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Finite Rank Zd Actions and the Loosely Bernoulli
Property

Aimee S. A. Johnson and Ayşe A. Şahin

Abstract. We define finite rank for Zd actions and show that those finite
rank actions with a certain tower shape are loosely Bernoulli for d ≥ 1.
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1. Introduction

In [4], the authors show that rank 1 Zd transformations are loosely Bernoulli,
extending the Z result from [7]. D. Ornstein, D. Rudolph, and B. Weiss also show
in [7] that all finite rank transformations are loosely Bernoulli. In this paper we
give the Zd generalization of this result.

Intuitively, a zero entropy loosely Bernoulli (LB) action has one name up to the
f metric on processes (cf [6, 2]). The proof in [4] rests on the fact that for a rank
one action most large enough names are well covered by towers of various sizes.
Given two large names we use this fact to identify towers in one name who have a
same size tower close by in the second name. We use these pairs of neighbours to
show that the names are f close.

In the rank r case with r > 1, it is still true that large names are well covered
by towers of many sizes, but now each size tower is of r different types. Hence,
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while it is still possible to find close by towers, the methods of [4] do not guarantee
that nearby towers are of the same type. In this paper we generalize the matching
argument of [4] to address this issue.

The next two sections contain the necessary definitions. There is then a section
containing a Generalized Matching Lemma. The final section uses this lemma to
prove the result.

2. Background

Let (X,A, µ) be a Lebesgue probability space. Take T to be an ergodic Zd
action on (X,A, µ). We can think of T as being generated by d commuting measure
preserving 1-dimensional transformations on X, {T~e1 , ..., T~ed}, where {~e1, . . . , ~ed} is
the standard basis for Zd. Then T~v(x) = T v1

~e1
◦ · · · ◦ T vd~ed (x), where ~v = (v1, ..., vd).

We call (X,A, µ), T a Zd-dynamical system. Often we will simply write (X,T ).
Let P be a finite label set, or equivalently, a finite measurable partition P =

{p1, ..., ph} on X. (T, P ) is then the usual process associated with T and the
partition P . Set ||~v|| = max {|vi| : 1 ≤ i ≤ d}, and for n ∈ N,

Bn = {~v = (v1, . . . , vd) ∈ Zd : 0 ≤ vi ≤ n}.
For each x we can then define its Pn-name to be Pn(x) : Bn → P by Pn(x)(~v) = i if
T~v(x) ∈ pi. In order to define a loosely Bernoulli process we start with π : Bn → Bn,
a permutation of the indices in Bn, and define a size for this permutation. This
idea is defined and extended in [1] and [5].

Definition 2.1. Let π : Bn → Bn be a permutation of the indices of Bn. We say
π is of size ε, denoted by m(π) < ε, if there exists a subset S of Bn satisfying

(i) |S| > (1− ε)|Bn|, where |S| is the cardinality of the set S,
(ii) ||π~u− π~v − (~u− ~v)|| < ε||~u− ~v|| for every ~u,~v ∈ S.

Definition 2.2. Given two Pn-names η and ξ, we define the fn-distance between
them to be

fn(η, ξ) = inf{ε > 0 : there exists a permutation π of Bn such that

(i) m(π) < ε

(ii) d(η ◦ π, ξ) < ε}.
Here d(., .) denotes the Hamming metric which simply gives the proportion of lo-
cations of Bn on which the two names disagree.

Informally, we will think of π as rearranging the name η to make it d close to the
name ξ and we will often refer to π as acting on a name instead of the (technically
correct) set of indices. If π, η, and ξ satisfy (ii) of the above definition we say π
matches a (1− ε)-proportion of η and ξ.

Intuitively, a zero entropy loosely Bernoulli process has one name up to f . For-
mally,

Definition 2.3. A zero entropy process (T, P ) is loosely Bernoulli (LB) if for any
ε > 0 there exists an integer Nε such that for any n ≥ Nε and ε-a.e. atoms ω and
ω′ of

∨
~v∈Bn T~vP ,

fn(ω, ω′) < ε.
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Definition 2.4. We say (X,A, µ), T is LB if for every partition P of X, (T, P ) is
LB.

3. Finite Rank

Definition 3.1. Let r ∈ N. We say (X,A, µ), T is a Zd rank r transformation
if there exists a sequence of sets F ji ⊂ X, 1 ≤ j ≤ r, and Følner sequences Dj

i ,
1 ≤ j ≤ r, of subsets of Zd, such that for each i, {T~vF ji } are pairwise disjoint for
~v ∈ Dj

i and 1 ≤ j ≤ r, and the partitions

Pi = {T~vF ji : ~v ∈ Dj
i and 1 ≤ j ≤ r, X − ∪rj=1 ∪~v∈Dji T~vF

j
i }

converge to A as i → ∞. We also assume that r is the smallest integer for which
the above sets can be found.

