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Convergence of the p-Series
for Stationary Sequences

I. Assani

Abstract. Let (Xn) be a stationary sequence. We prove the following
(i) If the variables (Xn) are iid and E(|X1|) <∞ then

lim
p→1+

(
(p− 1)

( ∞∑
n=1

|Xn(x)|p
np

))1/p

= E(|X1|), a.e.

(ii) If Xn(x) = f(Tnx) where (X,F , µ, T ) is an ergodic dynamical system, then

lim
p→1+

(
(p− 1)

( ∞∑
n=1

(
f(Tnx)

n

)p))1/p

=

∫
fdµ a.e. for f ≥ 0, f ∈ L log L.

Furthermore the maximal function,

sup
1<p<∞

(p−1)1/p

( ∞∑
n=1

(
f(Tnx)

n

)p)1/p

is integrable for functions,f ≥ 0, f ∈ L log L.

These limits are linked to the maximal function N∗(x) = ‖(Xn(x)
n

)‖1,∞.
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1. Introduction

Let Zn be a sequence of independent, identically distributed random variables
and (an) a sequence of positive real numbers. The a.e. convergence of the weighted
averages

(∗)
∑N
n=1 anZn
An

,
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where An =
∑N
n=1 an, has been characterized by B. Jamison, S. Orey and W. Pruitt

([JOP]). They proved that the condition

(0) sup
n

Ñn
n

<∞

where Ñn = #{k : ak
Ak
≥ 1

n} is necessary and sufficient for the a.e. convergence of
the weighted averages (∗) to E(Z1). In [A1], interested by the a.e. convergence (y)
of averages of the form ∑N

n=1Xn(x)g(Sny)
N

,

we considered the maximal function N∗(x) = supn
Nn(x)
n where Nn(x) = #{k :

Xk(x)
k ≥ 1

n}, (Xk ≥ 0). We proved the following:
(1) If Xn are iid random variables and E(|X1|) <∞ then N∗(x) is finite a.e.
(2) If the Xn are given by an ergodic dynamical system (i.e., Xn(x) = f(Tnx)

where (X,F , µ, T ) is an ergodic dynamical system and f a measurable non-
negative function) then for all p, 1 < p < ∞ there exists a finite constant
Cp such that

(∗∗) µ{x : N∗(x) > λ} ≤ Cp
λp

∫
|f |pdµ for all λ > 0.

Furthermore for all p, 1 < p < ∞, for all f ∈ Lp+ we have lim
n→∞

Nn(x)
n =∫

fdµ a.e.
(A closer inspection of the proof of (∗∗) shows that the constant Cp is of the

form C
p−1 where C is an absolute constant independent of p.)

If 0 < p <∞, and (xi)i≥1 is a sequence of nonnegative real numbers, set

‖(xi)‖p,∞ =
(

sup
λ>0

λp#{i ≥ 1; |xi| > λ}
)1/p

.

It is easily seen that for r < p

‖(xi)‖p,∞ ≤
(∑

i

|xi|p
)1/p

≤
(

p

p− r
)1/p

‖(xi)‖r,∞

(cf. [SW]). In particular, for all p, 1 < p ≤ 2 we have

(3) (p− 1)1/p

(∑
i

|xi|p
)1/p

≤ p1/p‖(xi)‖1,∞.

As ‖(xi)‖1,∞ ∼ supn
#{k:xk≥1/n}

n , for bounded sequences the previous inequality
applied pointwise to a stationary sequence (Xn) of integrable functions gives us not
only the existence of the p-series

(p− 1)1/p

(∑
i

|Xi(x)
i
|p
)1/p

for all p, 1 < p ≤ ∞,
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but also the inequality

(4) sup
1<p<∞

(p− 1)1/p

(∑
i

|Xi(x)
i
|p
)1/p

≤ 2‖(Xi(x)
i

)‖1,∞

if ‖(Xi(x)
i )‖1,∞ < ∞. The inequality (4) and some of our previous results suggest

the study of the limit when p tends to 1+ of the series

(p− 1)1/p

( ∞∑
i=1

|Xi(x)
i
|p
)1/p

.

