Preliminary Examination Complex Analysis January 1998

1. Suppose that f is an entire function and $f(\mathbf{C}) \cap \{w : \text{Re } w = 0\} = \emptyset$. Prove that f is constant.

2. Evaluate
$$\int_0^{\pi} \frac{d\theta}{2 + \cos\theta}$$

- 3. Give an example of a function f which is holomorphic in $\mathbb{C} \setminus \{z_0\}$ for some $z_0 \neq 0$, has an essential singularity at z_0 and is continuous in $\{z : |z| \leq |z_0|\}$. Show that the function given actually has these properties.
- 4. Find the maximum value of |g(z)| if $g(z) = \frac{z}{4z^2 1}$ and z varies over the region $\{z : |z| \ge 1\}.$
- 5. A. State carefully the Riemann Mapping Theorem.
 - B. Let $D = \{z : |z| < 1\}$, $\Omega = \{z : \text{Re } z > 0\}$ and fix $\alpha \in \Omega$. Find all conformal maps g from Ω onto D such that $g(\alpha) = 0$.
- 6. Suppose that f is a holomorphic function in an open disk D, f is continuous on \overline{D} and |f| is constant and nonzero on ∂D . Prove that f is a rational function.
- 7. Let P be a nonzero polynomial. Suppose that $\int_{|z|=r} \frac{1}{P(z)} dz \neq 0$ whenever r > 0 and the integral is defined. Show that deg P = 1.
- 8. Suppose that f is an entire function, and for r > 0 let $M_f(r) = \sup\{|f(z)| : |z| \le r\}$. Assume that $0 < \alpha < 1$ and let

$$L(\alpha) = \lim_{r \to \infty} \frac{M_f(\alpha r)}{M_f(r)}$$
.

- (a) Determine $L(\alpha)$ in the case f is a polynomial.
- (b) Show that $L(\alpha) = 0$ if f is not a polynomial.