > 0.

Remark 2. If F is a (T, S)-superadditive process, then

G = {G(m,n)} =
m−1,n−1∑
i,j=0

T iSjF(1,1)

is a (T, S)-additive process, and hence F ′(m,n) = F(m,n) −G(m,n) is a positive su-
peradditive process. Therefore, we can always assume that a superadditive process
is positive. Also, F ′ = {F ′(m,n)} is dominated if F is dominated.

Throughout this article, any sequence of the form w = {(an, rn)}, with an >
0, rn > 0 for all n, and rn →∞, will be called a moving average sequence (MAS).
A (two parameter) MAS is a sequence w = {(an, rn)}, where an = (a1

n, a
2
n), rn =

(r1
n, r

2
n), with ain > 0, rin > 0 for all n, and rin → ∞. We will call the MASs

w1 = {(a1
n, r

1
n)} and w2 = {(a2

n, r
2
n)} as the components of w, each of which are

MASs themselves.
If F is a T -superadditive process and w = {(an, rn)} is a one parameter MAS,

we define the averages of F along w by 1
rn
T anFrn . (Hence, if F is T -additive,
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the averages along w will be Aw,n(T )F1 := 1
rn
T an

∑rn−1
i=0 T iF1.) Similarly, if

F is a (T, S)-superadditive process and w = {(an, rn)} is a (two parameter)
MAS, then we define the averages of F along w by 1

|rn|T
a1
nSa

2
nF(r1

n,r
2
n), where

|rn| = r1
nr

2
n . (So, for (T, S)-additive processes the averages along w will be

Aw,n(T, S)F(1,1) = 1
|rn|T

a1
nSa

2
n
∑r1

n−1
i=0

∑r2
n−1
j=0 T iSjF(1,1).) It should be noted here

that, in the superadditive setting, it is possible to give alternative definitions of
moving averages, however, such averages may fail to converge a.e. and in the mean
as shown in [ÇF, F].

Let T be a positive linear operator on Lp. A MAS w is called good in the p-mean
for T if, for every f ∈ Lp, limnAw,n(T )f exists in the Lp-norm. w is called good
in the p-mean if it is good in the p-mean for all (operators induced by) MPTs.
Similarly, a MAS w is called good a.e. for T if, for every f ∈ Lp, limnAw,n(T )f
exists a.e., and w is called good a.e. if it is good a.e. for all (operators induced by)
MPTs. A (two parameter) MAS w is called good in the p-mean (good a.e.) for
linear operators T and S if limnAw,n(T, S)f exists in the Lp-norm (a.e.) for all
f ∈ Lp. A MAS w is called good in the p-mean (good a.e.) for a (T, S)-superadditive
process F if limn→∞ 1

|rn|T
a1
nSa

2
nF(r1

n,r
2
n) exists in Lp-norm (a.e.).

In what follows, for practicality, all the propositions that require the cone condi-
tion will be stated in terms of B-sequences. Of course, one can easily restate them
using the cone condition. Also, we will use the notation n = (n, n) , for any integer
n ≥ 0. We will assume that Z2

+ is ordered in the usual manner, that is, (m,n) ≤
(u, v) if m ≤ u, n ≤ v, and (m,n) < (u, v) if (m,n) ≤ (u, v) and (m,n) 6= (u, v).

2. Convergence in the p-Mean

Moving averages of additive processes converge a.e. if and only if the MAS satisfy
the cone condition. An example of MAS for which a.e. convergence fails is given
in [AdJ]. On the other hand, the situation is different for the norm convergence.
Indeed, by a criterion of Bellow Jones and Rosenblatt [BJR2, Corollary 1.8], if
w = {(an, rn)} is a MAS and νnf(x) = 1

rn

∑rn−1
i=0 T an+if(x), then

ν̂n(γ) =
1
rn

(γan
1− γrn
1− γ )→ 0 for all |γ| = 1, γ 6= 1.

Hence any MAS is good in the p-mean (with a T -invariant limit). Recently, in [ÇF]
the following is proved:

Theorem A. Let T be a positive Lp-contraction, 1 < p < ∞, or a positive
Dunford-Schwartz operator on L1. If {nk} is a sequence of positive integers which
is good in the p-mean for a class of (super)additive processes relative to MPTs, then
it is good in the p-mean for T -(super)additive processes of the same class.

