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Heinrich’s Counterexample to Azevedo’s
Conjecture

Robert W. Berger

ABSTRACT. Johannes Heinrich, a student of the University of Saarbriicken,
found by computer calculation an example of a plane algebroid curve whose
module of differentials has a bigger torsion than that of the canonical branch
in the same equisingularity class. That contradicts a conjecture of Azevedo.

Consider an irreducible plane algebroid curve C over an algebraically closed field k
of characteristic zero. C has a local ring 0 = kz,y] = k[X,Y]/(f(X,Y)) where
f(X,Y) is an irreducible power series with coefficients in k. Let Q(0/k) denote
the universally finite differential module of o over k, T = 7(Q(o/k)) its torsion
submodule, and o = k[t] the integral closure of o.

In his paper [5] Zariski shows that for the lengths as o-modules one has ¢(T") <
2-0(0/0), and equality holds if and only if, after a suitable change of the variables, the
curve C can be represented by an equation f(X,Y) =YY" — X™ with ged(m,n) = 1.
We say in this case that “C has maximal torsion”. (For a generalization of this
notion to not necessarily plane curves see [4].) Equivalently this means, that C has
a parametric representation of the form

z=t", y=t".

Now any non regular plane algebroid curve C has a parametric representation of
the form

(1)
z = t"

oo
y = Zaiti, am # 0, n<m, nfm,
i=m

the Puiseux Expansion of C.
Another way of writing this is:

(2) y= Z a;z .
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Among the exponents * in (2) certain exponents ej, are called the characteristic
exponents of C. They are defined as follows ([6]):
&1 = o
If (m,%) = 1, this is the only characteristic exponent.
In any case write 7 = T with (mq,nq) = 1.
Since k((t)) = k((z,y)) the greatest common divisor of n and all the ¢ with a; # 0
is 1. Therefore, if n; < n there is a first ¢ with a; # 0 such that % cannot be written
as a fraction with denominator nq.
Define:
€o = % is the first exponent in (2) with a; # 0 and which cannot be written as
a fraction with denominator n;.

Write 9 = nTrZ with (ma,ng) = 1.

As before, if n1ns < n there exists a first ¢ with a; # 0 and such that % cannot be
written as a fraction with denominator nqns.
Define:
g3 = L is the first exponent in (2) with a; # 0 and which cannot be written as
a fraction with denominator nins.

Write e3 = nl’:;”jns with (mg,ns) = 1.

etc.
After finitely many steps the process stops with an exponent
g4 = #an with (mg,ng) =1 and ningng---ng =n.
Putting in evidence the characteristic exponents one can rewrite the expansion (2)

in the form
Yy = blx% + .- +b2xn71n32 +...+b3x"1:’§"3 + ..._|_ng"1"27;§“‘"9 —|—’
bk7é0, k:].,...,g.

Note that the characteristic exponents £, uniquely determine the pairs (my, ng)
and vice versa.

The pairs (mg,ng), k =1...g are called the characteristic pairs of the curve C.
Two plane algebroid curves over k are called equisingular if and only if they have the
same characteristic exponents (or characteristic pairs). Equisingularity obviously
is an equivalence relation.

Of all curves in an equisingularity class (i.e. with a given set of characteristic
exponents €1 ...g, ) there is one called the canonical branch of this class:

y = IL‘EI+$E2+'~'+1‘69
or in parametric expansion:
x = t"
y = P P2 B L ¢Ba—1 4 P
with 8; := myn;41---ng for ¢ = 1,...,9. Now the theorem of Zariski cited above

can be reformulated as follows

An irreducible singular algebroid curve C has maximal torsion (i.e. £(T) = 2¢(0/0))
if and only if it is a canonical branch with exactly one characteristic pair.

