Complex Prelim, September 1998

Do any six problems

1. Suppose f is analytic in $|z|<1$ and

$$
f\left(\frac{1}{n^{2}}\right)=\frac{1}{n}
$$

for all $n>2$. Show that f is identically zero in $|z|<1$.
2. Suppose f is entire and $|f(z)| \leq \log (1+|z|)$ for all z. Show that f is identically zero.
3. Show that the function

$$
u(x, y)=\arctan (y / x)
$$

is harmonic in the (open) right half plane. Find its harmonic conjugate there.
4. Suppose $\left\{f_{n}\right\}$ is a sequence of analytic functions in $|z|<1$. If

$$
\lim _{n \rightarrow \infty} \int_{|z|<1}\left|f_{n}(z)\right| d A(z)=0
$$

where $d A$ is area measure on $|z|<1$, show that

$$
\lim _{n \rightarrow \infty} f_{n}(z)=0
$$

for all $|z|<1$.
5. Evaluate the integeral

$$
I=\int_{C} \frac{\sin \zeta}{\zeta(\pi-6 \zeta)^{2}} d \zeta
$$

where C is the positively oriented unit circle.
6. Suppose f is entire and

$$
\left|f\left(n e^{i \theta}\right)\right| \leq \exp (n \cos \theta)
$$

for all $n \geq 1$ and $\theta \in[0,2 \pi]$. Show that $f(z)=c e^{z}$ for some constant c with $|c| \leq 1$.
7. Find a conformal map from the unit disk $|z|<1$ onto the region $|\arg z|<\pi / 3$.