Theorem A implies that a MAS is good in the p-mean for positive Lp-contractions,
when 1 < p < ∞, or for L1 − L∞-contractions (i.e. Dunford-Schwartz operators).
Naturally, one asks if the same is valid for superadditive processes. Since the tool
employed in [BJR2] is inherently applicable to additive processes, one needs other
techniques to answer this question. Also, there are sequences (not MAS) which
are good in the mean for additive processes but not so for superadditive processess
[ÇF]. In this section we will answer this question for both one-parameter and
multiparameter (super)additive processes.
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The following result, that can be proved in an arbitrary Banach space setting,
tells us that for the mean convergence of additive processes, we can consider one
parameter case only:

Proposition 2.1. Let T and S be commuting contractions on a Banach space X.
If w = {(an, rn)}, rin →∞, is a MAS whose components are good in the p-mean
for T and S, respectively, then w is good in the p-mean for T and S.

Proof. Observe first that, the norm limit is (T and S) invariant. Hence

lim
n
Aw1,n(T )x = E1x, and lim

n
Aw2,n(S)x = E2x,

for some projections E1 and E2. Since T and S commute, so do the projections.
Then

‖Aw,n(T, S)x−E1E2x‖p ≤ ‖Aw,n(T, S)x−Aw2,n(S)E1x‖p+‖Aw2,n(S)E1x−E1E2x‖p
and, by assumption, both the terms on the right hand side tend to zero. �

Since MASs are good in the p-mean for additive processes relative to MPTs,
Theorem A and Proposition 2.1 imply that MASs are good in the p-mean for
additive processes relative to positive Lp-contractions, when 1 < p < ∞, or for
Dunford-Schwartz operators on L1. Hence, we obtain:

Corollary 2.2. Multiparameter MASs are good in the p-mean for positive Lp-
contractions (when 1 < p <∞) or Dunford-Schwartz operators on L1.

For the rest of this section, unless stated otherwise, we will consider superadditive
processes relative to MPTs only. The solution to the problem for superadditive
processes will be studied in two cases.

Case 1. p = 1. The following is a two parameter version of a lemma of Akcoglu
and Sucheston [AS3], which is proved similarly. So, we omit the proof.

Lemma 2.3. Let F be a positive (T, S)-superadditive process, where T and S are
positive Lp-contractions, 1 ≤ p < ∞. If hk = 1

k2Fk, k > 1, then (with the conven-
tion that sums over void sets are zero) Fn ≥

∑n−k−1
i=0

∑n−k−1
j=0 T iSjhk.

If F ⊂ L1 is a bounded positive strongly (T, S)-superadditive process with an
exact dominant δ ∈ L1, then, together with Lemma 2.3, this yields that, for all
n > k ≥ 1,

Hk
n−k ≤ Fn ≤ Gn,

where G(m,n) =
∑m−1
i=0

∑n−1
j=0 T

iSjδ, and Hk
(m,n) =

∑m−1
i=0

∑n−1
j=0 T

iSjhk . So, for a
MAS w = {(an, rn)}, if n is large enough, we have

0 ≤ 1
|rn| (Frn −Hk

rn−k) ≤ 1
|rn| (Grn −Hk

rn−k).

Both the processes {G(m,n)} and {Hk
(m,n)} are positive (T, S)-additive processes.

Thus, by Corollary 2.2, the averages 1
|rn|T

a1
nSa

2
nGrn and 1

|rn|T
a1
nSa

2
nHk

rn converge
in the L1-norm. Observe that

L1 − lim
n

1
|rn|T

a1
nSa

2
nHk

rn = L1 − lim
n

1
|rn|T

a1
nSa

2
nHk

rn−k.
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Hence,

lim
n

1
|rn|T

a1
nSa

2
n(Grn −Hk

rn−k) = lim
n
Aw,n(T, S)(δ − hk) = δ∗ − gk

exists in the L1-norm, where δ∗ = L1−limAw,n(T, S)δ and gk = L1−limnAw,n(T, S)hk.
Consequently

0 ≤ L1 − lim
1
|rn|T

a1
nSa

2
n(Frn −Hk

rn−k) ≤ δ∗ − gk.(1)

Lemma 2.4. If F is a positive (T, S)-superadditive process, where T and S are
positive Lp-contractions, then for every k ≥ 1, gk ≤ g2k and ‖gk‖1 ≤ γF .

Proof. By superadditivity, F2k ≥ Fk + T kFk + SkFk + T kSkFk, for all k ≥ 1.
Therefore,

g2k = L1 − lim
n

1
|rn|T

a1
nSa

2
nH2k

rn

≥ L1 − lim
n

1
4|rn|T

a1
nSa

2
n(Hk

rn + T kHk
rn + SkHk

rn + T kSkHk
rn)

=
1
4

[L1 − lim
n

1
|rn| (T

a1
nSa

2
nHk

rn + T a
1
n+kHk

rn + Sa
2
n+kHk

rn + T a
1
n+kSa

2
n+kHk

rn)] = gk.