For each i, we will have r disjoint towers, ∪~v∈Dji T~vF
j
i , where 1 ≤ j ≤ r, which

will be denoted by τ ji . As in the one dimensional case, any transformation which
is rank r is ergodic and has zero entropy [3, 8].

In this paper we restrict our attention to rank r transformations with a special
tower shape.

Definition 3.2. (X,A, µ), T is a Zd uniform square rank r transformation if it is
rank r and there exists α ≥ 1 such that for all i and j, the sets Dj

i of Definition 3.1
satisfy:

1. Dj
i is a rectangle of dimensions {lj,i1 , ..., lj,id }.

2. If sj,i = min
k=1···d

{lj,ik } and bj,i = max
k=1···d

{lj,ik }, and we set

si = min
j=1···r

{sj,i}, bi = max
j=1···r

{bj,i}

then si
bi
≥ 1

α .

Let vsi = (si)d, the smallest possible volume of a tower at stage i, and vbi = (bi)d, the
biggest possible volume of a tower at stage i. Note then vsi

vbi
≥ 1

γ , where γ = αd ≥ 1.

Definition 3.3. Given a rectangle R ⊂ Zd of size l1 × · · · × ld, the ε-interior of R
is the collection of indices in R which are at least a distance εlk from the kth edge
of R. The ε-collar of R is the complement of the ε-interior and corresponds to the
set of indices within εlk of the kth edge in the boundary of R.

Denote the volume of Dj
i by vji = lj,i1 × · · · × lj,id and notice that the volume of

the ε-interior of Dj
i is (1− 2ε)lj,i1 × · · · × (1− 2ε)lj,id = (1− 2ε)dvji . Notice also that

by Definition 3.2 we have that for 1 ≤ j, k ≤ r
1
γ
≤ vsi
vbi
≤ vji
vki
≤ vbi
vsi
≤ γ.

4. The Matching Lemma

The following result is a generalization of the Matching Lemma in [4]. We have
already discussed the difference between the rank 1 case and the case with rank r
with r > 1. To deal with this difference the proof of this result uses two applications
of the ergodic theorem. We pick a tower stage k such that there is some k-tower
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which has measure approximately 1
r . By the ergodic theorem we know that most

large enough names will visit this tower approximately 1
r of the time. We match

even larger names which visit the previous large names frequently enough. This
second use of the ergodic theorem guarantees that there is “randomness” in the
location of the different types of towers.

Lemma 4.1 (The Generalized Matching Lemma). Let ε and c < 1
r be fixed. Let

a = 1
γ2 (1− 2ε)d(1− ε)εdc2.

There is an integer K(ε, c) > 0 such that for all k ≥ K(ε, c), if Pk is the partition
associated with the kth towers, then there exist integers N(k) and m(k) such that
for all n ≥ N(k), we can find a set W with µ(W ) > 1−ε and for ω, ω′, (Pk)n-names
of two points x, x′ ∈W , there exists a permutation π : Bn → Bn such that

d(ω ◦ π, ω′) < 1− a,
and the action of π can be described as follows:

(a) π translates all the indices of Bn by a vector ~v, with ‖~v‖ < m(k), except for
those indices i for which i + ~v /∈ Bn. On these, π(i) is defined to be one of
the indices vacated by the translation.

(b) For a subset of the τ jk ’s occurring in ω, π moves the ε-interiors of these towers
by an additional amount which can vary for each tower but is always less in
magnitude than εsk. The resulting location of the ε-interiors of these towers
matches perfectly with the corresponding interior of a τ jk in ω′.

Proof. Let ε and c be given. Pick ε1 satisfying

0 < ε1 < min
{
ε

4
,

1
3

(
1
r
− c)

}
,(1)

ε2 satisfying

0 < ε2 <
1

2γ2
ε1ε

d(1− 3ε1),(2)

and choose K such that for all k ≥ K µ
( ∪rj=1 τ

j
k

)
> 1− ε1

2 . Fix some k ≥ K.
For 1 ≤ j ≤ r set mj = µτ jk , and notice that for some j we must have mj ≥ 1

r− ε1
2 .