In his thesis [1] Azevedo conjectures the following generalization of this result:

Of all irreducible plane algebroid curves in an equisingularity class the canonical
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branch has the biggest torsion, i.e. if C is an arbitrary irreducible plane algebroid
curve and C’ is the canonical branch in the equisingularity class of C then for
the torsions T and 7" of the differential modules of C and C’ respectively holds
0Ty < T .

In [1] this conjecture is backed up by examples and also proved for certain curves
with two characteristic pairs. There is also an example in [1] that, contrary to the
case of only one characteristic pair, other curves in the same equisingularity class
can have the same length of the torsion of the differential module as the canonical
branch.

Now Heinrich shows in his Diplomarbeit [3] that the above conjecture is false
by giving a counterexample:

Example: Let C be the curve :
z = t°
9 +2¢10 — 21,
Then the canonical branch C' in the class of C is
zr = t°
Yy = 0 +¢10,
But for the torsions T and T' of C and C' respectively one has:
T =36 >35=T).

Proof ([3]): Let us denote by:

v the natural valuation of Quot(o),

v(0) the value semigroup of o,

¢ the conductor of o into o,

¢ := v(c) the value of the conductor,

D the universally finite derivation of o over k.

In the usual manner we extend the valuation v to a valuation of
D5 ={>"ga;-t' Dt|a; €k} by

v (iai -t Dt) =v (iai~ti> .
i=0 i=0

Then obviously for every z € m:= 0 -t we have v(Dz) =v(z) — 1.

By Korollar 2 to Satz 8 of [2], which is valid also in the algebroid case, one has for
every plane algebroid curve:

L(T)=4(0Do/oDo)+£(5/0).

Now for any o-module M of finite length we have ¢(M) = dimg(M), since k is
algebraically closed. Therefore £(5/0) = 3 - £(5/c) = 3 - dim(5/c) = % - c.
So we get:

¢(T) = dimy, (6 D8/o Do) +§ .
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Because of 0 O ¢ we have the inclusions 6 Do O 0 Do O D¢ and therefore
oDo/oDo= (o Do/ Dc)/(o Do/ D) .

From ¢ = {z | z € 6,v(2) > ¢} we obtain

oo

DCZ{( 3 ai-ti)-Dt

i=c—1

aiek}:o-tc_lDt.

It follows that the residue classes modulo @ - t¢~! D¢

{ﬁt,t D%, Dt... 12 Dt}

are a basis of 6 Do/ D¢ as a k-vector space, and therefore

dimy (6 Do/ D¢)=c—1.

On the other hand the residue classes modulo 6 -t~ D¢
{xiyj Dz |i,7 € No, l/(a:iyj Dz)<c— 1} U {xiyf Dy |4,j € Ny, V(miyj Dy) <c— 1}
form a set of generators of o0 Do/ D¢ as a k-vector space.

Denote these generators by wq,...,ws in any order, represent them by the above
basis of 6 Do/ Dc:

c—2
wi=Zaji-tth, ajiEk, 1=1,...,s,
j=0

and define
A= (aji) 10 me=2}

i=1,...,

Then
dimy (6 Do/o Do) = dimy (6 Do/ Dc¢) —dimy (0 Do/ D¢) =c—1 —rank A,

and consequently

(3) UT) = % —1—rank A .

We will now compute ¢(T") and ¢(T") for the example using formula (3):
Both curves have the same characteristic pairs

(ml,nl) = (3,2) (mz,ng) = (10,3)

and consequently the same value group. We obtain 81 = m =9, 2 = my = 10. In
order to compute ¢ we use formula (3.14) from Chapter II of [7]:

c=p(er—1)+Pi(n—e) —n+1,
where e; := ged(n, m) = 3. (Loc. cit. definition 3.2.) So we get:
c=103-1)+9(6—3)—6+1=42 .
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For both curves one has v(z) = 6, v(y) =9, v(Dxz) = 6, v(Dy) = 9. Therefore