On the other hand, since ‖ 1
|rn|T

a1
nSa

2
nHk

rn‖1 ≤ ‖ 1
k2Fk‖1 ≤ γF , for every k, the

second assertion also follows. �
Theorem 2.5. Let T and S be commuting MPTs and w = {(an, rn)} be a MAS.
Then w is good in the 1-mean for bounded strongly (T, S)-superadditive processes
and the limit is T -invariant.

Proof. Let F be a bounded strongly (T, S)-superadditive process. Then there
exists an exact dominant δ for F . Since w is good in the 1-mean for additive
processes, we can assume that F is positive. Given ε > 0, pick k such that ‖hk‖1 =
‖ 1
k2Fk‖1 > γF −ε/2. By (1), 0 ≤ L1− limn

1
|rn|T

a1
nSa

2
n [Frn−Hk

rn ] ≤ δ∗−gk (where
gk and δ∗ are as defined above). It follows from the measure preserving property
that

∫
gkdµ > γF − ε

2 . For the same reason, and since δ is an exact dominant, we
also have γF =

∫
δ =

∫
δ∗. By Lemma 2.4, {g2ik}i is an increasing sequence of

L1-functions, hence there exists g ∈ L1 such that gk ↑ g in L1-norm. So, there
exists a k (can be assumed equal to the previous one) such that ‖gk − g‖1 < ε

2 .
Then

‖δ∗ − g‖1 ≤ ‖δ∗ − gk‖1 + ‖gk − g‖1 < [
∫
δ∗ −

∫
gk] +

ε

2
< (γF − γF +

ε

2
) +

ε

2
= ε,

since
∫
gk =

∫
hk > γF − ε

2 . Arbitrariness of ε implies that L1− limn
1
|rn|T

a1
nSa

2
nFrn

exists (and is equal to g ). The invariance of the limit follows from the invariance
of gk’s and of δ∗. �

Theorem A yields to the extension of one parameter version of Theorem 2.5 to
the operator setting when T is a positive Dunford-Schwartz operator:

Corollary 2.6. Let T be a positive Dunford-Schwartz operator on L1 and w =
{(an, rn)} be a MAS. Then w is good in the 1-mean for bounded T -superadditive
processes and the limit is T -invariant.
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Remark 3. Since the method of proof in [ÇF] is valid only in one parameter case,
extending Theorem 2.5 to operator setting requires a different approach (see the
discussion in Section 4). Also, in this approach one has to use a technique that
does not depend on the existence of an (exact) dominant for F , since in the mul-
tiparameter operator setting no result on the existence of an exact dominant for
superadditive processes is known.

Case 2. 1 < p <∞. The solution to the problem in this case will be considered
for one parameter processes first. In [DK], Derriennic and Krengel constructed an
example of a positive superadditive process in L2, satisfying supn ‖ 1

nFn‖2 < ∞,
whose averages do not converge in the L2-norm. Hence for the convergence in the
p-mean for superadditive processes one needs more than boundedness condition on
the process. One possibility is the condition (∗) considered in the next section
(for a.e. convergence). Although it leads to a.e. convergence for (multiparameter)
superadditive processes, the tools available do not yield to a conclusive result for the
norm convergence if (∗) is assumed. In [ÇF] it has been observed that for a more
restrictive class of superadditive processes, namely Chacon admissible processes,
one can obtain affirmative results both for a.e. and norm convergence. That is why,
for the rest of this section we will work with such processes.

Definition 1. A family of functions {fn} ⊂ Lp is called a Chacon T-admissible
family (or simply admissible family) if Tfi ≤ fi+1 for all i ≥ 1.

If {fn} is T -admissible, then the process F = {Fn}, where Fn =
∑n−1
i=0 fi, is a T -

superadditive process, called an admissible process. The following is an important
property of admissible processes:

Proposition 2.7. Let F ⊂ Lp, 1 < p < ∞, be a positive T -admissible process,
where T is a MPT. If F is bounded, then supk ‖fk‖p <∞.

Proof. By the measure preserving property of T and by the admissibility,

‖fk‖pp = ‖T jfk‖pp =
1
r

r−1∑
j=0

‖T jfk‖pp ≤
1
r

r−1∑
j=0

‖fk+j‖pp =
1
r

r−1∑
j=0

‖Fk+j+1 − Fk+j‖pp.