Definition. Let (Xn) be a stationary sequence of integrable functions. The p series
associated to this sequence is the a.e. series (when it exists):

(p− 1)1/p

( ∞∑
i=1

|Xi(x)
i
|p
)1/p

.

In this note, using an elementary lemma on sequence of real numbers, we will
show that for (Xn) iid with E(|X1|) <∞ the p-series

(p− 1)1/p

( ∞∑
i=1

|Xi(x)
i
|p
)1/p

converges a.e. to E(|X1|)

when p tends to 1+.
The same argument shows that the p series

(p− 1)1/p

( ∞∑
i=1

∣∣∣∣
∏H
j=1Xj,i(xj)

i

∣∣∣∣p)1/p

converges a.e. to
H∏
j=1

E(|Xj,1|)

where (Xj,n)n are iid random variables satisfying the condition E(|Xj,1|) <∞, and
the variables xj are selected in a universal way specified in [A1].

We can remark that for each p the functionGp(x) = (p−1)1/p
(∑∞

i=1 |Xi(x)
i |p

)1/p

is not integrable, as Gp(x) ≥ (p − 1)1/p supi |Xi(x)
i |, and for (Xi) iid with

E(|X1| log |X1|) = ∞, the function supi |Xi(x)
i | is not integrable, as shown by D.

Burkholder in [B]. So F ∗(x) = sup
1<p<∞

Gp(x) is a supremum of nonintegrable func-

tions. This makes the handling of the function F ∗(x) somewhat delicate.
In the second part of this note we will focus on the ergodic stationary case. We

will consider an ergodic dynamical system (X,F , µ, T ) and a nonnegative measur-
able function f . Using (2) we will show first that

Nn(f)(x)
n

=
#{k : f(Tkx)

k ≥ 1/n}
n
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converges in L1 norm to
∫
fdµ. Then using extrapolation methods we will show

that

(5)

∥∥∥∥∥
∥∥∥∥(f(T kx)

k

)∥∥∥∥
1,∞

∥∥∥∥∥
1

<∞ forf ∈ L(Log L).

One of our interests in (5) lies in the following observation: If we denote by
f(Tn

∗
x)

n∗ a decreasing rearrangement of the sequence f(Tnx)
n , then we have

(6)
∥∥∥∥(f(T kx)

k

)∥∥∥∥
1,∞

= sup
n
n
f(Tn

∗
x)

n∗
.

Hence for f ∈ L(Log L), (6) provides us with some information on the decreasing
rate of the sequence f(Tnx)

n .
Using (5), we will prove that for f ∈ L logL, f ≥ 0,

(6′) M∗1 (x) = sup
1<p<∞

(p− 1)1/p

( ∞∑
n=1

(
f(Tnx)

n

)p)1/p

,

and

(7) lim
p→1+

(p− 1)1/p

( ∞∑
n=1

(
f(Tnx)

n

)p)1/p

=
∫

fdµ a.e., (µ).

The integrability of M∗1 (x) for f in LLogL extends the results on the integrability of
the supn

f(Tnx)
n in the ergodic case. We do not know at the present time if (7) holds

for f ∈ L1 . Finally, in the third part of this paper we will study the connection
between the maximal operators

M∗1 (f)(x) = sup
1<p<∞

(p− 1)1/p

( ∞∑
n=1

(
f(Tnx)

n

)p)1/p

, M∗2 (f)(x) = sup
N

1
N

N∑
n=1

f(Tnx)

and ∥∥∥∥(f(Tnx)
n

)∥∥∥∥
1,∞

= N∗(f)(x).

If there is no ambiguity we will simply denote these maximal functions by M∗1 (x),
M∗2 (x) and N∗(x).

2. Convergence of the p-series for iid sequences

2.1. The one dimensional case. The next elementary lemma will be useful for
the convergence we are looking for.
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Lemma 1. Let (xn)n be a sequence of nonnegative numbers such that
xk
k
→
k

0 and

#{k : xkk ≥ 1/n}
n

7→ x̄, then

(a) limp→1+(p− 1)1/p
(∑∞

n=1(xnn )p
)1/p = x̄.

(b) If
xk∗

k∗
is a decreasing rearrangement of the sequence (

xk
k

)k then k · xk∗
k∗

converges to x̄.

