Complex Analysis Ph.D. Prelim

January 17, 2007

1. Show that $u=e^{x}(x \cos y-y \sin y)$ is harmonic in the complex plane in 2 ways:
A. From the definition of harmonic.
B. By exhibiting an entire function f such that $u=\operatorname{Re} f$.
2. A. State Schwarz's Lemma.
B. State the Riemann Mapping Theorem.
C. Prove uniqueness in the Riemann Mapping Theorem.
3. Let a and b be real numbers with $a>b>1$.
A. Show that b^{z} can be defined as an entire function such that $b^{0}=1$.
C. Let n be a positive integer. Show that the equation $b^{z}=a z^{n}$ has n solutions in $|z|<1$.
4. Let $C_{\mathcal{E}}=\left\{\mathcal{E} e^{i \theta}: 0 \leq \theta \leq \pi\right\}$ denote the semicircle traversed clockwise.
A. Calculate $\int_{C_{\mathcal{E}}} \frac{1}{z} d z$.
B. Determine $\lim _{\mathcal{E} \rightarrow 0} \int_{C_{\mathcal{E}}} \frac{1}{z\left(z^{2}+1\right)} d z$.
C. Show that $\lim _{\mathcal{E} \rightarrow 0} \int_{C_{\mathcal{E}}} \frac{e^{i z}}{z\left(z^{2}+1\right)} d z=-\pi i\left[\right.$ Consider $e^{i z}-1$.]
5. Map the region bounded by the circles $|z|=1$ and $|z+1|=2$ conformally onto the open unit disk.
6. A. Determine the region of convergence of the series

$$
1+\frac{2 z}{1+z}+\frac{3 z^{2}}{(1+z)^{2}}+\ldots+\frac{(n+1) z^{n}}{(1+z)^{n}}+\ldots
$$

B. By summing the series show that the series actually represents a polynomial in its region of a convergence.
7. Let Ω be a bounded domain. Let \mathcal{F} be the family of functions which are analytic in Ω and map Ω into itself.
A. Show that \mathcal{F} has locally bounded derivatives.
B. Is \mathcal{F} closed in the topology of uniform convergence on compact subsets of Ω ? Justify your answer.
8. Let $I=\int_{-\infty}^{\infty} \frac{\sin x}{x\left(x^{2}+1\right)} d x$.
A. Explain why I is absolutely convergent.
B. Incorporate the semicircle and the result from Problem 4 in a contour integration argument to evaluate I.