First let 2 ≤ p < ∞. In that case, by Clarkson’s inequality for 2 ≤ p < ∞ and
superadditivity, we have

‖Fk+j+1 − Fk+j‖pp ≤ 2p−1(‖Fk+j+1‖pp + ‖Fk+j‖pp)− ‖Fk+j+1 + Fk+j‖pp
≤ 2p[‖Fk+j+1‖pp − ‖Fk+j‖pp].

Thus,

‖fk‖pp ≤
1
r

r−1∑
j=0

‖Fk+j+1 − Fk+j‖pp ≤
2p

r

r−1∑
j=0

‖Fk+j+1‖pp − ‖Fk+j‖pp

=
2p

r
[‖Fk+r‖pp − ‖Fk‖pp] ≤

2p

r
‖Fk+r‖pp ≤

2p(k + r)
r

sup
n≥1

1
n
‖Fn‖pp.

Therefore, taking the limit r →∞, we have ‖fk‖pp ≤ 2p supn
1
n‖Fn‖pp <∞, proving

the assertion. When 1 < p < 2, again applying Clarkson’s inequality for this case,
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we have

‖fk‖qp ≤
1
r

r−1∑
j=0

‖Fk+j+1 − Fk+j‖qp ≤
1
r

r−1∑
j=0

2q[‖Fk+j+1‖qp − ‖Fk+j‖qp] =
2q

r
‖Fk+r‖qp.

Now, the assertion follows as before. �

Theorem 2.8. Let T be a MPT and F be a bounded T-admissible process. Then
any MAS w is good in the p-mean for F , 1 < p <∞, and the limit is T -invariant.

Proof. Since {fi} ⊂ Lp is an admissible family,
∑n−1
j=0 T

jf0 ≤ Fn, and hence we
can assume that fi ≥ 0, i ≥ 0. For convenience, define Pi = fi − Tfi−1, i ≥ 1,
where we set P0 = f0. Observe that, by Clarkson’s inequalities and Proposition 2.7,∫

P pr =
∫

(fr − Tfr−1)p ≤ Cp[
∫
fpr −

∫
fpr−1] <∞ (Cp = 2p−1 or 2q−1).(2)

Now we will use a technique employed in [ÇF]: for a fixed positive integer k,
define

gkn(x) =

{
fk(Tn−kx) for n > k

fn(x) for 0 ≤ n ≤ k.

Then, it follows that

fn(x)− gkn(x) =

{
0 if 0 ≤ n ≤ k∑m
i=1 Pk+i(Tm−ix) for n > k, where m = n− k.(3)

Define Di(x) =
∑ri−1
n=0 fn(x)− gkn(x). By making use of (3) we estimate that

Di(x) ≤
ri−1∑
n=0

n∑
r=k+1

Pr(Tn−rx).

Next, if we let

bk,t(x) =
t∑

r=k+1

Pr(T rx) and bk(x) = lim
t→∞ bk,t(x),

then bk,t ≥ 0, and bk ≥ 0. Using the Lebesgue monotone convergence theorem,
we obtain that∫

X

bpkdµ = lim
t→∞

∫
X

bpk,tdµ ≤
∞∑

r=k+1

∫
P pr ≤ Cp lim

r→∞

∫
fpr <∞,(4)

by Proposition 2.7 and (2). Because bk,t ↑ bk and bk ∈ Lp we conclude that
T jbk,t ↑ T jbk in Lp, for all j, since T is strongly continuous. Therefore, (4) implies
that

T aiDi ≤
ri−1∑
n=0

T ai+nbk.

On the other hand, observe that, since T is measure preserving, as k →∞,

‖ 1
ri

ri−1∑
n=0

T ai+nbk‖pp ≤ ‖bk‖pp ≤
∞∑

i=k+1

∫
P pi ↓ 0.
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By assumption Gk := Lp − limi→∞ 1
ri
T ai

∑ri−1
n=0 g

k
n exists and is T -invariant.

Since, for all n ≥ 1, gkn ≤ gk+1
n , we also have Gk ≤ Gk+1. Therefore, {Gk}

is a monotone increasing sequence of functions in Lp, and consequently, G =
limk→∞Gk exists in Lp and is T -invariant. Now, given ε > 0, find a positive
integer K such that for k ≥ K, ‖bk‖pp < ε/3, ‖ 1

ri
T ai

∑ri−1
n=0 g

k
n − Gk‖pp <

ε/3, and ‖G−Gk‖pp < ε/3. Then,

‖ 1
ri
T ai

ri−1∑
n=0

fn−G‖pp ≤ ‖
1
ri
T ai

ri−1∑
n=0

(fn−gkn)‖pp+‖
1
ri
T ai

ri−1∑
n=0

gkn−Gk‖pp+‖G−Gk‖pp < ε,

proving the assertion. �
Now, as an immediate consequence of Theorem 2.8 and Theorem A, we have:

Corollary 2.9. Let T be a positive Lp-contraction, 1 < p <∞. If F is a bounded
T -admissible process, then any MAS w is good in the p-mean for F, and the limit
is T -invariant.