Proof. We denote by Rn = {k : xkk ≥ 1/n} and Nn = #{k : xkk ≥ 1/n} = #Rn.
To prove (a) it is enough to show that

lim
p→1+

(p− 1)
( ∞∑
n=1

(
xn
n

)p
)

= x̄.

We can write the series (p− 1)(
∑∞
n=1(xnn )p) in the following way;

(p− 1)
( ∞∑
n=1

(
xn
n

)p
)

= (p− 1)
[∑
n∈R1

(
xn
n

)p +
∑

n∈N∗\R1

(
xn
n

)p
]

= Ap +Bp.

As lim
p→1

Ap = 0 we just need to consider Bp = (p− 1)
∑
n∈N∗\R1

(Xnn )p. But we have

(p− 1)
∞∑
n=1

Nn+1 −Nn
(n+ 1)p

≤ Bp ≤ (p− 1)
∞∑
n=1

Nn+1 −Nn
np

.

It is then enough to prove that Bp is squeezed into two terms tending to the
same limit x̄. We will only prove that the term (p − 1)

∑∞
n=1

Nn+1−Nn
np con-

verges to x̄. The same argument shows the same conclusion for the second term
(p− 1)

∑∞
n=1

Nn+1−Nn
(n+1)p .

We have

(p− 1)
∞∑
n=1

Nn+1 −Nn
np

= (p− 1)
(
−N1

1p
+
∞∑
n=2

Nn(np − (n− 1)p))
np(N − 1)p

)

= (p− 1)
[
−N1

1p
+
∞∑
n=2

Nn(1− ( (n−1)
n )p))

(n− 1)p

]

∼ (p− 1)
[
−N1

1p
+ p

∞∑
n=2

Nn
n
· 1

(n− 1)p

]
.

As Nn
n converges to x̄ and

∑∞
n=2

1
(n−1)p ∼ 1

p−1 we conclude that

lim
p→1+

(p− 1)
∞∑
n=1

Nn+1 −Nn
np

= x̄.
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(b) To obtain the convergence of the sequence k xk∗k∗ to x̄ we can observe that

lim
t→∞

#{` : x`` ≥ 1
t }

t
= x̄.

If we take the increasing sequence tk = k∗
xk∗

where xk∗
k∗ is the kth term of the

decreasing rearrangement of the sequence xk
k we can see that

xk∗

k∗
·#{` :

x`
`
≥ xk∗

k∗
} = k · xk∗

k∗
converges to x̄.

This ends the proof of this lemma. �

In this part we only consider sequences Xn of iid nonnegative random variables
such that E(X1) < ∞. This assumption can be made in view of the nature of our
p series.

Theorem 2. Let (Xn) be a sequence of iid nonnegative random variables such that
E(X1) <∞. Then we have

lim
n→∞

Nn(x)
n

= E(X1) a.e.
(

with Nn(x) = #
{
k :

Xk(x)
k

≥ 1
n

})
,(a)

lim
p→1+

(p− 1)1/p

( ∞∑
n=1

(
Xn(x)
n

)p)1/p

= E(X1), a.e.(b)

Proof. By the previous lemma, (b) is an immediate consequence of (a), so we are
left with proving (a).

In our proof of Lemma 1 in [A1], we showed that we have∥∥∥∥Xn(x)
n

∥∥∥∥
1,∞

<∞ a.e., because limn→∞
#{k : Xk(x)

k ≥ 1
n}

n
= E(X1).

We proved this by noting that

Nn(x) = #{k :
Xk(x)
k

≥ 1
n
} =

∞∑
n=1

1
{
x :

Xk(x)
k

≥ 1
n

}
.

Then we considered

Vn(x) =
∞∑
n=1

1
{
x :

Xk(x)
k

≥ 1
n

}
− µ

{
x :

Xk(x)
k

≥ 1
n

}
.

Kolmogorov’s inequality for sums of independent random variables leads to the
following inequality for each ε > 0.

∞∑
n=1

µ{
∣∣∣∣Nn2(x)− E(Nn2)

n2

∣∣∣∣ ≥ ε} <∞.