the set {w1,...,ws} for both curves consists of the following elements:
wi = Dz, w = yDz, w3 = y2Dz, wy = y3Du,
ws = r Dz, ws = zyDz, w; = 2y2Daz, ws =y Da,
Wy = m, w10 = m, w11 = m>
Wiz = m, w1z = Wa
wy=2"Dz, w;=atyDa,

wig=z° D,

wir= Dy, wig= y Dy, wig= y2 Dy, wy= 9> Dy,
wo1= z Dy, wye = xy Dy, was = zy® Dy,

way =22 Dy, was =22y Dy, wae =22y Dy,

wyr =23 Dy,  wes=2a3y Dy,

W29 = xt Dya

w3g=z° Dy.

Now one can compute the matrices A’ and A for the curves C' and C respectively.

The matrix A’ for the curve x = 5, y = t9 +#19 is (dots representing zeros):

W] WRW3WWEWEWTWEWWQWl]lWI2W13WI4WI5WIEW1T W18 W19 W20 W2l W22 W23 W24 W25 W2E W27 W28 W29 W30
t0 D¢t
tl D¢
2Dt
t3 Dt
Dt
t5 Dt 6
t6 D¢
T Dt
t8 D¢ . . . . . . . . ... ... .9
t9D¢ . . . . . . . . . . . . . . . .10
t10 Dt
tlpe . . . . 6
t12 D¢
t13 Dt
tl4De .6 . . . . . . ... ... ... . . . 9
5Dt . 6 . . . . ... ... 0
t16 D¢
tTpDe .. . . . . . .6 . . . . . . . . 9
I8 Dt . .. . ... ... 19
9Dt .. . . . . . . . . . . . . . . .10
t20 D¢ . . . L. L6 . . .9
2 O 11}
t22 D¢
t23 D¢ . . 6 . . . . . ... 6 ... ... . . .09

L R £ )



25 D¢
26 D¢
2T D¢t
28 D¢
29 D¢
30 D¢
31Dt
32 D¢
33 D¢
34Dt
35 Dt
36 D¢
3T Dt
38 D¢
39 D¢

t40 D¢

After

.18

.18

.12

6

.18

.18
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6 . . 9
6 28
29
6 10
6
6
6 . . 6
12
6
6
6

37

57

39

10

28

29

10

19

10

9
10
9
10
9
19
10
9 . . . 9
28 . . . 10

29

deleting all rows that consist of zeros alone, deleting row t° Dt because it

depends of row t8 Dt, deleting row 18 Dt because it depends of row ¢! D¢, and
some permutations of the columns one obtains the following matrix with the same

rank:

td Dt

t8 Dt

11 D¢
14 D¢
15 D¢
1T Dt
19 D¢
+20 D¢
21 Dt
23 D¢
24 D¢
25 Dt
26 D¢
2T D¢
28 D¢
29 D¢
30 D¢
31 D¢
32 D¢
33 Dt
34 D¢
35 D¢
36 D¢t
3T Dt
38 Dt
39Dt

t40 D¢

9
10
6 6 9
.12 19
6 10
9 6 9
10 6 28
29

10 6 6 9

.12 19

6 9 6 9
6 1018 28
.18 29

6 10

12 19

37

57

39

WlWwl7TWwswaWw]wgWwigweWw24w]2wW3w22wWarTw]QwW19wWlq W w25 w3 w29 wqawa3w]g] w2gw20wWls W8 wW26wW16 w30

618 28 .10

.18 29
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One can easily see that all the 27 rows are linearly independent and so

rank A’

27

42
37—1—27235.

ary = =

Now we compute the matrix A for the curve z =15 y =% 4+ 2t10 — 2¢11 (we omit
the t0 D¢,...,t40 D¢ in front of the rows in order to save space):

W] w2 W3 wyws W WrwlwgowiQw]lwl2wWl3wl4wWlswWlewWlT W18 W19 wW20wW2]1 W22 wW23W24W25W26 W27 W28wW29 W30