In order to obtain the two-parameter version of Theorem 2.8, we define two-
parameter (T, S)-admissible processes as a family {fi,j} ⊂ Lp such that Tfi,j ≤
fi+1,j , and Sfi,j ≤ fi,j+1, for all i ≥ 0, j ≥ 0. As before, any such (T, S)-
admissible family defines a (T, S)-superadditive processes {F(m,n)}, where F(m,n) =∑m−1
i=0

∑n−1
j=0 fi,j .

Theorem 2.10. Let T and S be commuting MPTs and F = {F(m,n)} be a bounded
(T, S)-admissible process. Then any MAS w is good in the p-mean for F, 1 < p <
∞.

Proof. Let w1 = {(a1
n, r

1
n)} and w2 = {(a2

n, r
2
n)} be the components of w. Define,

for i ≥ 0, gi = Lp − limn
1
r2
n
Sa

2
n
∑r2

n−1
j=0 fi,j . By Theorem 2.8, these functions

gi ∈ Lp are well defined. Observe that, by (T, S)-admissiblity of F and strong
continuity of T ,

Tgi = Lp − lim
n

1
r2
n

TSa
2
n

r2
n−1∑
j=0

fi,j ≤ Lp − lim
n

1
r2
n

Sa
2
n

r2
n−1∑
j=0

fi+1,j = gi+1,

implying that {gi} is a T -admissible process. Furthermore, boundedness of F im-
plies that this process is bounded also. Hence g := Lp− lim 1

r1
n
T a

1
n
∑r1

n−1
i=0 gi exists

by Theorem 2.8. Now, the inequality

‖ 1
|rn|T

a1
nSa

2
nF(r1

n,r
2
n) − g‖p ≤ ‖ 1

|rn|T
a1
nSa

2
nF(r1

n,r
2
n) − 1

r1
n

T a
1
n

r1
n−1∑
i=0

gi‖p

+ ‖ 1
r1
n

T a
1
n

r1
n−1∑
i=0

gi − g‖p

proves the theorem. �
Remark 4. In the proofs of Theorem 2.8 and Theorem 2.10 only superadditivity is
needed as opposed to strong superadditivity (in Theorem 2.5.) Hence, the assertion
of Theorem 2.10 is valid for any n-parameter bounded admissible process, n ≥ 1.



Convergence of Moving Averages 143

Remark 5. The arguments employed in the proofs of Theorem 2.8 and Theo-
rem 2.10 can be repeated almost verbatim (in fact, more simply) when p = 1, with
the same conclusions. Therefore: if F ⊂ L1 is an n-parameter bounded admissible
(superadditive) process, n ≥ 1, then any MAS w is good in the 1-mean for F .

As remarked earlier, it is possible to define averages of a superadditive process
along a MAS in an alternative fashion. More precisely, if w = {(an, rn)} is a MAS,
the averages of a superadditive process F along w can be defined as

1
rn

(Fan+rn − Frn).(†)

It is observed in [ÇF] that the averages (†) may fail to converge in the mean (and
a.e.) There, when p = 1, it is shown that if the process is T -admissible and w is a
B-sequence, then such averages do converge a.e. and in the L1-norm. The argument
used there is very similar to the proof of Theorem 2.8. Hence, the same proof works
for the convergence in the p-mean if the averages of admissible processes along w
is defined by (†).

3. Almost Everywhere Convergence

In this section we study the a.e. convergence of moving averages of multiparam-
eter superadditive processes relative to positive Lp-contractions, 1 < p < ∞. The
averages we will consider are those averages along sequence of B-cubes, which are
multiparameter B-sequences w = {(an, rn)}, with rn := r1

n = r2
n. (See [F, JO1] for

definitions.) The components of all the B-cubes form one parameter B-sequences.
When p = 1, a.e. convergence of moving averages of bounded superadditive pro-
cesses (relative to MPTs) along B-sequences is proved in [F].

