Complex Analysis Prelim. (Jan. 2010)

In the following, \mathbb{D} stands for the open unit disk, \mathbb{C} stands for the complex plane.

1. Let f be an entire function and let $g(z)=\overline{f(\bar{z})}$. Show that g is entire.
2. Use contour integration to derive the formula

$$
\int_{0}^{\infty} \frac{d x}{\left(x^{2}+a^{2}\right)\left(x^{2}+b^{2}\right)}=\frac{\pi}{2 a b(a+b)}, \quad a, b>0
$$

3. Determine the set in \mathbb{C} on which

$$
\sum_{n=0}^{\infty}\left(\frac{1-e^{z}}{1+e^{z}}\right)^{n}
$$

converges.
4. Let f be a holomorphic function on \mathbb{D}.
(a) Compute the Jacobian of the map f (regarding f as a map from \mathbf{R}^{2} to \mathbf{R}^{2}), and express it in terms of f or f^{\prime}.
(b) Give a formula for the area of $f(\mathbb{D})$ in terms of the Taylor coefficients of f.
5. Let f be nonconstant, analytic and satisfy $|f(z)| \leq M$ on \mathbb{D}. Let $f(0)=a_{0}$. Show that f has no zeros in the set $\left\{z:|z|<\left|a_{0}\right| / M\right\}$.
6. Let $A=\{z: 3 / 4<|z|<1\}$. Let $f_{1}(z)=\frac{1}{2 z-1}$ and $f_{2}(z)=\frac{1}{2 z-3}$. Is it possible to uniformly approximate f_{1} or f_{2} on A by functions analytic on \mathbb{D} ? Justify your answers.
7. Determine a linear fractional transformation L that maps the interval $[-1,1]$ onto $\left\{e^{i \theta}: 0 \leq \theta \leq \pi\right\}$ and such that $L(-i)=\infty$.
8. (a) State Rouche's Theorem.
(b) Use Rouche's Theorem to prove Hurwitz's Theorem, which states: If, in a region Ω, the functions $\left\{f_{n}\right\}$ are analytic, have no zeros and converge uniformly to f on compact subsets, then either f is the constant 0 or f has no zeros in Ω.
9. (a) Suppose an entire function maps the real line onto the circle $C=\{z:|z|=R\}$, $R>0$. Show that $f(z) \neq 0$ for all $z \in \mathbb{C}$.
(b) Is it true if the real line is replaced by an arbitrary line?
(c) Is it possible for an entire function to map a circle onto a line?

