Preliminary Examination in Complex Analysis

June 4, 1996

Notation: $\Delta = \{z \in {\bf C}: |z| < 1\}$ is the open unit disk

- 1. Let f be analytic in a nonempty connected open set U. Let F be a nonconstant entire function. Show that if F(f(z)) = 0 for all z in a neighborhood of some $z_0 \in U$, then f is constant in U.
- 2. (a) Find all constants c_1 and c_2 so that the functions

$$f_1(z) = c_1 z$$
 and $f_2(z) = \frac{c_2}{z}$

define conformal self-maps of the annulus $\mathcal{A} = \{z \in \mathbf{C} : a < |z| < b\} \ (0 < a < b \text{ are given constants}).$

- (b) Prove that there are no other conformal self-maps of \mathcal{A} .
- 3. Evaluate

$$\int_{\gamma} \frac{1 - \cos z}{(e^z - 1)\sin z} \, dz$$

where the path γ is the circle |z| = e traversed once counterclockwise.

4. For $n \in \mathbf{N}$ show that

$$\int_{\Delta} \left| \frac{1 - z^n}{1 - z} \right|^2 dx dy = \pi \left(1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} \right)$$

- 5. Let f be analytic in Δ , and let $f(\Delta) \subseteq \Delta$. Prove that if f(0) = 0 and f(a) = a for some $a \neq 0$, then f(z) = z.
- 6. Let f be analytic in Δ . Show that

$$\sup_{z \in \Delta} (1 - |z|^2) |f'(z)| \le \sup_{z \in \Delta} |f(z)|.$$

7. Let f(z) be analytic in Δ . Suppose

$$\lim_{r\uparrow 1}\int_0^{2\pi}|f(re^{i\theta})|d\theta=0\;.$$

Show that $f \equiv 0$.

8. Prove that the zero set S of $e^z + z$:

$$\mathcal{S} = \{ z \in \mathbf{C} : e^z + z = 0 \}$$

is nonempty: $S \neq \emptyset$.

<u>Bonus</u>. Prove that \mathcal{S} is an infinite set.

9. Find w = f(z) that maps Δ conformally onto the strip $|\text{Im } w| < \frac{\pi}{2}$ so that f(0) = 0and f'(0) > 0.