Convergence of the p-Series for Stationary Sequences 21

An application of the Borel-Cantelli lemma gave us

lim
Nn2(x)
n2

= lim
n

E(Nn2)
n2

= E(X1).

Then a simple interpolation allowed us to claim that

(8) limn
Nn(x)
n

= E(X1).

But also in [A1], Theorem 3 shows that for each p, 1 < p ≤ ∞ we have

(9) lim
n→∞

#{k : Yk(x)
k ≥ 1/n}
n

= E(Y1)

for (Yn) sequence of iid random variables where E(|Y1|p) <∞ for some 1 < p ≤ ∞.
We take M a positive constant; using (8) and (9) we get

E(X1 ∧M) = lim
n

#{k : Xk(x)∧M
k ≥ 1/n}
n

≤ lim
#{k : Xk(x)

k ≥ 1/n}
n

= lim
#{k : Xk(x)

k ≥ 1/n}
n

= E(X1).

As limM E(X1 ∧M) = E(X1) we have obtained a proof of (a) from which (b) now
follows easily. �

2.2. The multidimensional case. The previous situation can be extended to a
more general situation. In [A1] we proved the following:

Given H a positive integer and a nonnegative iid sequence (X1,n)n
on the probability measure space (Ω1,F1, µ1) satisfying the condition
E(X1,1) <∞, it is possible to find a set of full measure Ω̃1 such that if
x1 ∈ Ω̃1 the following holds:

For all probability measure spaces (Ω2,F2, µ2) and all nonnegative
iid sequences (X2n)n such that E(X2,1) < ∞ it is possible to find a set
of full measure Ω̃2 such that if x2 ∈ Ω̃2 the following holds:

For all probability measure spaces (ΩH ,FH , µH) and all iid sequences
(XH,n)n of nonnegative random variables satisfying E(XH,1) < ∞ we
can find a set of full measure Ω̃H for which if xH ∈ Ω̃H we have

(10) limn

#{k :
∏H
i=1 Xi,k(xi)

k ≥ 1
n}

n
=

H∏
i=1

E(Xi,1).

The difficulty resides in the way those sets of full measure Ω̃i are obtained; they
are independent of the incoming variables (Xj,n) for j > i.

We want to prove that in (10) we actually have convergence to
∏H
i=1 E(Xi,1).

More precisely we have:
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Theorem 3. Given H a positive integer and a nonnegative sequence of iid vari-
ables (X1n)n on the probability measure space (Ω1,F1, µ1) satisfying the condition
E(X1,1) <∞, it is possible to find a set of full measure Ω̃1 such that if x1 ∈ Ω̃1 the
following holds:

For all probability measure spaces (Ω2,F2, µ2) and all nonnegative iid sequences
(X2,n)n such that E(X2,1) <∞, it is possible to find a set of full measure Ω̃2 such
that if x2 ∈ Ω̃2 the following holds:

For all probability measure spaces (ΩH ,FH , µ,H) and all iid sequences (XH,n)n
of nonnegative random variables satisfying E(XH,1) < ∞ we can find a set of full
measure Ω̃H for which if xH ∈ Ω̃H we have

lim
n

#{k :
∏H
i=1 Xi,k(xi)

k ≥ 1
n}

n
=

H∏
i=1

E(Xi,1)(11)

and

lim
p→1+

(
(p− 1)

( ∞∑
n=1

(∏H
i=1Xi,n(xi)

n

)p)1/p

=
H∏
i=1

E(Xi,1).(12)

Proof. As previously we just need to prove (11) to get (12). We use induction to
prove (11). The result is true for H = 1, as shown in the previous theorem.

Let us assume that the result is true for H − 1. Hence if ck =
∏H−1
i=1 Xik(xi)

where xi ∈ Ω̃i we have

(13) lim
n→∞

#{k : ckk ≥ 1
n}

n
=
H−1∏
i=1

E(Xi,1).

The idea of the proof is the same as in Lemma 1 in [A1]. We have for xi ∈ Ω̃i ,
1 ≤ i ≤ H − 1, (XH,n) a sequence of nonnegative iid random variables and for all
ε > 0

∞∑
n=1

µ

{
xH :

∣∣∣∣Nn2(xH)− E(Nn2)
n2

∣∣∣∣ ≥ ε} <∞(14)

where

Nn2(xH) =
#{k : ckXH,k(xH)

k ≥ 1/n2}
n2

.