Say this is true for j = 1.
Choose n1 ∈ N such that

bk
n1

<
ε1
2d

(3)

and there is a set U with µU > 1− ε2 such that for all x ∈ U ,

|{~v ∈ Bn1 : T~v(x) ∈ τ1
k}|

nd1
>

1
r
− ε1.(4)

Next, choose N > n1 large enough so that for every n > N

n1

n
<
ε1
2d
,(5)
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and there is a set W with µW > 1− ε so that for all x ∈W

|{~v ∈ Bn : T~v(x) ∈ U}|
nd

> 1− 2ε2(6)

|{~v ∈ Bn : T~v(x) ∈ ∪rj=1τ
j
k}|

nd
> 1− 2ε1(7)

|{~v ∈ Bn : T~v(x) ∈ τ1
k}|

nd
>

1
r
− ε1.(8)

Fix such an integer n and a set W . Thus points in W have n-names which are
all but 2ε1 full of k-towers, are all but 2ε2 full of U , and see τ1

k with frequency at
least 1

r − ε1.
Take two points in W and let ω and ω′ be their n-names. We will define a per-

mutation between them satisfying the statement of the lemma. Roughly speaking,
to do this we will first identify the towers in ω which have a tower of the same type
occurring close by in ω′. We will be able to match a subset of these towers.

Consider all the towers which occur in ω. Notice that by conditions (5) and (7)
a proportion

> (1− 3ε1)(9)

of ω lies in a complete tower which is a distance at least n1 away from the boundary
of ω.

Enumerate these complete towers in ω. Denote the position of the base point of
tower t by ~zt ∈ Bn. Consider Bεsk , the box of size εsk × · · · × εsk, centered at ~zt in
ω′. We will say tower t is a good tower if the corresponding Bεsk box in ω′ contains
the base point of an n1-name from U .

Create an array whose rows correspond to complete towers in ω that lie at least
n1 away from the boundary of ω, and whose columns are the elements of Bn1 listed
in some order. A row in this array corresponding to a good tower will be called a
good row.

Fix a good row of the array, say row t. So tower t in ω is a good tower, namely
there is an occurrence of a base point of a name from U in the Bεsk box at position
~zt in ω′. Now shift this box in ω′ by each ~v ∈ Bn1 . In entry (t, ~v) of the array, place
a ∗ if the box shifted by ~v contains the base point of a tower of the same type as
tower t in ω.

Suppose the array is c% full of ∗ marks, for some c > 0. Then there will be a
column, say column ~v ∈ Bn1 such that at least c% of the column will be full of ∗
marks.

The towers in the ∗ marked rows of column ~v will be the ones we will match.
We will define the permutation π from ω to ω′ as follows: π will first translate all
indices in Bn by the vector ~v, except for those in the n1-collar of Bn which are
dislocated by the translation. These indices can be mapped into the indices in the
n1-collar which are vacated by the translation. Note that the towers represented
in the array are still intact after this translation. Further, the towers whose entry
in column ~v has a ∗ are now within εsk of a tower of the same type in ω′. π will
shift the ε-interiors of these towers by the amount needed to give an exact match
to that tower in ω′.
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This construction will give m(k) ≤ n1, and the permutation π will have matched
a proportion at least

(percentage of ω covered by complete towers within n1 of the boundary)

×(the percentage of these towers moved close to a like tower in ω′ by ~v)

×(the percentage of a tower inside its ε-interior).

By equation (9) and the definition of an ε-interior, this is at least

(1− 3ε1)× (percentage of array which is full of ∗)× (1− 2ε)d.(10)

Letting c be as above, we will find a lower bound for c by computing the

(percentage of rows of the array which correspond to good towers of type 1)

×(the proportion of such a row which is filled with * marks).

To find the first quantity, first note that by (2), (6), and (9) less than
ε1
γ

(11)

of the rows in the array are bad rows.
Next, note that by conditions (5) and (8) we have a proportion

≥ 1
γ

(
1
r
− 2ε1)

of the rows of the array corresponding to towers of type 1 in ω. Call these type 1
rows.

Hence the rows which are both good and of type 1 take up at least a proportion
1
γ

(
1
r
− 2ε1)− ε1

γ
=

1
γ

(
1
r
− 3ε1)

of the array. To find a bound for c all we are missing is the proportion of a type 1
row which is guaranteed to be filled by ∗ marks.

For this computation we note that by conditions (3) and (4) we have that a name
from U sees at least

( 1
r − 2ε1)nd1

v1
k

base points of towers of type 1. Hence a good row of type 1 is a proportion at least

( 1
r − 2ε1)
v1
k

εdvsk ≥
1
γ

(
1
r
− 2ε1)εd

full of ∗ marks.
So the entire array is

>
1
γ2

(
1
r
− 3ε1)(

1
r
− 2ε1)εd >

1
γ2

(
1
r
− 3ε1)2εd(12)

full of ∗ marks.
Finally, we plug (12) in for c in (10) to conclude that we have matched a pro-

portion

> (1− 3ε1)
1
γ2

(
1
r
− 3ε1)2εd(1− 2ε)d
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of ω. By our choice of ε1 in (1) this is

> (1− ε) 1
γ2
c2εd(1− 2ε)d = a.

