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About a Decomposition of the Space

of Symmetric Tensors of Compact

Support on a Riemannian Manifold

O. Gil-Medrano and A. Montesinos Amilibia

Abstract. Let M be a noncompact manifold and let Γ∞c (S2(M)) (respectively
Γ∞c (T 1(M))) be the LF space of 2-covariant symmetric tensor fields (resp. 1-forms)
on M , with compact support. Given any Riemannian metric g on M , the first-
order differential operator δ∗ : Γ∞c (T 1(M))→ Γ∞c (S2(M)) can be defined by δ∗ω =
2 symm∇ω, where ∇ denotes the Levi-Civita connection of g.

The aim of this paper is to prove that the subspace Im δ∗ is closed and to show
several examples of Riemannian manifolds for which Γ∞c (S2(M)) 6= Im δ∗⊕(Im δ∗)⊥,
where orthogonal is taken with respect to the usual inner product defined by the
metric.

1. Introduction

Let M be a smooth manifold. If M is compact, the space Γ∞(S2(M)) of 2-
covariant symmetric tensor fields onM , endowed with the C∞-topology, is a Fréchet
space. In 1969 Berger and Ebin [Be-Eb] studied some decompositions of that space
and in particular they showed that, for any fixed Riemannian metric g on M , the
space Γ∞(S2(M)) splits into two orthogonal, complementary, closed subspaces.
One of them is the image of the first-order differential operator δ∗g defined on the

space Γ∞(T 1(M)) of 1-forms on M by δ∗gω = 2 symm∇ω, where ∇ is the Levi-
Civita connection of g. The other subspace is ker δg, where δg is the divergence
operator induced by the metric; it is the adjoint of δ∗g with respect to the usual
inner product of tensor fields defined by g.

This splitting has been used in the study of Riemannian functionals (see [Bes,
Ch. 4]) because it is the infinitesimal version of the slice theorem for the space M
of Riemannian metrics on M [Ebi]. Ebin’s result asserts that if M is a compact,
orientable manifold without boundary then, at each metric, there is a slice for the
usual action of the group G of diffeomorphisms of M on the space M. Since M
is an open convex cone in Γ∞(S2(M)) it carries a natural structure of Fréchet
manifold such that, for each g ∈ M the tangent space at g, TgM, is Γ∞(S2(M));
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the tangent space to the orbit Og through g is TgOg = Im δ∗g (see [Ebi, p.25]).

So, the decomposition result can be read as TgM = (TgOg) ⊕ (TgOg)⊥, where
orthogonal is taken with respect to the G-invariant metric G given by

Gg(h, k) =

∫
M

Tr(g−1hg−1k) dvg.

Ebin’s slices are of the form expg(U) where U is an open neighbourhood of zero in

(TgOg)⊥ and expg is the exponential map, at g, of the metric G.

If the manifold M is not compactM can be endowed with a differentiable struc-
ture such that TgM is the LF-space Γ∞c (S2(M)) of sections with compact support
(see 2.5 for a description). The subspace δ∗g(Γ∞c (T 1(M))) is also the tangent space
to the orbit Og and the G-invariant metric G on M can be defined as in the com-
pact case; the geometry of (M, G), in particular its exponential map, is completely
analogous (see [GM-Mi]). Nevertheless in this paper we show that concerning the
splitting of Γ∞c (S2(M)) the behaviour in the noncompact case is rather different.

Let us recall that in [Be-Eb] the algebraic decomposition Γ∞(S2(M)) = Im δ∗g ⊕
ker δg is obtained by using the theory of elliptic differential operators on sections of
vector bundles over a compact manifold. The closedness of Im δ∗g follows essentially
as a consequence of the decomposition; so, that direct sum is also topological.

For a noncompact manifold that procedure is not available; in fact we give in §7
several examples of Riemannian manifolds for which the algebraic decomposition
does not hold.

The first kind of examples are those manifolds admitting an infinitesimal affine
transformation which is not a Killing vector field; Rn with the Euclidean metric
among them. By means of the solutions of the corresponding elliptic boundary
problem on a compact, connected, orientable manifold with boundary we find that
for the interior of such a manifold the decomposition is never true.

With the same technique we also obtain (Corollary 7.20) a characterization of
the decomposable elements of Γ∞c (S2(M)), valid for every noncompact M.

The greater part of the work is devoted to show that Im δ∗ is a closed subspace of
Γ∞c (S2(M)) when M is a noncompact manifold. Our result is not a generalization
of the corresponding one in [Be-Eb] because our method does not apply if M is
compact: in some sense, it should be considered as being complementary.

To obtain that result we first need a description of the involved topologies in
terms of a given Riemannian metric and its Levi-Civita connection; this is done in
§2. In paragraphs 3 and 4 we prove several results concerning the operator δ∗ and
some related topics that are used in §5 to study the restriction of δ∗ to Γ∞K (T 1(N))
where N is a submanifold of M of the form N = M \G, with G an open subset of M
such that ∂G is compact and regular and N is connected, and where K is a compact
subset of N , K 6= N . We obtain that, under these hypotheses, δ∗(Γ∞K (T 1(N))) is
closed in Γ∞K (S2(N)) and that δ∗ is a homeomorphism onto its image (Corollary
5.5).

These results and several lemmas of diverse nature allow us to prove the closed-
ness of Im δ∗ (Proposition 6.6).

The authors are very grateful to F. J. Carreras, P. W. Michor and M. Valdivia
for their useful comments.
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2. Definitions of Some Topologies in Spaces of Tensor Fields

Several topologies can be defined on sets of differentiable maps between manifolds
by using the adequate jet space. In this paragraph we will consider the special case
of sections of a tensor bundle over a manifold and we will describe some of these
topologies in terms of a Riemannian metric and its Levi-Civita connection.