The inequality (14) is obtained by applying Kolmogorov’s inequality to the series
of independent random variables

∞∑
k=1

1{
xH :

ckXH,k(xH )
k ≥1/n

} − µ{xH :
ckXH,k(xH)

k
≥ 1/n

}
.
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The Borel-Cantelli lemma applied to (14) gives us

lim
n→∞

Nn2(xH)− E(Nn2)
n2

= 0 a.e. (xH).

As limn→∞
E(Nn2 )

n2 =
∏H
i=1 E(Xi,1) we have

lim
n→∞

Nn2(xH)
n2

=
H∏
i=1

E(Xi,1) a.e. (xH).

The monotonicity of Nn gives us for p2
n ≤ n ≤ (pn+1)2

Np2
n
(xH)
p2
n

≤ Nn(xH)
p2
n

≤ N(pn+1)2(xH)
p2
n

=
N(pn+1)2(xH)

(pn+1)2
· (pn+1)2

(pn)2
.

This last chain of inequalities implies that

lim
n→∞

Nn(xH)
n

= lim
n→∞

Np2
n
(xH)
p2
n

=
H∏
i=1

E(Xi,1) as
p2
n

n
→ 1.

�

3. Convergence of the p-series for ergodic stationary sequences

In this part the sequence Xn will be given by an ergodic dynamical system
(X,F , µ, T ) on a probability measure space (X,F , µ). The sequence is defined by
the relation Xn(x) = f(Tnx) where f is a nonnegative integrable function.

Proposition 4. Let (X,F , µ, T ) be an ergodic dynamical system and f a nonneg-
ative integrable function. We have

lim
n→∞

∥∥∥∥Nn(f)
n

−
∫

fdµ

∥∥∥∥
1

= 0, where

Nn(f)(x)
n

=
#{k : f(Tkx)

k ≥ 1/n}
n

Proof. We know that limn→∞
Nn(f)
n =

∫
fdµ a.e. for f ∈ Lp+ for some p, 1 <

p ≤ ∞ (see Theorem 3 in [A1]). The difficulty at this level comes from the nature
of the function of f , Nn(f); the map Nn is not linear nor positively homogeneous.
But we have the following properties:

(A) ‖Nn(f)
n ‖∞ ≤ ‖f‖∞,

(B) If f, g are nonnegative functions with disjoint support then we have
Nn(f+g)

n = Nn(f)
n + Nn(g)

n for all n ≥ 1.
(C) For all f ≥ 0 integrable functions we have ‖Nn(f)

n ‖1 ≤ ‖f‖1.
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(A) and (B) are easy to check.
To establish (C) we take f ∈ L1 for which we can find for each ε nonnegative

numbers (αi)i and sets (Ai)i such that f ≤ ∑αi 1Ai , Ai ∩ Aj = φ if i 6= j and∫ ∑
αi1Aidµ ≤ (1 + ε)

∫
fdµ. We have

Nn(f)
n

≤ Nn(
∑∞
i=1 αi1Ai)
n

by monotonicity.

Thus ∥∥∥∥Nn(f)
n

∥∥∥∥
1

≤
∥∥∥∥Nn(

∑∞
i=1 αi1Ai)
n

∥∥∥∥
1

=

∥∥∥∥∥
∞∑
i=1

Nn(αi1Ai)
n

∥∥∥∥∥
1

by (B)

=
∞∑
i=1

∥∥∥∥Nn(αi1Ai)
n

∥∥∥∥
1

.

As

Nn(αi1Ai)
n

=
#{k : 1Ai (t

kx)

k ≥ 1
nαi
}

n

=
∑[nαi]
k=1 1Ai(T

kx)
n

we have∥∥∥∥Nn(αi1Ai)
n

∥∥∥∥
1

=
[nαi]∑
k=1

µ(Ai)
n
≤ (nαi)µ(Ai)

n
= αiµ(Ai) .