�

5. The Theorem for Finite Rank

Theorem 5.1. Let r ∈ N. If T is a uniform square rank r Zd action on a Lebesgue
probability space (X,M, µ) then T is LB.

Proof. Let Q be an arbitrary partition on X and consider the process (T,Q). Let
ε > 0 be fixed.

We will show that there is an integer N such that for all n ≥ N we can find a
set W with µW > 1− ε such that for all x, x′ ∈ W if ω, ω′ are the Qn-names of x
and x′ then

f(ω, ω′) < ε.(13)

Let ε = ε2

16d2α2 . Pick c < 1
r and let a = 1

γ2 (1− 2ε)d(1− ε)εdc2.
For ease of exposition we assume (1 − a)2 < ε

2 . The proof of the general case
can be constructed directly from our argument. The idea will be to apply the
Generalized Matching Lemma (GML) to obtain an integer K(ε, c) and to find two
tower sizes K(ε, c) < k1 < k2 so that the partition Q is well approximated by∨t
i=1 Pi, for some t ≥ k2. If W is the set from the GML associated to k2, and ω, ω′

are two (
∨t
i=1 Pi)n-names from W , then for large enough n the GML guarantees

the existence of a permutation π2 such that

d(ω ◦ π2, ω
′) < 1− a.

The trick is to choose k1 and k2 such that if τ1
k1

satisfies µ(τ1
k1

) ∼ 1
r , and Gc is the

set of unmatched indices of ω ◦ π2, then for some n1, Gc sees n1-names which visit
τ1
k1

approximately 1
r of the time. This is exactly the setup of the GML, and we can

construct a permutation π1 of Gc as in that lemma which will match a percent of
Gc.

We now choose our parameters and give the details of the argument.
Apply the GML with ε and c to obtain an integer K(ε, c) as in the statement of

that lemma. Pick ε1 satisfying

0 < ε1 < min
{
ε

4
,

1
3

(
1
r
− c)

}
(1′)

and ε2 satisfying

0 < ε2 <
1

2γ2
ε1ε

d(1− 3ε1).(2′)

Pick k1 > K such that

µ(∪rj=1τ
j
k1

) > 1− ε21
16
.

If mj = µ(τ jk1
), then for some j we must have

mj >
1
r
− ε21

16
>

1
r
− ε1

4
.
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Say this happens for j = 1.
Choose n1 ∈ N such that

bk1

n1
<
ε1
2d

(3′)

and such that there is a set U with µU > 1− ε22
2 such that for all x ∈ U

|{~v ∈ Bn1 : T~v(x) ∈ τ1
k1
}|

nd1
>

1
r
− ε1

2
.(4′)

Next choose k2 > k1 such that m(k2) > n1 and

n1

sk2

<
ε22

16dγ
.(5′)

Choose t ∈ N such that t > k2 and there is a partition Qt ⊂
∨t
i=1 Pi such that

d(Q,Qt) < ε
8 . Then pick n > N(k2) large enough so that we can find a set W

which not only satisfies the statement of the GML, but in addition, for all x ∈ W
we have

|{~v ∈ Bn : T~v(x) ∈ U}|
nd

> 1− ε22(14)

|{~v ∈ Bn : T~v(x) ∈ ∪rj=1τ
j
k2
}|

nd
> 1− 3

2
ε21(15)

m(k2) + n1

n
<

ε22
16d

(16)

and the (Qt)n-name of x and the (Qn) name of x differ less than ε
4 of the time.

Consider ω, ω′ two (
∨t
i=1 Pi)n-names of points in W . We will define a permutation

π : Bn → Bn such that

d(ω ◦ π, ω′) < ε

2
and m(π) < ε.

We can then use this same π on Q names, and by our choice of t, we will have
obtained (13).

Let ω, ω′ be as above and apply the GML to ω and ω′ with tower τk2 and ε to
obtain a permutation π2 : Bn → Bn such that (a) and (b) of that lemma hold. Let
G be the set of matched indices of ω ◦ π2.

If |G
c|

nd
< ε

2 then to complete the proof we need only show that m(π2) < ε.
Suppose that

|Gc|
nd
≥ ε

2
.(17)

We have already chosen ε1 and ε2 appropriately (in (1′) and (2′) respectively)
and have chosen our parameters to guarantee (3′),(4′) and (5′). So to construct
a permutation π1 as in the GML it remains to show that Gc is all but 2ε2 full of
occurrences of U , is all but 2ε1 full of occurrences of k1 towers and visits τ1

k1
all but

1
r − ε1 of the time. These estimates will be the analogs of (6),(7) and (8).

