Complex Analysis Prelim. (Jan. 2009)

In the following, \mathbb{D} stands for the open unit disk, \mathbb{C} stands for the complex plane.

Part 1. Do all of the following problems.

1. Show that a complex polynomial of degree $n>0$ has precisely n zeros in the complex plane.
2. a) Find all solutions of the equation $z^{6}+1=0$.
b) Let $g(z)=z^{2} \bar{z}$. Find all points where g is complex differentiable.
3. Find an explicit conformal map from the region $G=\mathbb{D} \backslash\{0 \leq x<1\}$ onto the unit disc D.
4. (a) State and prove the Liouville's Theorem.
(b) Let V be the set of entire functions f such that $|f(z)| \leq C|z|^{5}$ for some constant C (depending probably on f), determine what type of functions are in V and find the dimension of V.
5. Use residue theory to compute

$$
\int_{-\pi}^{\pi} \frac{d \theta}{1+\sin ^{2} \theta}
$$

Part 2. Do at least two of the following problems.
6. Let $f(z)=u(z)+i v(z)$ be holomorphic in a neighborhood of the closed unit disc \mathbb{D}, where u and v are the real and, respectively, the imaginary part of f. Prove the Schwarz formula:

$$
f(z)=\frac{1}{2 \pi} \int_{0}^{2 \pi} u\left(e^{i \theta}\right) \frac{e^{i \theta}+z}{e^{i \theta}-z} d \theta+i v(0), \quad|z|<1
$$

7. Find all entire functions f such that $|f(z)|=1$ when $|z|=1$.
8. Give as simple as possible a (product) formula for an entire function F which has a zero of order 1 at each point $c_{n}=\sqrt{n}, n=1,2,3, \ldots \ldots$. and no other zero in \mathbb{C}.
9. Find an "explicit" series expansion for a meromorphic function f on \mathbb{C} which has a simple pole with residue n at each positive integer $n=1,2,3, \ldots \ldots$, and is holomorphic at all other points. Be sure to prove all relevant convergence statements.
10. Let $V=\left\{f \in \mathcal{O}(\mathbb{D}): f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}\right.$ with $\left|a_{n}\right| \leq n^{2}$ for all $\left.n\right\}$. Prove that there exists $h \in V$, such that $\left|f^{\prime}\left(\frac{1}{2}\right)\right| \leq\left|h^{\prime}\left(\frac{1}{2}\right)\right|$ for all $f \in V$.
