PhD PRELIM EXAM IN COMPLEX ANALYSIS August 2009

Let \mathbb{C} denote the complex plane and $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$ denote the unit disk. A *holomorphic* function is just another name for a (complex) *analytic* function.

- 1. Find ALL values of i^i and \sqrt{i} in the form x + iy or $(x, y), x, y \in \mathbb{R}$.
- 2. Find the Laurent series of the function

$$f(z) = \frac{z}{(z-1)(z-2)}$$

in the following regions: (1) 0 < |z - 1| < 1, (2) |z - 2| > 1.

3. Let f(z) be a holomorphic function in \mathbb{D} which extends continuously to $\overline{\mathbb{D}}$ and dA be area measure. Show that

$$f(z) = \frac{1}{\pi} \int_{\overline{D}} \frac{f(w) \, dA(w)}{(1 - z \, \overline{w})^2}$$

for all $z \in \mathbb{D}$.

- 4. Suppose f(z) is an entire function and the real part of f(z) is never zero. Show that f must be a constant.
- 5. a) State the Schwarz Lemma for \mathbb{D} and prove it, assuming power series expansion and maximum modulus principle.

b) Show that every $h \in Aut(\mathbb{D})$ (i.e. biholomorphic map of \mathbb{D} onto itself) is of the form

$$h(z) = e^{i\theta} \frac{z-a}{1-\overline{a}\,z}$$

for some $\theta \in [0, 2\pi]$ and $a \in \mathbb{D}$. You may use the Schwarz Lemma, but must prove all other assertions you make.

6. Let $G \subset \mathbb{C}$ be open and simply connected, and $A \subset G$ a discrete subset of G. Prove that a holomorphic function f on $G \setminus A$ has an antiderivative on $G \setminus A$ (i.e., there is F holomorphic on $G \setminus A$ with F' = f on $G \setminus A$) if and only if $res_a(f) = 0$ for all $a \in A$.

- 7. Let f(z) be a holomorphic function in \mathbb{D} which extends continuously to $\overline{\mathbb{D}}$ which satisfies |f(z)| < 1 for all $z \in \partial \mathbb{D}$. Show that there is exactly one point $w \in \mathbb{D}$ such that f(w) = w.
- 8. Let $\mathcal{F} = \{f : f(z) = \sum_{n=0}^{\infty} a_n z^n$, with $|a_n| \leq n$ for all $n = 0, 1, 2, ...\}$. a) Prove that every $f \in \mathcal{F}$ defines a holomorphic function on \mathbb{D} .

b) Prove that \mathcal{F} is a compact subset of the set of all holomorphic functions on \mathbb{D} in the topology of uniform convergence on compact subsets of \mathbb{D} .

9. Let $\Gamma = \{ \omega \in \mathbb{C} : \omega = m + in \text{ for all } m, n \in \mathbb{Z} \}$. Carefully prove that the series

$$P(z) = \frac{1}{z^2} + \sum_{\substack{\omega \in \Gamma \\ \omega \neq 0}} \left(\frac{1}{(z-\omega)^2} - \frac{1}{\omega^2} \right)$$

defines a meromorphic function on \mathbb{C} . Identify the region where P(z) is holomorphic.