Preliminary Examination in Complex Analysis June 6, 1994

- 1. Show that every function that is meromorphic on the extended complex plane is rational.
- 2. Show that if u is a real-valued harmonic function in a domain $\Omega \subset \mathbf{C}$ such that u^2 is harmonic in Ω , then u is constant.

3. By using complex integration verify the formula $\int_0^{2\pi} \frac{1}{a+\sin\theta} d\theta = \frac{2\pi}{\sqrt{a^2-1}}$ where a > 1.

- 4. Let $f(z) = e^z + z$ and for $0 \le \theta < 2\pi$ let $R(\theta) = \{z : z = re^{i\theta}, r \ge 0\}$. Show that $\lim_{\substack{z \to \infty \\ z \in R(\theta)}} |f(z)| = \infty$ for all θ . Does this imply that $\lim_{z \to \infty} \frac{1}{f(z)} = 0$? Explain.
- 5. Suppose that f is an analytic function in $\mathcal{H} = \{z : \text{Im } z > 0\}$ and Im f(z) > 0 for $z \in \mathcal{H}$. Show that $|f'(z)| \leq \frac{\text{Im } f(z)}{\text{Im } z}$ for $z \in \mathcal{H}$, and determine when equality holds in this inequality.
- 6. Let Δ denote the open unit disk in **C** and let $A = \{z : \frac{3}{4} < |z| < 1\}$. Show that the function $f(z) = \frac{1}{z \frac{1}{2}}$ cannot be approximated uniformly on compact subsets of A by functions analytic in Δ .
- 7. For |z| < 1 let $f(z) = \frac{1}{1-z} \exp\left[-\frac{1}{1-z}\right]$, and for $0 \le \theta < 2\pi$ let $\ell_{\theta} = \{z : z = re^{i\theta}, 0 \le r < 1\}$. Show that f is bounded on each set ℓ_{θ} . Is f bounded in Δ ? Explain.
- 8. Find all conformal automorphisms of the annulus $\{z : 1 < |z| < 2\}$.