Preliminary Examination in Complex Analysis

June 4, 1996
Notation: $\Delta=\{z \in \mathbf{C}:|z|<1\}$ is the open unit disk

1. Let f be analytic in a nonempty connected open set U. Let F be a nonconstant entire function. Show that if $F(f(z))=0$ for all z in a neighborhood of some $z_{0} \in U$, then f is constant in U.
2. (a) Find all constants c_{1} and c_{2} so that the functions

$$
f_{1}(z)=c_{1} z \quad \text { and } \quad f_{2}(z)=\frac{c_{2}}{z}
$$

define conformal self-maps of the annulus $\mathcal{A}=\{z \in \mathbf{C}: a<|z|<b\}(0<a<b$ are given constants).
(b) Prove that there are no other conformal self-maps of \mathcal{A}.
3. Evaluate

$$
\int_{\gamma} \frac{1-\cos z}{\left(e^{z}-1\right) \sin z} d z
$$

where the path γ is the circle $|z|=e$ traversed once counterclockwise.
4. For $n \in \mathbf{N}$ show that

$$
\int_{\Delta}\left|\frac{1-z^{n}}{1-z}\right|^{2} d x d y=\pi\left(1+\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{n}\right)
$$

5. Let f be analytic in Δ, and let $f(\Delta) \subseteq \Delta$. Prove that if $f(0)=0$ and $f(a)=a$ for some $a \neq 0$, then $f(z)=z$.
6. Let f be analytic in Δ. Show that

$$
\sup _{z \in \Delta}\left(1-|z|^{2}\right)\left|f^{\prime}(z)\right| \leq \sup _{z \in \Delta}|f(z)|
$$

7. Let $f(z)$ be analytic in Δ. Suppose

$$
\lim _{r \uparrow 1} \int_{0}^{2 \pi}\left|f\left(r e^{i \theta}\right)\right| d \theta=0
$$

Show that $f \equiv 0$.
8. Prove that the zero set \mathcal{S} of $e^{z}+z$:

$$
\mathcal{S}=\left\{z \in \mathbf{C}: e^{z}+z=0\right\}
$$

is nonempty: $\mathcal{S} \neq \emptyset$.
Bonus. Prove that \mathcal{S} is an infinite set.
9. Find $w=f(z)$ that maps Δ conformally onto the strip $|\operatorname{Im} w|<\frac{\pi}{2}$ so that $f(0)=0$ and $f^{\prime}(0)>0$.