We will assume that all the processes under study will satisfy the condition

lim inf
v→∞ ‖

1
v2

v−1∑
i,j=0

F(i,j) − TF(i−1,j) − SF(i,j−1) + TSF(i−1,j−1)‖p <∞.(∗)

This condition was introduced and used in [EH] to obtain the a.e. convergence of
multiparameter superadditive processes with respect to positive Lp-contractions.
If a positive (T, S)-superadditive process F satisfies the condition (∗), then the
sequence {φv} ⊂ Lp is a bounded set in Lp, where

φv =
1
v2

v−1∑
i,j=0

F(i,j) − TF(i−1,j) − SF(i,j−1) + TSF(i−1,j−1).

Hence, {φv} is weakly sequentially compact. Consequently, along a subsequence
{vi}, the weak limit of {φv} exists, that is, there is a function φ ∈ Lp such that,
φ = w − limi→∞ φvi .

It is known that, if F is a positive strongly (T, S)-superadditive process, then,
for any v > 1 and for any 1 ≤ n ≤ v, (1 − n

v )2Fn ≤
∑n−1
i,j=0 T

iSjφv [Ç1, EH].
Thus, for a positive strongly (T, S)-superadditive process F satisfying (∗), by the
strong continuity of T and S, we have

Fn ≤
n−1∑
i,j=0

T iSjφ,
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where φ = w − limi→∞ φvi . This shows that:

Lemma 3.1. Let F be a positive strongly (T, S)-superadditive process satisfying
(∗), then it has a dominant φ ∈ Lp.

The following result of Akcoglu and Sucheston will be very instrumental in prov-
ing the a.e. convergence. We state it here for easy reference.

Theorem B. [AS1] Let U be a positive Lp-contraction, 1 < p < ∞ fixed. Then
there is a unique decomposition of X into sets E and Ec such that

(i) E is the support of a U -invariant function h ∈ Lp , and the support of each
U -invariant function is contained in E.

(ii) The subspaces Lp(E) and Lp(Ec) are both invariant under U .

Now, as in Section 2 (case p = 1), if Hk
(m,n) =

∑m−1
i=0

∑n−1
j=0 T

iSjhk, for k ≥ 1,
then Lemma 2.3, together with Lemma 3.1, imply that, for a positive strongly
(T, S)-superadditive process F , if n > k, Hk

n−k ≤ Fn ≤ Gn, where in this case
G(m,n) =

∑m−1
i=0

∑n−1
j=0 T

iSjφ. Hence, if w = {(an, rn)} is a B-sequence, for n large
enough, we have

0 ≤ 1
n2

(Fn −Hk
n−k) ≤ 1

n2
(Gn −Hk

n−k).

Both {G(m,n)} and {Hk
(m,n))} are positive (T, S)-additive processes, so, by the

Theorem of Jones and Olsen [JO1, Theorem 2.1], the averages 1
r2
n
T a

1
nSa

2
nGrn and

1
r2
n
T a

1
nSa

2
nHk

rn converge a.e. (and also, limn
1
r2
n
T a

1
nSa

2
nHk

rn = limn
1
r2
n
T a

1
nSa

2
nHk

rn−k

a.e.) Hence,

lim
n

1
r2
n

T a
1
nSa

2
n(Grn −Hk

rn−k) = lim
n
Aw,n(T, S)(φ− hk) exists a.e.

Since,

‖
∞∑
n=0

1
r2
n

(T a
1
n+rn − T a1

n)
a2
n+rn−1∑
j=a2

n

Sj(φ− hk)‖22 ≤ 2‖φ− hk‖22
∞∑
n=0

1
r2
n

<∞,

it follows that this limit is T -invariant. Similarily, the limit is also S-invariant.
Hence, if E is the maximal support of a non-negative (T, S)-invariant function h,
then this limit is zero on the set Ec by Theorem B. Furthermore, the process 1EF
is strongly (TE , SE)-superadditive process, where TE and SE are restrictions of T
and S to Lp(E), respectively. (We will denote them with T and S for simplicity.)

Now, let m = hp.µ be a new (finite) measure on X, and consider the operators
T̂ f = h−1T (fh) and Ŝf = h−1S(fh), f ∈ Lp(m). Then they are positive Lp(m)-
contractions with T̂1 = 1 and Ŝ1 = 1, and

∫
T̂ fdm =

∫
fdm =

∫
Ŝfdm [Ç2, DK].

Therefore, they can be extended to Markovian operators on L1(m), which will still
be denoted by T̂ and Ŝ. Furthermore, Aw,n(T, S)g, g ∈ Lp(µ), converge µ-a.e. if
and only if Aw,n(T̂ , Ŝ)(h−1g) converge m-a.e.