Let M be a differentiable manifold and let T s(M) denote the vector bundle of
s-times covariant tensors on M . For l being a nonnegative integer (or l = ∞),
Γl(T s(M)) will represent the sections of class Cl, we will use ΓlA(T s(M)) for those
with support in A ⊂M and Γlc(T

s(M)) for those with compact support.

2.1. Let g be a given Riemannian metric on M , and ∇ its Levi-Civita connection.
If L ∈ Γ(T r(M)) and x ∈ M we take ‖L(x)‖ to be the usual norm in Lr(TxM ;R)
when TxM is considered with the norm induced by gx. For each 0 < l <∞, given
T ∈ Γl(T s(M)), one has the covariant derivative of T , ∇T ∈ Γl−1(T s+1(M)) and
in general if 0 < j ≤ l, ∇jT ∈ Γl−j(T s+j(M)) is defined recurrently; then, for
x ∈M , (T (x), . . . ,∇lT (x)) is an element of Ls(TxM ;R)× · · · ×Ls+l(TxM ;R) and
‖(T (x), . . . ,∇lT (x))‖ will be the norm in the product, given by the maximum of
the norms in each space, and will be denoted by |T |Cl,x.

Then, for each compact K ⊂ M and for each 0 ≤ l < ∞, we can define in
Γl(T s(M)) the following semi-norm

|T |Cl,K = sup{ |T |Cl,x ; x ∈ K}.

When restricted to ΓlK(T s(M)) it is a norm, the induced topology is the Cl

topology and hence does not depend on the given metric g. Sequential convergence
is the uniform convergence of the tensor field and its derivatives up to the order l.
ΓlK(T s(M)) is a Banach space.

2.2. For each l we have the inclusion Γ∞K (T s(M)) ⊂ ΓlK(T s(M)), but the subspace
is not closed and consequently it is not a Banach space. One can then define on it
the quasi-norm:

‖T‖K =
∞∑
l=0

1

2l
|T |Cl,K

1 + |T |Cl,K
.

The topology given by that quasi-norm is the C∞ topology; it can also be de-
scribed as the weak topology defined by the inclusions; sequential convergence is
the uniform convergence of the tensor field and all of its derivatives. Γ∞K (T s(M))
is a Fréchet space.

The quasi-norm ‖ ‖K is equivalent to the quasi-norm |T |K = sup{ |T |x ; x ∈ K},
where

|T |x =
∞∑
l=0

1

2l
|T |Cl,x

1 + |T |Cl,x
.

2.3. Γ∞(T s(M)) can also be endowed with a Fréchet space structure. When M
is compact it is enough to take K = M ; in the noncompact case, let {Kn}n∈N be
an increasing sequence of compact sets whose interiors cover M , and then take the
topology defined by the quasi-norm:

∞∑
n=0

1

2n
‖T‖Kn

1 + ‖T‖Kn
.
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It gives the C∞-compact topology and sequential convergence is the uniform con-
vergence of the tensor field and all of its derivatives on each compact.

2.4. For a noncompact manifold, the subspace Γ∞c (T s(M)) is not closed, and then
it is not a Fréchet space. Nevertheless, for any two compact subsets of M such
that K ⊂ K ′ one has that Γ∞K (T s(M)) is included in Γ∞K′(T

s(M)) as a subspace;
thus one can consider Γ∞c (T s(M)) as the (strict) inductive limit of these Fréchet
spaces; it is then a complete LF-space. In that case the topology is included in the
coherent topology and it can be described as follows: a basis of neighbourhoods of
0 consists in those convex, balanced subsets such that the intersection with each
Γ∞K (T s(M)) is open.

The same topology is obtained by using any family of compact subsets of M ,
which is cofinal for the direction given by the inclusion.

2.5. Finally, Γ∞(T s(M)) is the disjoint union of subsets of the form T+Γ∞c (T s(M))
and one can then consider the disjoint union topology, which is finer than the C∞-
compact topology. It admits then a structure of locally affine manifold modelled
on the convenient vector space Γ∞c (T s(M)) (see [Fr-Kr, pp. 71 and 132] for defini-
tions).

2.6. Similar constructions can be done for any sub-bundle of T s(M) or in general
for any vector bundle over M by using a fibre metric and a fibre connection instead
of a Riemannian metric.

Remark. In the sequel we are going to use also sections of tensor bundles over
submanifolds of the form N = M \ G, where G is an open set of M with regular
boundary; we will understand by an element of Γl(T s(N)) the restriction to N of
a Cl section of T s(M) defined in an open set containing N . That definition of
differentiability is, in that case, equivalent to the other possible usual definitions of
differentiability for manifolds with boundary (cf. [Val, pp. 354 and 369]).

3. The Operator δ∗

The aim of this paragraph is to survey the definitions and several results con-
cerning the operator δ∗ and also to establish the notations that will be used in
the sequel. Many of the results are well known and others are obtained by direct
computation; therefore we will give them without proof.

3.1. Let M be a manifold and let us denote by S2(M) the bundle of 2-times co-
variant, symmetric tensors on M ; the fibre of T 2(M) at a point x ∈M will be con-
sidered, without changing the notation, either as L2(TxM ;R) or as L(TxM,T ∗xM),
and analogously for the bundle of 2-times contravariant tensors on M .

For a given metric g, one can define the operator δ∗ : Γ∞(T 1(M))→ Γ∞(S2(M))
given by δ∗(ω) = 2 symm∇ω. It is easy to see that δ∗ω is equal to LXg, the Lie
derivative of the metric tensor in the direction of the vector field associated, by the
metric, with ω, that is, X = g−1ω. We have then the following

Definition. We will say that a 1-form ω is a Killing form if and only if δ∗ω = 0.