So ∥∥∥∥Nn(f)
n

∥∥∥∥ ≤ ∞∑
i=1

αiµ(Ai) ≤ (1 + ε)
∫
fdµ.

As ε is arbitrary we have reached a proof of (C).
We are now in a position to prove Proposition 4.
For each positive real number M we can write f = f ∧M + gM with f ∧M and

gM nonnegative functions with disjoint support.
We have

Nn(f)
n

−
∫
fdµ =

Nn(f ∧M)
n

−
∫
f ∧Mdµ+

Nn(gM )
n

−
∫
gMdµ.

Hence

lim
n

∥∥∥∥Nn(f)
n

−
∫
fdµ

∥∥∥∥
1

≤ lim
n

∥∥∥∥Nn(f ∧M)
n

−
∫

(f ∧M)dµ
∥∥∥∥

1

+ lim
n

∥∥∥∥Nn(gM )
n

∥∥∥∥
1

+
∫
gMdµ.
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By the theorem mentioned at the beginning of this proof, associating the a.e. con-
vergence of Nn(f)(x)

n to
∫
fdµ for functions in Lp for some p, we conclude that

lim
n

∥∥∥∥Nn(f ∧M)
n

−
∫
f ∧Mdµ

∥∥∥∥
1

= 0.

Hence

lim
n

∥∥∥∥Nn(f)
n

−
∫
fdµ

∥∥∥∥
1

≤ 2
∫
gMdµ, by (C).

As
∫
gMdµ −→

M
0, the proof of this proposition is complete. �

Theorem 5. Let (X,F , µ, T ) be an ergodic dynamical system and f ∈ L logL, f ≥
0. Then we have

(a)

∥∥∥∥∥
∥∥∥∥(f(T kx)

k

)∥∥∥∥
1,∞

∥∥∥∥∥
1

=
∥∥∥∥sup

n
n · f(Tn

∗
x)

n∗

∥∥∥∥
1

<∞

where f(Tn
∗
x)

n∗ is for µ a.e. x a decreasing rearrangement of the sequence f(Tnx)
n .

lim
n→∞

Nn(f)(x)
n

=
∫
fdµ, µ a.e.(b)

lim
p→1+

(
(p− 1)

∞∑
n=1

(
f(Tnx
n

)p)1/p

=
∫
fdµ, µ a.e.(c)

Proof. First we can make the following observations:
For all measurable sets A we have∥∥∥∥(1A(T kx)

k

)∥∥∥∥
1,∞

= sup
t>0

#{k : 1A(Tkx)
k ≥ 1/t}
t

= sup
n

#{k : 1A(Tkx)
k ≥ 1/n}
n

= sup
n

Nn(1A)(x)
n

(15)

= N∗(1A)(x).

Because of the maximal inequality for the ergodic averages we have

(16) µ{x : N∗(1A)(x) > λ} ≤ 1
λ
· µ(A) for all λ > 0.

(Note that N∗(1A)(x) ≤ 1, hence for all p ≥ 1 we also have

(17) µ{x : N∗(1A)(x) > λ} ≤ 1
λp
· µ(A)).

For all positive real numbers y we have:

(18) y
i
i+1 = y

i
i+1 · (i+ 1)1/i+1

(i+ 1)1/i+1
≤ y(i+ 1)1/i

(i+ 1)
i+

1
(i+ 1)2
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(apply the inequality ab ≤ ap

p + bq

q , for a = yi/i+1 · (i + 1)1/i+1, b = 1
(i+1)1/i+1 ,

p = i+1
i and q = p

p−1 = i+ 1).
We proceed now with the proof of Theorem 5 (a).
We take f ∈ L logL and denote by Ai the set

Ai = {2i ≤ f < 2i+1}.
We have

N∗(f) ≤ N∗
( ∞∑
i=1

2i+11A)
)
≤
∞∑
i=1

N∗(2i+11A))

= 2
∞∑
i=1

2i ·N∗(1A).

By taking the integral with respect to the measure µ we get

‖N∗(f)‖1 ≤ 2
∞∑
i=1

2i‖N∗(1Ai)‖1

Using (17) we get

‖N∗(1Ai)‖1 ≤
p

(p− 1)
sup
t>0

[t · µ{x : n∗(1Ai)(x) > t}]

≤ p

(p− 1)
· (µ(Ai))1/p for all p, 1 ≤ p <∞.

