Preliminary Examination in Complex Analysis

June 6, 1994

1. Show that every function that is meromorphic on the extended complex plane is rational.
2. Show that if u is a real-valued harmonic function in a domain $\Omega \subset \mathbf{C}$ such that u^{2} is harmonic in Ω, then u is constant.
3. By using complex integration verify the formula $\int_{0}^{2 \pi} \frac{1}{a+\sin \theta} d \theta=\frac{2 \pi}{\sqrt{a^{2}-1}}$ where $a>1$.
4. Let $f(z)=e^{z}+z$ and for $0 \leq \theta<2 \pi$ let $R(\theta)=\left\{z: z=r e^{i \theta}, r \geq 0\right\}$. Show that $\lim _{\substack{z \rightarrow \infty \\ z \in R(\theta)}}|f(z)|=\infty$ for all θ. Does this imply that $\lim _{z \rightarrow \infty} \frac{1}{f(z)}=0$? Explain.
5. Suppose that f is an analytic function in $\mathcal{H}=\{z: \operatorname{Im} z>0\}$ and $\operatorname{Im} f(z)>0$ for $z \in \mathcal{H}$. Show that $\left|f^{\prime}(z)\right| \leq \frac{\operatorname{Im} f(z)}{\operatorname{Im} z}$ for $z \in \mathcal{H}$, and determine when equality holds in this inequality.
6. Let Δ denote the open unit disk in \mathbf{C} and let $A=\left\{z: \frac{3}{4}<|z|<1\right\}$. Show that the function $f(z)=\frac{1}{z-\frac{1}{2}}$ cannot be approximated uniformly on compact subsets of A by functions analytic in Δ.
7. For $|z|<1$ let $f(z)=\frac{1}{1-z} \exp \left[-\frac{1}{1-z}\right]$, and for $0 \leq \theta<2 \pi$ let $\ell_{\theta}=\{z: z=$ $\left.r e^{i \theta}, 0 \leq r<1\right\}$. Show that f is bounded on each set ℓ_{θ}. Is f bounded in Δ ? Explain.
8. Find all conformal automorphisms of the annulus $\{z: 1<|z|<2\}$.