3.2. One can also define the divergence operator δ : Γ∞(S2(M)) → Γ∞(T 1(M))
given by δh = −2 Tr(∇h). Its expression in local coordinates is then (δh)k =
−2gij(∇jh)ik.
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Remark. The operators δ∗, δ can be defined analogously in general δ∗ : Γ∞(Sk(M))
→ Γ∞(Sk+1(M)) and δ : Γ∞(Sk+1(M)) → Γ∞(Sk(M)); δ is the formal adjoint of
δ∗ (see [Bes, p. 35]).

3.3. For a 1-form ω the covariant derivative of δ∗ω is given by

(∇δ∗ω)(Y, Z,W ) = ∇2ω(Y, Z,W ) +∇2ω(Y,W,Z).

3.4. It will be useful to consider the operator A : Γ∞(T 1(M)) → Γ∞(T 3(M))
given by:

A(ω)(W,Y,Z) =
1

2
{(∇δ∗ω)(W,Y,Z) + (∇δ∗ω)(Y, Z,W )− (∇δ∗ω)(Z,W, Y )}.

Proposition 3.5. The operator A satisfies the following equalities:

a) A(ω)(W,Y,Z) = ∇2ω(W,Y,Z) + ω(R(Y, Z,W )).
b) (∇δ∗ω)(Y, Z,W ) = A(ω)(Y, Z,W ) +A(ω)(Y,W,Z).
c) A(ω)(W,Y,Z) = g((LX∇W −∇WLX −∇[X,W ])(Y ), Z), where X = g−1ω.

Proof. Let R(Y, Z,W ) = −∇Y∇ZW + ∇Z∇YW + ∇[Y,Z]W be the curvature
tensor; then

∇2ω(Y, Z,W )−∇2ω(Z, Y,W ) = ω(R(Y, Z,W )).

Now, a) follows from 3.3 and the properties of the curvature tensor and b) is
obtained from part a) and 3.3. If X = g−1ω a direct computation shows that

∇2ω(W,Y,Z) = g((LX∇W −∇WLX −∇[X,W ])(Y ), Z) + g(R(X,W, Y ), Z),

so part c) follows from a). �

Corollary 3.6. For a 1-form ω the following statements are equivalent:

a) A(ω) = 0.
b) δ∗ω is parallel.
c) The vector field X = g−1ω is an infinitesimal affine transformation.

Proof. The equivalence between a) and b) is obtained from part b) of Proposition
3.5 and the definition of A. It is known (see [Ko-No, Vol. I, p. 231] ) that the
vanishing of the right-hand term in Proposition 3.5, c) is equivalent to X being an
infinitesimal affine transformation and that shows the equivalence between a) and
c). �

So, we give the following

Definition. We will say that a 1-form is an affine form if and only if A(ω) = 0.

3.7. We will denote by L the operator L : Γ∞(T 1(M)) → Γ∞(T 1(M)) given by
Lω = δδ∗ω; it is elliptic and by definition of δ we have Lω = −2 Tr(∇δ∗ω), so we
have the following

Corollary. Every affine form is an element of kerL.
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3.8. Let us denote by ( , ) the usual pointwise inner product induced by the metric,
g, on tensor fields. In particular for α, β ∈ Γ∞(T 1(M)), (α, β) = g−1(α, β) and for
h, k ∈ Γ∞(S2(M)), (h, k) = Tr(g−1hg−1k).

It is easy to see that (δ∗ω, h) = (ω, δh)+div Y , where Y is the vector field given
by Y = 2g−1hg−1ω.

3.9. When restricted to sections with compact support, the pointwise inner product
( , ) gives, by integration over the Riemannian manifold, an inner product that we
are going to represent by 〈 , 〉. If M is a compact manifold without boundary
then, by 3.8 one can see that 〈δ∗ω, h〉 = 〈ω, δh〉; the operators δ∗ and δ (or their
restrictions to sections with compact support, in the noncompact case) are adjoint
to each other and (δ∗(Γ∞c (T 1(M))))⊥ = ker δ

⋂
Γ∞c (S2(M)).

3.10. The elliptic operator L is also self-adjoint and using the theory of such op-
erators in a compact manifold one has

Proposition ([Be-Eb]). For a compact Riemannian manifold M, Γ∞(S2(M)) can
be decomposed as the orthogonal direct sum of the two closed subspaces Im δ∗ and
ker δ.

4. The Variation of |ω|C1,x along a Geodesic

Proposition 4.1. Let (M, g) be a Riemannian manifold, ω a 1-form in M , γ
∣∣
[a,b]

a segment of a normalized geodesic, and K = γ([a, b]). Then for each L ≥
max{1, |R|C0,K} the following inequality holds

|ω|C1,γ(t) ≤ |ω|C1,γ(a) eL(t−a) + |A(ω)|C0,K

eL(t−a) − 1

L
,

for all t ∈ [a, b].

Proof. Let p = γ(b). We define the map

h : [a, b]→ L(TpM,R)× L2(TpM ;R),

with h = (h1, h2) given by:

h1(t)(v) = ω(γ(t))(P tb (v)),

h2(t)(v, w) = (∇ω)(γ(t))(P tb (v), P tb (w)),

for v, w ∈ TpM , where P t2t1 represents the parallel displacement, along γ, from t1
to t2.

Using that γ is a geodesic and that, for each v ∈ TpM , the vector field along γ,
V (t) = P tb (v), is parallel we obtain that

(h1)′(t)(v) = (∇ω)(γ(t))(γ′(t), P tb (v)),

and
(h2)′(t)(v, w) = (∇2ω)(γ(t))(γ′(t), P tb (v), P tb (w)).



16 O. Gil-Medrano and A. Montesinos Amilibia

Let us now define the operator

R : [a, b]× L(TpM,R)× L2(TpM ;R)→ L(TpM,R)× L2(TpM ;R)

given by
R1(t, α, β)(v) = β(γ′(b), v),

R2(t, α, β)(v, w) = α(Rt(v, w)),

where

Rt(v, w) = −P bt (R(P tb (v), P tb (w), γ′(t))).