((17) is combined with the inequality ‖g‖L1 ≤ p
(p−1) supt>0[tµ{x : |g(x)| > t}1/p].)

Going back to the evaluation of ‖N∗(f)‖1 we get

‖N∗(f)‖1 ≤ 2
∞∑
i=1

2i
(i+ 1/i)

1/i
(µ(Ai))1/i+1

= 2
∞∑
i=1

2i(i+ 1)(µ(Ai))i/i+1

= 2
∞∑
i=1

((2i(i+ 1))i+1/iµ(Ai))i/i+1.

Applying (18) to each term ((2i(i+ 1))i+1/iµ(Ai))i/i+1 we get

‖N∗(f)‖1 ≤ 2
∞∑
i=1

[(2i(i+ 1))i+1/i · (µ(Ai))
(i+ 1)1/i

i+ 1
i+

1
(i+ 1)2

]

≤ 4
∞∑
i=1

[2iiµ(Ai) · (1 + i)2/i +
1

(i+ 1)2
]

≤ 12 ·
∞∑
i=1

[2iiµ(Ai) +
1

(i+ 1)2
]

≤ 12
ln 2

[
∫
f log fdµ+ 1].
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Thus we have proved the following inequality

(19) ‖N∗(f)‖1 ≤ 12
ln 2

[
∫
f log fdµ+ 1] for all f ≥ 0, f ∈ L logL.

This clearly ends the proof of Theorem 5 (a).

It remains to show (b). Our goal is to prove that for f ≥ 0, f ∈ L logL

(20)
lim
n
N∗(f − f ∧ n) = 0 a.e.

Using (19) we have for all t > 0,

‖N∗(t(f − f ∧ n))‖1 ≤ 12
ln 2

[
∫

(t(f − f ∧ n)) log(t(f − f ∧ n))dµ+ 1]

for all f ≥ 0, f ∈ L logL.

This last inequality gives us

‖N∗(f − f ∧ n)‖1 ≤ 12
ln 2

[
∫

(f − f ∧ n) log(t(f − f ∧ n)]dµ+
1
t
].

At the expense of taking a subsequence, we derive from it

lim
k
‖N∗(f − f ∧ nk)‖1 ≤ 12

ln 2
· 1
t
.

Then we easily get lim
n N

∗(f − f ∧ n) = 0 a.e. This proves (20).
As limn

Nk(f∧n)
k =

∫
f ∧ ndµ, because f ∧ n is clearly bounded we have

Nk(f ∧ n)
k

≤ Nk(f)
k

=
Nk(f ∧ n)

k
+
Nk(f − f ∧ n)

k

and after taking the limits we obtain∫
f ∧ ndµ ≤ lim

k

Nk(f)
k

≤ lim
Nk(f)
k

≤ lim
Nk(f ∧ n)

k
+N∗[f − f ∧ n]

=
∫
f ∧ ndµ+N∗[f − f ∧ n].

Finally, by taking the lim inf with respect to n we can conclude that

lim
k

Nk(f)
k

=
∫
fdµ a.e.

This proves Theorem 5 (b). Theorem 5 (c) now follows easily from Lemma 1. This
ends the proof of Theorem 5. �
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Corollary 6. Let (X,F , µ, T ) be an ergodic dynamical system and f ∈ L logL, f ≥
0. Then there exists an absolute constant C such that∥∥∥∥∥ sup

1<p<∞
(p− 1)1/p

( ∞∑
n=1

(
f(Tnx)

n

)p)1/p
∥∥∥∥∥

1

≤ C[
∫
f log fdµ+ 1]

Proof. By Theorem 5 we know that∥∥∥∥sup
n
n · f(Tn

∗
x)

n∗

∥∥∥∥
1

<∞.

As for µ a.e. x , for each p, we have

(p− 1)1/p

( ∞∑
n=1

(
f(Tnx)

n

)p)1/p

≤
(

sup
n
n · f(Tn

∗
x)

n∗

)
·
(

(p− 1)
∞∑
n=1

1/np
)1/p

,

the corollary follows easily. �

Remark.