Theorem 3.2. Let T and S be commuting positive linear Lp-contractions and F
be a strongly (T, S)-superadditive process satisfying (∗). If {(an, rn)} is a sequence
of B-cubes, then it is good a.e. for F .
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Proof. Since (T, S)-additive processes converge a.e. by the theorem of Jones and
Olsen [JO1], we can assume F be nonnegative. Then, by the observations above we
can assume for the rest of the proof that X = E. Let m = hp.µ, where h is a (T, S)-
invariant function given by Theorem B. Consider the operators T̂ f = h−1T (fh)
and Ŝf = h−1S(fh), f ∈ Lp(m), which are positive Lp(m)-contractions with
T̂1 = 1 and Ŝ1 = 1, and are Markovian on L1(m). If F ′ = {h−1F(m,n)},
then F ′ ⊂ L1(m) is a strongly (T̂ , Ŝ)-superadditive bounded process with γF ′ =
supm,n≥1

∫
1
mnh

−1F(m,n)dm. Therefore, γF ′ = limm,n→∞ 1
mn

∫
h−1F(m,n)dm [Ç1,

EH]. Now given ε > 0, find k ≥ 1 such that 1
k2

∫
h−1Fkdm > γF ′ − ε. De-

fine H(m,n) = Hk
(m,n) =

∑m−1
i=0

∑n−1
j=0 T

iSjhk, where hk = 1
k2Fk, and G(m,n) =∑m−1

i=0

∑n−1
j=0 T

iSjφ. Also, define H ′(m,n) = h−1H(m,n), and G′(m,n) = h−1G(m,n).

Then {H(m,n)} is a positive (T, S)-additive process, and so {H ′(m,n)} ⊂ L1(m) is

a (T̂ , Ŝ)-additive process. Hence,

0 ≤
∫

lim sup
n

1
r2
n

T̂ a
1
n Ŝa

2
n(F ′rn −H ′rn)dm ≤

∫
lim sup

n

1
r2
n

T̂ a
1
n Ŝa

2
n(G′rn −H ′rn)dm.

Since limn
1
r2
n
T a

1
nSa

2
n(Grn−Hrn) exists µ-a.e., limn

1
r2
n
T̂ a

1
n Ŝa

2
n(G′rn−H ′rn) exists

m-a.e. too. Therefore, using Fatou’s Lemma,∫
lim sup

n

1
r2
n

T̂ a
1
n Ŝa

2
n(G′rn −H ′rn)dm ≤ lim

n

∫
1
r2
n

T̂ a
1
n Ŝa

2
n(G′rn −H ′rn)dm.

Consequently,

0 ≤
∫

lim sup
n

1
r2
n

T̂ a
1
n Ŝa

2
n(F ′rn −H ′rn)dm

≤ lim
n

1
r2
n

∫
G′rndm− lim

n

1
r2
n

∫
H ′rndm ≤

∫
h−1φdm− lim

n

u2

r2
n

∫
1
k2
h−1Fkdm

=
∫
h−1φdm− (γF ′ − ε),

where u = [rn/k], integer part of rn/k. On the other hand, observe that
∫
h−1φdm =∫

hp−1φdµ and hp−1 ∈ Lq(µ). Since φ = w−limφvk , and T̂ and Ŝ are Markovian,
(using v instead of vk, for convenience) we have∫

hp−1φdµ = lim
v

∫
hp−1φvdµ

= lim
v

∫
hp−1[

1
v2

v−1∑
i,j=0

F(i,j) − TF(i−1,j) − SF(i,j−1)r + TSF(i−1,j−1)]dµ

= lim
v

∫
[

1
v2

v−1∑
i,j=0

F ′(i,j) − T̂F ′(i−1,j) − ŜF ′(i,j−1) + T̂ ŜF ′(i−1,j−1)]dm

= lim
v

∫
[

1
v2

v−1∑
i,j=0

F ′(i,j) − F ′(i−1,j) − F ′(i,j−1) + F ′(i−1,j−1)]dm

= lim
v

1
v2

∫
F ′(v−1,v−1)dm = γF ′ .

.
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This equality, combined with the inequality above, implies that

0 ≤
∫

lim sup
n

1
r2
n

T̂ a
1
n Ŝa

2
n(F ′rn −H ′rn)dm < γF ′ − (γF ′ − ε) = ε.

Hence limn
1
r2
n
T̂ a

1
n Ŝa

2
nF ′rn existsm-a.e., which in turn, shows that limn

1
r2
n
T a

1
nSa

2
nFrn

exists µ-a.e. �

Remark 6. The assertion of Theorem 3.2 is also valid for positive power bounded
Lamperti operators (See [JO1] for details).