Then, it is immediate that

(h1)′(t)−R1(t, h1(t), h2(t)) = 0,

and using 3.5, a)

(h2)′(t)(v, w)−R2(t, h1(t), h2(t))(v, w) = A(ω)(γ(t))(γ′(t), P tb (v), P tb (w)).

Consequently,

‖h′(t)−R(t, h(t))‖ ≤ |A(ω)|C0,K .

On the other hand, for each t ∈ [a, b] the map R(t, ·) is linear, and its norm satisfies

‖R(t, ·)‖ ≤ max{1, |R|C0,K},

as can be easily verified. So, any L as in the statement is a Lipschitz constant
for all the maps R(t, ·). Moreover, the map g(t) ≡ 0 is a solution of the equation
g′(t) = R(t, g(t)); then, it is well known (see for instance, [Lan, p. 68]) that

‖h(t)‖ ≤ ‖h(a)‖+ L

∫ t

a

(‖h(s)‖+
|A(ω)|C0,K

L
)ds.

The result is obtained now by using Gronwall’s Lemma and that, for all t,

|ω|C1,γ(t) = ‖h(t)‖.

�

4.2. As an easy consequence, we obtain the covariant version of a well known result
about infinitesimal affine transformations (see [Ko-No, Vol. I, p. 232]).

Corollary. Let ω be an affine 1-form in a connected manifold M . If there is some
q ∈M such that (ω(q),∇ω(q)) = 0 then ω must vanish everywhere.

Proof. Under the assumptions, the closed subset {p ∈ M ; (ω(p),∇ω(p)) = 0} is
nonempty. From the above Proposition it is also open, because it contains every
normal neighbourhood of each of its points. �
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5. The Closedness of δ∗ Restricted to Sections with Support
in a Fixed Compact

Along this paragraph M will be a Riemannian manifold and N will be a sub-
manifold with boundary of the form N = M \G, where G is an open subset of M
such that ∂G is compact and regular and N is connected.

Lemma 5.1. Given any compact K ⊂ N there is a subset S open in N , of
compact closure, with K ⊂ S, and there exists d ∈ R such that for all p, q ∈ K
there is a piecewise geodesic from p to q, contained in S and of length less than d.

Proof. Let us assume first that G = ∅. For each x ∈ K choose εx > 0, such that
the geodesic ball centered at x and of radius εx, Bεx(x), has compact closure and
is a normal neighbourhood of x, i. e. every point in Bεx(x) can be joined to x by
a geodesic, contained in Bεx(x) and of length less than εx. By the compactness of
K, there is a finite subset {xi}ki=1 ⊂ K such that

K ⊂
k⋃
i=1

Bεi(xi) = S.

Let us denote Bi = Bεi(xi), d = 2(ε1 + · · · + εk) and let us assume that K
is connected. In that case, given p, q ∈ K there is a simple chain (that we are

going to denote {Bi}
j
i=1 for simplicity) from p to q, that is p ∈ B1, q ∈ Bj , and

Bi ∩Bi+1 6= ∅. If we take

p0 = p, p1 ∈ B1 ∩B2, . . . , pi ∈ Bi ∩Bi+1, . . . , pj = q,

then by construction, both pi and pi+1 can be joined to xi+1 by a geodesic segment
in Bi+1 of length less than εi+1. So, p can be joined to q by a piecewise geodesic in
S of length less than 2(ε1 + · · ·+ εj) ≤ d.

If K is not connected one can consider a compact, connected set K ′, such that
K ⊂ K ′ and then apply the argument above to K ′. This compact, connected set
can be obtained, for instance, as the union of S, which has at most k connected
components, and the image of curves connecting these components.

For G 6= ∅ and K ⊂M \G the same proof can be used by taking εx small enough
to have Bεx(x) ⊂M \G.

Finally, if K
⋂
∂G 6= ∅, there is a positive real number λ such that the closed

outer tube around ∂G of radius λ, Tλ, has the property that any point of Tλ
can be joined to ∂G by a geodesic of length smaller than or equal to λ, and that
∂Tλ

⋂
K 6= ∅. Let then K̃ be the compact subset (K \ (Tλ)◦)

⋃
∂Tλ. K̃ is disjoint

from ∂G, and there are S̃, d̃ obtained as above. Now, take S = S̃
⋃

((Tλ)◦
⋂
N)

and d = d̃+ 2λ. �

Remark. The number of segments of the piecewise geodesic from p to q is also
bounded, by an integer independent of the points.

Proposition 5.2. Let K be a compact subset of N , K 6= N . Then, there is
a1 ∈ R such that for all ω ∈ Γ∞K (T 1(N)) the following inequality holds

|ω|C1,K ≤ a1 |δ
∗ω|C1,K .
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Proof. Let p be an element of N \K, and let us take K̃ = K
⋃
{p}. Let S and d be

obtained by applying the Lemma to K̃, and let L = max{1, |R|C0,S}. For a given

q ∈ K let γ = {γi}ri=1 be the piecewise geodesic, that we can take normalized, that
exists by the Lemma. For i = 1, . . . , r − 1 let us denote by pi the endpoint of γi
and the beginning of γi+1, and by di the length of γi.

Applying now Proposition 4.1 to γ1 and having in mind that |ω|C1,p = 0 we have

|ω|C1,p1
≤ |A(ω)|C0,K

eLd1 − 1

L
,

and after the r steps needed to reach q one obtains that

|ω|C1,q ≤ |A(ω)|C0,K

eL(d1+···+dr) − 1

L
.

