Preliminary Exam

Complex Analysis

August 1999

1. Find an analytic function $f(z)$ whose real part is $(z=x+i y)$.

$$
\operatorname{Re} f(z)=x y-10
$$

Does such a function exist? Justify your answer.
2. Find the general form of an entire function $f(z)$ satisfying

$$
|f(z)| \leq A+B|z|^{3 / 2}, \text { where } A \text { and } B \text { are constants }
$$

3. Find the general form of a function $f(z)$ which is analytic inside the ellipse $D(z=$ $x+i y)$

$$
\frac{x^{2}}{16}+\frac{y^{2}}{9}=1
$$

continuous in \bar{D}, and

$$
\operatorname{Im} f(z)=-5 \quad(z \in \partial \mathbf{D})
$$

4. Find a conformal mapping from $\mathbf{C} \backslash\{[0,+\infty)\}$ to the unit disk.
5. 6. Prove that for any polynomial p and any $a \in \Delta$

$$
p(a)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{p\left(e^{i \theta}\right)}{1-e^{-i \theta} a} d \theta
$$

2. Deduce from 5.1 that

$$
|p(a)| \leq\left[\frac{1}{\left(1-|a|^{2}\right)} \frac{1}{2 \pi} \int_{0}^{2 \pi}\left|p\left(e^{i \theta}\right)\right|^{2} d \theta\right]^{1 / 2}
$$

6. Let f be analytic in the unit disk and map the unit disk into itself given $f(1 / 2)=0$. Prove that $\left|f^{\prime}(1 / 2)\right| \leq \frac{4}{3}$.
7. Let

$$
f(z)=\frac{1}{z} \cdot \frac{1-2 z}{z-2} \cdot \ldots \cdot \frac{1-10 z}{z-10}
$$

Find $\int_{|z|=100} f(z) d z$.
8. Let $f(z) \not \equiv 0$ be a meromorphic function in \mathbf{C} such that

$$
|f(z)|=1 \quad(|z|=1)
$$

and

$$
f\left(\frac{1}{2}\right)=0
$$

Can f be an entire function?