4. Concluding Discussions

In two parameter case, for a MAS w = {(an, rn)} and commuting MPTs T and
S if we define

νnf(x) =
1
|rn|

r1
n−1∑
i=0

r2
n−1∑
j=0

T a
1
n+iSa

2
n+jf(x),

then limn ν̂n(γ, δ) = 0 for all (γ, δ) 6= (1, 1), |γ| = 1, |δ| = 1. Hence, this is the
same conclusion of Corollary 2.2 when T and S are MPTs. One way of extending
this result to Lp-contractions, 1 < p <∞, or to Dunford-Schwartz operators on L1,
would be via multidimensional version of Theorem A. However, multidimensional
Theorem A is not available yet, due to the fact that Theorem A uses Akcoglu-
Sucheston Dilation Theorem [AS2], which is known in one parameter case only.

In a related matter, it is not known whether the condition (∗) is the only as-
sumption that guarantees the existence of a dominant for a strongly superadditive
process in Lp-spaces, 1 < p < ∞. (See also Remark 10 below.) It seems that,
in order to obtain a dominant for multiparameter processes in an alternative way,
either one has to derive a method of “reduction of order” for B-sequences, as in
[Ç1, EH], or one has to employ a dilation argument to reduce the problem to the
case of processes with respect to commuting invertible isometries of Lp-spaces.

If a two-parameter extension of Akcoglu-Sucheston Dilation Theorem were avail-
able, it would yield some nice results mentioned above as well as a dominated esti-
mate for moving averages of two-parameter superadditive processes over B-cubes,
as in [Ç2]. (Such a dominated estimate would yield to mean convergence, provided
that one has the right (exact) dominant.) The only multiparameter dilation result
known in the literature is due to Ando, and is valid only for the two-parameter case
in the Hilbert space setting:

Theorem B. [SF, Theorem I.6.4] Let T and S be commuting contractions of a
Hilbert space H. Then there exists a larger Hilbert space H′ and commuting unitary
operators Q and R on H′ such that, for all n ≥ 1, Tn = PQnI and Sn = PRnI,
where I is the natural imbedding of H into H′ and P : H′ → H′ is the orthogonal
projection onto the subspace H.

Using this theorem, one easily obtains a dominated estimate for moving averages
of two-parameter superadditive processes over B-cubes via the dominated estimate
of Jones and Olsen [JO1] for the moving averages of multiparameter additive pro-
cesses relative to positive Lp-contractions. Since the proof is very similar to the
analogous statement in [Ç2], it will be omitted.
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Theorem 4.1. Let T and S be positive L2-contractions, F ⊂ L2 be a positive
(T, S)-superadditive process with a dominant φ, and let {(an, rn)} be a B-sequence.
Then

‖ 1
|rn|T

a1
nSa

2
nFrn‖2 ≤ C‖φ‖2,

where C is a constant independent of the sequence and the process.

Remark 7. It has been shown in [SF] that Theorem B cannot be extended to
n-parameters, when n > 2.

Remark 8. Obtaining a “reduction of order” procedure for the moving averages
of multiparameter (super)additive processes is an open problem.

Remark 9. The proofs of Theorems 2.5 and 3.2 depend upon the assumption
of strong superadditivity, which is defined in two parameter case only. Strong
superadditivity is needed for the existence of an exact dominant.

Remark 10. Akcoglu and Krengel gave an example of two-parameter bounded
superadditive process (in L1), which is not strongly superadditive [AK]. (Since, for
instance F(11,10) = 18, while F(6,5) + F(5,10) + F(11,5) − F(5,5) = 19.) On the other
hand, that process is dominated by the additive process {GI}, where GI = 1

6 |I|.
Actually, this additive process is generated by g = 1

6I0, with I0 =[0,1]×[0,1]. Since
γF = 1

6 , g is an exact dominant for F .
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[SF] B. Sz.-Nagy and C. Foiaş, Harmonic Analysis of Operators on Hilbert Space, North Hol-

land, Budapest, 1970.

Department of Mathematics, North Dakota State University, Fargo, ND 58105-
5075, USA

comez@plains.nodak.edu http://hypatia.math.ndsu.NoDak.edu/faculty/comez/

This paper is available via http://nyjm.albany.edu:8000/j/1998/3A-11.html.

http://www.ams.org/mathscinet-getitem?mr=93a:28014
http://www.ams.org/mathscinet-getitem?mr=94d:47008
mailto:comez@plains.nodak.edu
http://hypatia.math.ndsu.NoDak.edu/faculty/comez/
http://nyjm.albany.edu:8000/j/1998/3A-11.html