Since by definition of A (3.4)

|A(ω)|C0,K ≤
3

2
|δ∗ω|C1,K ,

we can take a1 = 3
2

eLd−1
L

. �

Proposition 5.3. Let K be a compact subset of N , K 6= N . Then for each l ≥ 2
there is al ∈ R such that for all ω ∈ Γ∞K (T 1(N)) the following holds

|ω|Cl,K ≤ al |δ
∗ω|Cl−1,K .

Proof. Let q ∈ K; we have

|ω|C2,q = max{|ω|C1,q, ‖∇
2ω(q))‖}.

Now, from the above Proposition

|ω|C1,q ≤ a1 |δ
∗ω|C1,K ,

and by 3.5, a)

‖∇2ω(q))‖ ≤ ‖A(ω)(q)‖+ ‖ω(q)‖ ‖R(q)‖

≤ |A(ω)|C0,K + a1 |δ
∗ω|C1,K |R|C0,K

≤ (
3

2
+ a1|R|C0,K) |δ∗ω|C1,K .

We can then take

a2 = max{a1,
3

2
+ a1|R|C0,K}.

By covariant derivation of 3.5, a), al can be obtained in a similar way for each
l, as a function of {a1, . . . , al−1, |R|Cl−2,K}. �
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Corollary 5.4. Let K be a compact subset of N , K 6= N . Then every sequence
{ωi} in Γ∞K (T 1(N)) such that {δ∗ωi} converges is also convergent.

Proof. It is obtained from the definitions of the topology (2.2), the fact that the
spaces are complete and using Propositions 5.2 and 5.3. �

Corollary 5.5. Let K be a compact subset of N , K 6= N . Then, δ∗(Γ∞K (T 1(N))) is
closed in Γ∞K (S2(N)) and δ∗ : Γ∞K (T 1(N))→ δ∗(Γ∞K (T 1(N))) is a homeomorphism.

Proof. The first assertion and the closedness of δ∗ are obtained from Corollary
5.4. The map is continuous and onto and it is also injective by Corollary 4.2. �

6. The Closedness of the Image of δ∗

In order to prove that δ∗(Γ∞c (T 1(M))) is closed we need some lemmas; 6.1, 6.2
and their Corollary 6.3 are of topological nature, Lemma 6.4 is a property of the
operator δ∗ and finally Lemma 6.5 gives a sufficient condition for a subspace to be
closed in the strict inductive limit of a countable family of Fréchet spaces.

Lemma 6.1. Let M be a connected manifold, and let K ⊂ M be compact. Then,
there exists a compact K ′ with K ⊂ K ′ and such that none of the connected com-
ponents of M \K ′ is of compact closure.

Proof. We assume that M \K 6= ∅ because otherwise there is nothing to prove.
Let us denote C1 (resp. C2) the family of connected components of M \K of compact
closure (resp. of noncompact closure), and let C = C1 ∪ C2.

Each C ∈ C is open in M and closed in M \ K and the union of K with the
union of any subfamily of C is closed.

We only need to show that

K ′ = K∪
(
∪C∈C1 C

)
is compact, the other conditions being trivially satisfied.

Let G be an open set of compact closure, such that K ⊂ G; then C′1 = {C ∈
C1 ; C ∩ (M \ G) 6= ∅} is finite because any C ∈ C′1 should cut ∂G which is a
compact subset of the locally connected space M \K. Now K ′ can be written as

K ′ = K∪
(
∪C∈C1\C′1 C

)
∪
(
∪C∈C′1 C

)
.

Then, since
K∪

(
∪C∈C1\C′1 C

)
is closed and it is included in G, the compactness of K ′ follows from the fact that
C is compact, for all C ∈ C′1 and that C ∪K = C ∪K. �

Lemma 6.2. Let K be a compact proper subset of M . Then there is an open G
with K ⊂ G and such that G = G∪ ∂G is compact, ∂G is a regular submanifold of
M and none of the connected components of M \G is of compact closure.



20 O. Gil-Medrano and A. Montesinos Amilibia

Proof. Let U be an open subset of compact closure with K ⊂ U . There is f ∈
C∞(M) such that f

∣∣
K
≡ 1 and supp f ⊂ U . From Sard Theorem, there is a

regular value of f , a ∈ (0, 1) and then, by the proof of Lemma 6.1, the open set
G obtained by the union of G1 = f−1((a,∞)) and the connected components of
compact closure of M \G1 has the required properties. �

Corollary 6.3. On every connected manifold M there is an open covering {Gn}n∈N
such that if Kn = Gn then for all n ∈ N:

a) Kn is compact and ∂Kn is a regular submanifold of M .
b) None of the connected components of M \Kn is of compact closure.
c) Kn ⊂ Gn+1.

Lemma 6.4. Let M be a Riemannian manifold and let K ⊂ M be a compact
subset. If a 1-form ω has supp δ∗(ω) ⊂ K then, either suppω ⊂ K, or there exists
a connected component C of M \K such that C ⊂ suppω.

Proof. Let us denote Vω = {x ∈M ; ωx 6= 0}; then if suppω is not included in K,
Vω should intersect M \K and so there is a connected component C of M \K such
that C ∩ Vω 6= ∅. Then, ω restricted to C is a non identically zero Killing form of
the connected manifold C and from 4.2 one should have (M \ suppω)∩C = ∅. �

Lemma 6.5. Let E be the strict inductive limit of a countable family {En}n∈N of
Fréchet spaces. Assume that A is a subspace of E such that:

a) An = A ∩ En is closed in En for all n ∈ N and
b) En−1 +An is closed in En for all n ∈ N, n > 1.

Then, A is closed in E.

Proof. Let p ∈ E \A. We can assume without loss of generality that p ∈ E1. Then
as A1 is closed in E1 there is λ1 in the topological dual E∗1 , such that λ1(p) = 1
and A1 ⊂ kerλ1.

