COMPLEX ANALYSIS Ph.D. PRELIMINARY EXAM June 2008

D denotes the open unit disc $\{z \in \mathbb{C}:|z|<1\}$. Holomorphic functions are also called analytic functions.

Make sure to show all your work!

1. a) Suppose the power series $\sum_{n=0}^{\infty} a_{n} z^{n}$ converges for all $z \in D$. Prove that for $0<r<1$, the series converges absolutely and uniformly on $\{|z| \leq r\}$.
b) Show that for any positive integer k the power series $\sum_{n=1}^{\infty} n^{k} z^{n}$ has radius of convergence 1 and that its limit equals a rational function on D.
2. How many zeroes does $P(z)=1+3 z^{8}-z^{16}$ have in the unit disc D ? Determine the multiplicities of these zeroes!
3. Evaluate
a) $\int_{\gamma}\left(z^{2}+3 \bar{z}\right) d z$, where γ is the upper half of the unit circle from -1 to +1 .
b) $\oint_{|z|=4} \frac{1}{\sin z} d z$, where the circle is traversed once counterclockwise.
c)

$$
\int_{-\infty}^{\infty} \frac{\cos (\alpha x) d x}{1+x^{2}}, \text { where } \alpha \text { is real. }
$$

4. Suppose h is a holomorphic function on D which satisfies $|h(z)| \leq \frac{1}{1-|z|}$ for all $z \in D$. Show that $\left|h^{\prime}(0)\right| \leq 4$.
5. Let g be the holomorphic function defined in a neighborhood of i as the branch of $\sqrt{1-z^{2}}$ which satisfies $g(i)=\sqrt{2}$.
a) Show that g can be continued analytically along any curve in $G=\mathbb{C} \backslash\{-1,1\}$.
b) Can g be continued analytically to define a holomorphic function on G ? Why?
c) Show that the analytic continuation of g leads to a holomorphic function on $\Omega=\mathbb{C} \backslash\{x \in \mathbb{R}:-1 \leq x \leq 1\}$.
6. Let $\left\{f_{n}(z), n=1,2, \ldots\right\}$ be a uniformly bounded sequence of holomorphic functions on D (i.e, there is $C<\infty$ such that $\left|f_{n}(z)\right| \leq C$ for all $z \in D$ and n). Suppose there is a point $a \in D$ such that for each $k=0,1,2, \ldots$ one has $\lim _{n \rightarrow \infty} f_{n}^{(k)}(a)=0 .\left(f_{n}^{(k)}\right.$ is the kth derivative of f_{n}.) Show that $f_{n} \rightarrow 0$ uniformly on each compact subset of D.
7. Characterize all holomorphic functions $f(z)$ in D such that $|f(z)| \leq|\cos (1 / z)|$ for all $z \in D$.
8. a) Prove that the infinite product

$$
P=\prod_{n=1}^{\infty}\left(1+\frac{1}{n^{2}}\right)
$$

converges.
b) Prove that value of P defined in a) equals

$$
\frac{e^{\pi}-e^{-\pi}}{2 \pi}
$$

(Hint: You may use an appropriate formula for the sine function.)
9. Find a conformal map f from the strip $S=\{z:|\operatorname{Re} z|<\pi\}$ onto the unit disc D which satisfies $f(0)=0$. (You may leave the answer as a composition of explicit functions.)
10. Let the complex numbers ω_{1} and ω_{2} be linearly independent over \mathbb{R}, and let $L=\left\{\omega=m \omega_{1}+n \omega_{2}: m, n \in \mathbb{Z}\right\}$.
a) Carefully prove that the series

$$
F(z)=\frac{1}{z^{2}}+\sum_{0 \neq \omega \in L}\left[\frac{1}{(z-\omega)^{2}}-\frac{1}{\omega^{2}}\right]
$$

defines a meromorphic function on \mathbb{C}, and describe the poles and their principal parts.
b) Prove that the function F defined in a) has periods L, i.e., for any $\omega \in L$ one has

$$
F(z+\omega)=F(z) \text { for all } z \notin L
$$

(Hint: Take derivatives!)