For all these estimates we will need to know what proportion of the indices in
Gc lie in an (m(k2) + 2n1)-collar around the boundary of Gc. The boundary of Gc

consists of the boundary of Bn, and the disjoint union of boundaries of boxes of
dimensions at most (1− 2ε)bk2 × · · · × (1− 2ε)bk2 . Using (3′), (16), (17), and the
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fact that the largest number of k2 towers matched is < nd

vsk2
, we see that the number

of indices within m(k2) + 2n1 of the boundary of Gc is at most

3ε2
4
|Gc|.(18)

Using (2′), (14), (16), (17), and (18) we have that for both ω ◦ π2 and ω′

|{~v ∈ Gc : ~v is the base point of an n1-name from U}|
|Gc| > 1− 2ε2.(6′)

Further, by (3), (15), (16), and (18),

|{~v ∈ Gc : ~v is in a k1 tower }|
|Gc| > 1− 2ε1.(7′)

We also claim that a proportion

> 1− 3ε1(9′)

of ω ◦ π2 is covered by complete towers who are further than n1 to the boundary
of ω ◦ π2. To see this note that the suspect indices are exactly those who are in a
2n1 collar of Bn. By (18) this is a set of indices of proportion less than 3ε2

4 .
Finally, we claim that by (4′), (6′), and (18)

|{~v ∈ Gc : ~v lies in a τ1
k1

tower}|
|Gc| >

1
r
− ε1.(8′)

Matching up conditions (3′),(4′), (5′),(6′), (7′),(8′), and (9′) with their analogs
in the proof of the GML, we see that the conditions for that argument are satisfied
and we proceed as in the proof of that lemma to obtain a permutation π1 which is
the identity on G, satisfies (a) and (b) of the GML on Gc with m(k1) = n1, and
matches a% of Gc with the corresponding indices in ω′.

Set π = π1 ◦ π2 : Bn → Bn. It follows from our construction that d(ω ◦ π, ω′) <
(1−a)2 < ε

2 . To finish the proof, it remains to show that m(π) < ε. We need, then,
to show that there is a set C ⊂ Bn such that |C| > (1− ε)nd, and for all ~u,~v ∈ C,
‖π~u− π~v − (~u− ~v)‖ < ε‖~u− ~v‖.

Recall that π2 matches the ε-interiors of some k2-towers, and π1 matches the
ε-interiors of some k1 towers. Let C2 be the indices in the

√
ε-interiors of the

boxes matched by π2, and define C1 similarly. As in the rank one argument we set
C = C2∪C1. The rest of the argument is identical to the rank one case; we include
it below for completeness’ sake.

To compute |C|
|Bn| we count the indices which were matched by π, but are not in

C. The
√
ε-collar we removed from the ε-interiors is a proportion
2∑
i=1

2d
√
ε(the proportion of the n-name matched by πi) < 2d

√
ε.

So by our choice of ε, |C||Bn| > 1− ε
2 − 2d

√
ε > 1− ε .

Now pick ~u,~v ∈ C. Suppose first that ~u and ~v were both matched by π2. Then,
if they are in the same k2 tower we have

‖π~u− π~v − (~u− ~v)‖ = 0.
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Otherwise, they lie in different k2 towers, so ‖~u−~v‖ > 2
√
εsk2 . On the other hand,

‖π~u− π~v − (~u− ~v)‖ < 2εbk2

=
2εbk2

‖~u− ~v‖‖~u− ~v‖ <
2εbk2

2
√
εsk2

‖~u− ~v‖

< ε‖~u− ~v‖.
The argument for the case where ~u and ~v are both matched by π1 is similar.
Now suppose ~u is matched by π2 and ~v is matched by π1. Then ‖~u−~v‖ > √εsk2 ,

and

‖π~u− π~v − (~u− ~v)‖ < εbk2 +m(k1) + εbk1

≤ εbk2 + n1 + εbk1 .

But bk1 <
ε1
2dn1 which by (3′) is

<
ε1
2d

ε22
16dγ

sk2 <
ε1
2d

ε22
16dγ

bk2 .

So we have that

‖π~u− π~v − (~u− ~v)‖ < 2εbk2

=
2εbk2

‖~u− ~v‖‖~u− ~v‖ <
2εbk2√
εsk2

‖~u− ~v‖

< ε‖~u− ~v‖.
�
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