Ph.D. Preliminary Examination

Complex Analysis

September 3, 1993

Notations.

- (a) $\Delta = \{z \in \mathbf{C} : |z| < 1\}$ is the open unit disk.
- (b) $\overline{\Delta} = \{z \in \mathbf{C} : |z| \le 1\}$ is the closed unit disk.
- (c) $\overline{\mathbf{C}} = \mathbf{C} \cup \{\infty\}$ is the extended complex plane.
- 1. Let $f : \Delta \to \Delta$ be analytic. Suppose there exists $z_0 \in \Delta$ with $f(z_0) = z_0$ and $f'(z_0) = 1$. Prove that $f(z) \equiv z$.
- 2. Consider the elementary functions:
 - (1) $\cos: \mathbf{C} \mapsto \mathbf{C};$
 - (2) $\tan : \mathbf{C} \mapsto \overline{\mathbf{C}}.$
 - A. Is tan continuous on \mathbf{C} ?
 - B. Determine
 - (a) the range of $\cos z$;
 - (b) the range of tan;
 - (c) $\cos^{-1}\{\frac{5}{4}\};$
 - (d) $\tan^{-1}{\infty}$.
- 3. Let L denote the line segment joining -i and i, and let $\Omega = \overline{\mathbb{C}} \setminus L$.
 - A. Map Ω conformally onto Δ .
 - B. Deduce that if f is an entire function such that $f(\mathbf{C}) \cap L = \phi$ then f(z) is constant.

4. Let z_0 be a simple pole of a function f(z).

A. Prove

$$\lim_{r \to 0^+} \int_{\gamma_r} f(z) dz = (b-a)i \operatorname{Res}[f, z_0] ,$$

where

$$\gamma_r = \{z_0 + re^{it} : a \le t \le b\}$$
.

B. Use this result to evaluate $\int_{-\infty}^{\infty} \frac{\sin x}{x} dx$.

5. Suppose f is a nonconstant analytic function in Δ . Show that the function

$$M(r) = \max_{|z|=r} |f(z)|, \ 0 < r < 1 \ ,$$

is strictly increasing.

- 6. Let $f(z) = \exp(-\frac{1+z}{1-z})$.
 - A. Show that f is bounded on Δ .
 - B. Determine the range of f on Δ .
- 7. How many zeros has

$$P(z) = 1 + 2z^4 + \frac{7}{10}z^{10}$$

in Δ ? What are the multiplicities of these zeros?

8. Suppose that the functions f_n are holomorphic in a domain D, none of the functions f_n has a zero in D, and $\{f_n\}$ converges to f uniformly on compact subsets of D. Show that either f has no zeros in D or $f \equiv 0$ in D.