We can construct α2 : E1 +A2 → R given by α2(e+a) = λ1(e); it is well defined
and linear and we are going to see that kerα2 = kerλ1 + A2 is closed and then
α2 ∈ (E1+A2)∗. In fact, let l : E1×A2 → E1+A2 be given by l(e, a) = e+a; E1×A2

and E1+A2 are Fréchet spaces, l is linear, continuous and onto, whence by the open
map theorem, l is open and in particular l((E1 \ kerλ1)×A2) is open in E1 +A2.
It is not difficult to see that l((E1 \ kerλ1) × A2) = (E1 + A2) \ l(kerλ1 × A2) =
(E1+A2)\kerα2 given that l is onto and that by constructionA2∩E1 = A1 ⊂ kerλ1.

Since E1 + A2 is closed in E2, the form α2 ∈ (E1 + A2)∗ can be extended to
λ2 ∈ E∗2 , such that λ2(p) = 1, A2 ⊂ kerλ2 and λ2

∣∣
E1

= λ1. In this way we can

construct, by recurrence, a sequence {λn}, λn ∈ E∗n, with λn(p) = 1, An ⊂ kerλn
and such that if n1 ≤ n2 then λn2

∣∣
En1

= λn1
.

That gives a well defined λ ∈ E∗, such that λ(p) = 1 and A ⊂ kerλ; so, we can
conclude that A is closed. �

Proposition 6.6. Let M be a noncompact manifold. Then δ∗(Γ∞c (T 1(M))) is a
closed subspace of Γ∞c (S2(M)).
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Proof. Let {Gn}n∈N be an open covering as in Corollary 6.3. Then, Γ∞c (S2(M))
is the strict inductive limit of the Fréchet spaces En = Γ∞Kn(S2(M)). If we take

A = δ∗(Γ∞c (T 1(M))) we only need to show that A satisfies the hypotheses of Lemma
6.5.

To show a) it is enough to see that An = δ∗(Γ∞Kn(T 1(M))), the latter being closed

by Corollary 5.5 because Kn is a proper subset of M . In fact, if δ∗ω ∈ Γ∞Kn(S2(M))

for ω ∈ Γ∞c (T 1(M)) then, from Lemma 6.4, either ω ∈ Γ∞Kn(T 1(M)), or there exists
a connected component C of M \Kn such that C ⊂ suppω, which is impossible,
by property b) of Gn; then An ⊂ δ∗(Γ∞Kn(T 1(M))). The other inclusion is obvious.

To show b) let us first characterize the elements of En−1 + An. An element
h ∈ En is in En−1 + An if and only if there exists α ∈ Γ∞Kn(T 1(M)) such that

h
∣∣
N

= δ∗α
∣∣
N

, where N = M \Gn−1. This is clear because if h ∈ En−1 + An then

there is h1 ∈ En−1 and α ∈ Γ∞Kn(T 1(M)) such that h = h1 + δ∗α; but h1

∣∣
N

= 0
and then h and δ∗α should coincide on N. Conversely, if h ∈ En and if there is
α ∈ Γ∞Kn(T 1(M)) such that h

∣∣
N

= δ∗α
∣∣
N

, then h1 = h− δ∗α ∈ En−1.

Let {hi}i∈N be a sequence in En−1 +An that converges to h ∈ En. Then, there
is a sequence {αi}i∈N in Γ∞Kn(T 1(M)) such that hi

∣∣
N

= δ∗αi
∣∣
N

; let us denote ωi =

αi
∣∣
N
∈ Γ∞K (T 1(N)), with K = Kn \ Gn−1. (We can assume that N is connected,

otherwise we can apply the following argument to each connected component).
The sequence {δ∗ωi}i∈N converges to h

∣∣
N

and K 6= N . Then, from Corollary 5.4

there is ω ∈ Γ∞K (T 1(N)) such that {ωi}i∈N converges to ω and, by continuity of
δ∗, h

∣∣
N

= δ∗ω. Let ω̃ ∈ Γ∞Kn(T 1(M)) be any differentiable extension of ω; then,

h
∣∣
N

= δ∗ω̃
∣∣
N

, and h ∈ En−1 +An. �

7. About the Decomposition of the Space Γ∞c (S2(M))

Let us represent by T (g) the closed subspace δ∗(Γ∞c (T 1(M))) and by N (g) the
closed subspace ker δ

⋂
Γ∞c (S2(M)). We know (3.9) that N (g) = T (g)⊥.

In this paragraph we are going to show several examples of noncompact Rie-
mannian manifolds for which Γ∞c (S2(M)) 6= N (g)⊕ T (g).

Remarks. The inner product 〈 , 〉, defined on Γ∞c (T 1(M)) (see 3.9), extends
to a bilinear map from Γ∞c (T 1(M)) × Γ∞(T 1(M)) to R (or from Γ∞(T 1(M)) ×
Γ∞c (T 1(M)) to R) that we are going to denote with the same symbol; analogously
for the inner product defined on Γ∞c (S2(M)).

If E is a subspace of Γ∞(S2(M)), by abuse of notation we will write E⊥ to mean
{h ∈ Γ∞c (S2(M)) ; 〈h, k〉 = 0, ∀k ∈ E}.

For 〈δ∗ω, h〉 = 〈ω, δh〉 to be true it is not necessary that both sections in-
volved have compact support; it is sufficient that either ω ∈ Γ∞c (T 1(M)) or h ∈
Γ∞c (S2(M)).

Proposition 7.2. For every metric g on M the space N (g)⊕ T (g) is included in
(δ∗(kerL))⊥.

Proof. If h ∈ N (g) ⊕ T (g) then h = h0 + δ∗ω with h0 ∈ N (g), ω ∈ Γ∞c (T 1(M)).
Let now be α ∈ kerL; then we have

〈h, δ∗α〉 = 〈h0, δ
∗α〉+ 〈δ∗ω, δ∗α〉 = 〈δh0, α〉+ 〈ω,Lα〉 = 0.

