Complex Prelim, January 2008

1. Suppose $|a|<1$ and $r \in(0,1)$. Show that the set of complex numbers z satisfying

$$
\left|\frac{z-a}{1-\bar{a} z}\right|=r
$$

is a circle in the complex plane. Find the center and radius of this circle.
2. Suppose $f(z)$ is analytic in $|z|<1$ and $\left(1-|z|^{2}\right) f(z)$ is bounded there. Use Cauchy's integral formula to show that $\left(1-|z|^{2}\right)^{2} f^{\prime}(z)$ is also bounded in $|z|<1$.
3. Let Ω be the complex plane with the interval $[0, \infty)$ on the real axis removed. Let $L(z)$ be a branch of the logarithm on Ω with $L(-1)=-\pi$.
(1) Find $L\left(e^{\pi i / 2}\right)$ and $L(1+i)$.
(2) Find z and w in Ω such that $L(z w) \neq L(z)+L(w)$.
4. Let $f(z)=1 /[z(z+1)]$. Find the Laurent series of f in each of the following regions.
(1) $0<|z|<1$.
(2) $|z+1|<1$.
(3) $|z+1|>1$.
5. Show that a bounded meromorphic function on the complex plane is necessarily a constant.
6. Evaluate the integral

$$
\int_{|z|=\pi}\left(\frac{1-z^{2}}{1+z^{2}}\right)^{2} d z
$$

7. How many analytic functions $f(z)$ are there in Ω with the property that $f(z)^{2}+3 i f(z)+4$ is identically zero on Ω ? Here Ω is the whole complex plane with the two coordinate axes removed. You must justify your answer.
8. Suppose $\left\{f_{n}(z)\right\}$ is a sequence of analytic functions in $|z|<1$ with $\left|f_{n}(z)\right| \leq 2$ for all n and all $|z|<1$. If

$$
\lim _{n \rightarrow \infty} f_{n}(z)=f(z)
$$

pointwise in $|z|<1$. Show that $f(z)$ is analytic in $|z|<1$ and

$$
\lim _{n \rightarrow \infty} f_{n}^{\prime}(z)=f^{\prime}(z)
$$

uniformly on every compact subset of $|z|<1$.
9. If an entire function $f(z)$ satisfies

$$
|f(z)| \leq \frac{1+|z|}{1+\sqrt{|z|}}
$$

for all z, show that $f=c$, where c is a constant with $|c| \leq 2(\sqrt{2}-1)$.
10. Suppose $u(z)$ is a complex-valued harmonic function in $|z|<1$ and

$$
\lim _{|z| \rightarrow 1^{-}} u(z)=0
$$

(1) Give the $\epsilon-\delta$ definition for the above limit.
(2) Show that $u(z)$ is identitically zero in $|z|<1$.