20
.—22

12 20
=12 . . =22
6 9
38
. 0 .
6 .—84 9
12 44 20

=12

=22

24 38
0 . . 0 .
.—48 6 9 .—84 9
24 .12 56 44 .20
. =12 . . 58 . =22
6 6 .—160 9
24 .—124 38
. 0 . 256 . 0 .
6 .—48 6 . —88 9 .—84 9
36 24 12 56 44 20
. 36 . =12 . . 58 .—22
.—96 6 9 .—160 9
=72 24 74 .—124 38
144 0 . 152 . 256 0 .
.—48 G —48 6 .—156 . —88 9 —84 9
.36 . .24 12 .—560 56 44 .20
. 36 =12 328 58 =22

After deleting all rows that consist of zeros alone, deleting rows t2 D¢ and t1° D¢
because they depend of row t® Dt, and some permutations of the columns one
obtains the following matrix with the same rank:

B O
O, D )’
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where the matrices Op, Qs contain zeros only, and:

B:
w1l W17 W5 w2 w21 WwWg Wiy we w24
t5Dt 6
Dt . 9
tIT Dt . .6
t14 Dt . .. 6 9
t15 D¢ . .. 12 20
t16 D¢ . L. =12 =22
t1IT Dt . - .. 6 9
t18 Dt . .o . . . 38
t20 D¢ . .o . . . —84 6 9
t21 D¢ . .o . . .44 12 20
t22 Dt . Lo . . . L =12 —22

w12 W3 w22 WiQ W27 W19 Wi4 W7 W25 W13 W29 W4 W23 Wi W1l W28 W20 W8 W15 W26 W30
t2Dt 6 6 9
24Dt . 24 38
26Dt .-48-84 6 9 9
27Dt . 24 44 12 20 56
28Dt . . .—-12-22 58
29Dt . . . . .—-160 6 6 9
©“3OD¢ . . . . .—124 . 24 38
#“Ipt . . . . . 256 . 0 0
©“2D¢t . . . . . —8 .-48-84 6 9 6 9
$B3Dt ... .. .. 24 44 12 20 36 56
©B4De .. .. .. . .—-12-22 36 58 . . . .
©B5Dt . .. .. .. . . . .-96-160 6 6 9 9
©B6Dt .. ... ... . . .-72-124 . 24 38 74
©B7Dt .. ... .. . . . .144 256 . 0 O 152 . . . .
©B38¥Det .. ... .. . . . .—48 —-88 .-48-84-156 6 6 9 9
©B9Dt .. ... e .. 24 44 -560 36 12 56 20
Dt .. ... e .. . . 32836-12 58 —22

It can easily be seen that the matrix B has rank 9 (rows ¢! D¢ and t?2 Dt can
be eliminated, the rest is linearly independent), while the the matrix D consists of
only 17 rows, so that its rank is < 17. Therefore the rank of the entire matrix is
< 26, giving

o) > %-1-26:36%@'),

which is enough to prove the counterexample.

A more detailed analysis (e.g. by using a computer or computing the rank modulo 5)
shows that the rank of the matrix D is equal to 17, so that indeed

Final Remarks: Heinrich found this counterexample by computing the matrix A
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for a “generic” curve with the characteristic pairs (3,2) and (10, 3)

z = 8 ,
)+ alotlo + a11t11 + a13t13 + Cl14tl4 + a16t16 + a17t17 +

a20t20 + a22t22 + a23t23 + a26t26 + a29t29 + a32t32 + a35t35 + a41t41 R

and indeterminate coefficients a; (where one can even omit the two terms of degree
22 and 41 by [1], Chapter 3, Proposition 1) and transforming it to a staircase form
with the help of MAPLE. From the result he got conditions on the coefficients to
lower the rank of the matrix.

For this general computation, but also for a little bit more complicated special

curves, the use of a computer algebra system seems to be indispensable.
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