1) One can see that the limit when p tends to ∞ of the p-Series is equals to
supn

f(Tnx)
n . This is the reason why we only focus on the existence of the

limit when p tends to 1+.
2) We proved in [A2] that if N∗(f)(x) is a.e finite for all functions f ∈ L1

+

then M∗2 (f)(x) is also a.e finite for all functions f ∈ L1.
3) The results obtained in this note can be extended to increasing sequences of

integers (pn)n. The corresponding maximal function to consider is simply

‖
(
f(T pn)(x)

n

)
‖1,∞.

To illustrate this we have the following Proposition.

Proposition 7. Let (X,F , µ, T ) be an ergodic dynamical system , p a fixed positive
real number 1 < p < ∞ and (pn)n an increasing sequence of positive integers.
Consider the following statements

(a)
∥∥∥∥(f(T pnx)

n

)∥∥∥∥
1,∞

<∞ a.e. for all f ∈ Lp+.

(b) sup
k
kp−1

∞∑
n=k

(
f(T pnx)

n

)p
<∞ a.e. for all f ∈ Lp+.

(c) sup
N

1
N

N∑
n=1

f(T pnx) <∞ a.e. for all f ∈ Lp+.

(d) sup
N

1
N

N∑
n=1

f(T pnx) <∞ a.e. for all f ∈ L(p, 1).

Then we have the following implications: (a) implies (d), (b) is equivalent to (c),
(b) implies (a) and (c) implies (d).
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Proof. The implications (c) implies (b) and (b) implies (a) can be proved the same
way we did in [A1] for the usual Cesaro averages. (See the proof of Theorem 3 part
b) in [A1]). The implication (c) implies (d) is a direct consequence of the structure
of L(p, q) spaces as shown in [SW].

It remains to prove the implications (a) implies (d) and (b) implies (c). For (a)
implies (d), we can notice that (a) implies the existence of a finite constant Cp such
that for all f ∈ Lp+
(21) µ{x :

∥∥∥∥(f(T pnx
n

)∥∥∥∥
1,∞

> λ} ≤ Cp
λp

∫
|f |pdµ for all λ > 0.

In the particular case of f = 1A, (21) will give us the following

(22) µ{x : sup
N

1
N

N∑
n=1

1A(T pnx) > λ} ≤ Cp
λp
µ(A) for all λ > 0

because ∥∥∥∥(1A(T pnx)
n

)∥∥∥∥
1,∞

= sup
N

1
N

N∑
n=1

1A(T pnx).

As this inequality is valid for all measurable sets A, we can conclude that the
maximal operator

M∗(f)(x) = sup
N

1
N

N∑
n=1

f(T pnx)

is of restricted weak type (p,p) (see [SW]). In other words, the maximal operator
M∗ maps the characteristic function of any measurable set A from L(p, 1) into
L(p,∞). It is shown in [SW] that the nature of the maximal operator M∗ and the
existence of an equivalent norm on L(p,∞), making it a Banach space, M∗ maps
continuously all functions f ∈ L(p, 1) into L(p,∞). This means the existence of a
finite constant Cp such that for all f ∈ L(p, 1),

(23) µ{x : sup
N

1
N

N∑
n=1

f(T pnx) > λ} ≤ Cp
λp
‖f‖p,1p for all λ > 0.

From this we can clearly derive (d).
The implication (b) implies (c) can be obtained by summation. For f ∈ Lp+ let

us denote by Cx the finite constant which dominates the sup on k. Then for each
k, we have

kp−1
2k∑
n=k

(
f(T pnx)

2k

)p
< Cx.

This implies the inequality

sup
k

1
k

2k∑
n=k

f(T pnx)p < 2pCx.

From this we can derive by convexity the uniform boundedness of the averages
1
k

∑2k
n=k f(T pnx). This property allows us to obtain (c) without difficulty. �

Remark. It would be interesting to know if (a) implies (c) for any increasing
sequence pn and any p, 1 ≤ p <∞ . For p = 1, pn = n we already mentioned that
(a) implies (c) (see [A2]).
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