�
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Corollary 7.3. If for a metric g in M , δ∗(kerL) 6= {0}, then Γ∞c (S2(M)) 6=
N (g)⊕ T (g).

Proof. Let α be an element of Γ∞(T 1(M)) such that Lα = 0 and δ∗α 6= 0, that
exists by hypothesis. Let U be an open set on which δ∗α is everywhere different from
zero and let ϕ be a nonnegative element of C∞(M), taking the value 1 in a nonempty
open subset of U and with compact support in U. Then, h = ϕδ∗α ∈ Γ∞c (S2(M))
and 〈h, δ∗α〉 6= 0. So, h 6∈ (δ∗(kerL))⊥. �

Remark 7.4. δ∗(kerL)
⋂

Γ∞c (S2(M)) = {0} because if δ∗α has compact support
then 〈δ∗α, δ∗α〉 = 〈α, δδ∗α〉 and if moreover α ∈ kerL, then 〈δ∗α, δ∗α〉 = 0. In
particular for a compact manifold δ∗(kerL) = {0}; this can also be concluded from
the fact that for a compact manifold the decomposition holds.

For a noncompact manifold the space of sections of noncompact support δ∗(kerL)
can be seen as an obstruction to the decomposability of Γ∞c (S2(M)).

Proposition 7.5. Let g be a metric on M admitting an affine form which is not
a Killing form. Then, Γ∞c (S2(M)) 6= N (g)⊕ T (g).

Proof. It is a consequence of the previous result and of Corollary 3.7. �

In particular, for Rn with the Euclidean metric the decomposition of Γ∞c (S2(M))
does not hold.

Remark 7.6. It is known [Ko-No, Vol.I, p. 242] that on a complete irreducible
manifold, different from R, every infinitesimal affine transformation is a Killing
vector field. As a consequence, 7.5 does not provide us with examples within this
kind of manifolds.

In what follows we are going to show that if M is the interior of a compact,
connected Riemannian manifold with boundary then δ∗(kerL) 6= {0}.

7.7. Let N be a compact Riemannian manifold with regular boundary ∂N 6= ∅
that, for simplicity, we assume to be orientable; let ν, dv be respectively, the unit
normal to the boundary and the oriented Riemannian volume element of the bound-
ary. Then, for ω ∈ Γ∞(T 1(N)) and h ∈ Γ∞(S2(N)) we have

〈δ∗ω, h〉 = 〈ω, δh〉+

∫
∂N

g(Y, ν) dv

where Y = 2g−1hg−1ω (see 3.8). It is easy to see that on ∂N , g(Y, ν) = 2(ω, h(ν))
and then, the above equality can be written as

〈δ∗ω, h〉 = 〈ω, δh〉+ 2〈ω, h(ν)〉∂N .

As a consequence, the operator L satisfies

〈Lω, γ〉 = 〈ω,Lγ〉+ 2〈ω, δ∗γ(ν)〉∂N − 2〈γ, δ∗ω(ν)〉∂N ,

for all ω, γ ∈ Γ∞(T 1(N)).
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7.8. Boundary problem. Let us denote by Γ
∞

(T 1(N)) the space of C∞ maps

β : ∂N → T 1(N) such that π ◦ β = Id; for a given β ∈ Γ
∞

(T 1(N)) we will consider
Γ∞β (T 1(N)) = {ω ∈ Γ∞(T 1(N)) ; ω

∣∣
∂N

= β}. For each (α, β) ∈ Γ∞(T 1(N)) ×

Γ
∞

(T 1(N)) we want to know if α ∈ L(Γ∞β (T 1(N))); so we are concerned with the

existence of ω ∈ Γ∞(T 1(N)) such that:

(BP )

{
Lω = α on N,

ω = β on ∂N.

Proposition 7.9. The Boundary Problem (BP ) is elliptic.

Proof. That L is an elliptic operator is well known (see [Be-Eb]). That the bound-
ary conditions are elliptic with respect to L (see [Hör, 10.6.2] for the definition) is
a long and technical but straightforward computation. �

Applying then [Hör, p. 273] we have the following

Proposition 7.10. The space N = kerL∩Γ∞0 (T 1(N)) is finite dimensional. The
space

R = {(α, β) ∈ Γ∞(T 1(N))× Γ
∞

(T 1(N)) such that there is a solution of (BP)}

has finite codimension in Γ∞(T 1(N)) × Γ
∞

(T 1(N)) and it is defined by a finite

number of elements (γj , ηj) ∈ Γ∞(T 1(N))× Γ
∞

(T 1(N)) through the conditions

0 = 〈α, γj〉+ 〈β, ηj〉∂N .

Now we obtain a more useful characterization of the elements in N and R.

7.11. Let K be the space K = ker δ∗ ∩Γ∞0 (T 1(N)). By a similar argument to that
used in 7.4 one can conclude that K = N .

Lemma 7.12. Let (γ, η) ∈ Γ∞(T 1(N))× Γ
∞

(T 1(N)). If for every (α, β) ∈ R the
equality 0 = 〈α, γ〉+ 〈β, η〉∂N holds, then γ ∈ K and η = 0.

Proof. The hypothesis on (γ, η) can be written with the help of 7.7 as follows:

〈ω,Lγ〉+ 〈ω, η〉∂N + 2〈ω, δ∗γ(ν)〉∂N − 2〈γ, δ∗ω(ν)〉∂N = 0,

for all ω ∈ Γ∞(T 1(N)).
Using this formula for conveniently chosen ω and by similar arguments to those

in [Hör, p.264] one can show first that Lγ = 0 and then that γ vanishes when
restricted to the boundary; the conclusion is then obtained from 7.11. �

Proposition 7.13. The space K is finite dimensional. Let (α, β) ∈ Γ∞(T 1(N))×
Γ
∞

(T 1(N)); then, (α, β) ∈ R if and only if α ∈ K⊥. For a given (α, β) any two
solutions of (BP ) differ in an element of K.
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Proof. The first and the last assertions are a consequence of 7.10 and 7.11. By
7.7 if (α, β) ∈ R then α ∈ K⊥. Now, if α ∈ K⊥ using 7.12 and 7.10 we conclude

that (α, β) ∈ R for any β ∈ Γ
∞

(T 1(N)). �

We have the following decomposition result for manifolds with boundary.

Corollary 7.14. For each β ∈ Γ
∞

(T 1(N)), every element of Γ∞(S2(N)) can be
written in a unique way as the sum of an element of δ∗(Γ∞β (T 1(N))) and an element
of ker δ. In particular, for β = 0 the two subspaces are orthogonal to each other and
Γ∞(S2(N)) = δ∗(Γ∞0 (T 1(N)))⊕ ker δ.

Proof. An element h ∈ Γ∞(S2(N)) can be decomposed in that manner if and
only if (δh, β) ∈ R or equivalently, if and only if δh ∈ L(Γ∞β (T 1(N))). Using 7.7

we have that δh ∈ K⊥ and then the result is an immediate consequence of 7.13. In
the particular case of β = 0, the orthogonality is obtained from 7.7. �

7.15. We recall that, in a connected manifold, the value of a Killing vector field is
completely determined by its value and that of its first jet at a single point [Ko-No,
p. 232] and as a consequence the set of Killing 1-forms in a connected manifold is
a finite dimensional vector space.

Proposition 7.16. Let N be a compact, connected manifold with boundary. There
is β ∈ Γ

∞
(T 1(N)) such that there are no Killing forms in Γ∞β (T 1(N)).

Proof. Let {ω1, . . . , ωk} be a basis of the real vector space of Killing 1-forms on
M where M is the interior of N . By reordering, if necessary, there is a maximal
integer l, 0 ≤ l ≤ k, such that every ωi, 1 ≤ i ≤ l, can be extended to N ; let then
βi, 1 ≤ i ≤ l, be their restrictions to ∂N. Now, for any β ∈ Γ

∞
(T 1(N)) which is

not in the real vector space generated by {β1, . . . , βl}, there is no Killing 1-form
taking the value β on the boundary. �

Proposition 7.17. Let M be a noncompact manifold such that it is the interior of
a compact, connected, orientable manifold with boundary. Then, δ∗(kerL) 6= {0};
consequently Γ∞c (S2(M)) 6= N (g)⊕ T (g).

Proof. Assume that M is the interior of N and let ω ∈ kerL ∩ Γ∞β (T 1(N)) with

β as in 7.16. If ω̃ = ω
∣∣
M

then ω̃ ∈ kerL and δ∗ω̃ 6≡ 0 because otherwise δ∗ω ≡ 0
which is impossible by the choice of β. �

7.18. Now we are going to use 7.13 to obtain a characterization of N (g) ⊕ T (g).
It is immediate that h ∈ N (g) ⊕ T (g) if and only if the equation Lω = δh has a
solution with compact support or, equivalently, if and only if δh ∈ L(Γ∞c (T 1(M))).

Proposition 7.19. Let α ∈ Γ∞c (T 1(M)). Then, α ∈ L(Γ∞c (T 1(M))) if and only
if there is a compact K with suppα ⊂ K such that α is orthogonal to every γ ∈
Γ∞(T 1(M)) with the property Lγ

∣∣
K

= 0.
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Proof. If α = Lω with ω ∈ Γ∞c (T 1(M)), from 7.7, every compact K with regular
boundary such that suppω ⊂ K satisfies the required conditions.

Conversely, let α be as in the statement and let K be the compact satisfying the
hypothesis. Let us take a compact, connected submanifold N of M , with regular
boundary and K ⊂ N◦, and let ω ∈ Γ∞0 (T 1(N)) be such that Lω = α. The
existence of such an ω is a consequence of 7.13 and the hypothesis on α. In what
follows we are going to show that ∇kω

∣∣
∂N

= 0, for each k and so, ω can be extended
to a smooth form in M vanishing outside N .

Let γ ∈ Γ∞(T 1(N)) be a solution of the boundary problem:{
Lγ = 0 on N,

γ = δ∗ω(ν) on ∂N.

The orthogonality property of α along with 7.7 gives that δ∗ω(ν) = 0 on ∂N ;
also, ω

∣∣
∂N

= 0 implies that (∇Xω)
∣∣
∂N

= 0 if X is tangent to ∂N . Both facts

lead to ∇ω
∣∣
∂N

= 0. Using this and the relations with the curvature we have that

(∇2ω)(X,Y, .)
∣∣
∂N

= 0 if either X or Y is tangent to ∂N . Since Lω vanishes,
at least, in the open neighbourhood N \ K of ∂N we have, after computation,
(∇2ω)(ν, ν, .)

∣∣
∂N

= 0, that is ∇2ω
∣∣
∂N

= 0. By using similar arguments it is easy

to show by recurrence that ∇kω
∣∣
∂N

= 0, k ≥ 0. Thus, ω extends to a smooth form
in M with support in N . �

Corollary 7.20. An element h ∈ Γ∞c (S2(M)) is in N (g) ⊕ T (g) if and only if
there is a compact K with supp δh ⊂ K such that δh is orthogonal to every γ ∈
Γ∞(T 1(M)) with the property Lγ

∣∣
K

= 0.
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[Fr-Kr] A. Frölicher and A. Kriegl, Linear Spaces and Differentiation Theory, Pure and Applied

Mathematics, J. Wiley, Chichester, 1988.
[GM-Mi] O. Gil-Medrano and P. W. Michor, The Riemannian manifold of all Riemannian met-

rics, Quarterly J. Math. Oxford 42 (1991), 183–202.
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