Complex Analysis Ph.D. Prelim January 17, 2007

- 1. Show that $u = e^x(x \cos y y \sin y)$ is harmonic in the complex plane in 2 ways:
 - A. From the definition of harmonic.
 - B. By exhibiting an entire function f such that u = Ref.
- 2. A. State Schwarz's Lemma.
 - B. State the Riemann Mapping Theorem.
 - C. Prove uniqueness in the Riemann Mapping Theorem.
- 3. Let a and b be real numbers with a > b > 1.
 - A. Show that b^z can be defined as an entire function such that $b^0 = 1$.
 - C. Let n be a positive integer. Show that the equation $b^z = a \ z^n$ has n solutions in |z| < 1.
- 4. Let $C_{\mathcal{E}} = \{\mathcal{E}e^{i\theta} : 0 \le \theta \le \pi\}$ denote the semicircle traversed <u>clockwise</u>. A. Calculate $\int_{C_{\mathcal{E}}} \frac{1}{z} dz$. B. Determine $\lim_{\mathcal{E}\to 0} \int_{C_{\mathcal{E}}} \frac{1}{z(z^2+1)} dz$. C. Show that $\lim_{\mathcal{E}\to 0} \int_{C_{\mathcal{E}}} \frac{e^{iz}}{z(z^2+1)} dz = -\pi i$ [Consider $e^{iz} - 1$.]
- 5. Map the region bounded by the circles |z| = 1 and |z + 1| = 2 conformally onto the open unit disk.
- 6. A. Determine the region of convergence of the series

$$1 + \frac{2z}{1+z} + \frac{3z^2}{(1+z)^2} + \ldots + \frac{(n+1)z^n}{(1+z)^n} + \ldots$$

B. By summing the series show that the series actually represents a polynomial in its region of a convergence.

- 7. Let Ω be a <u>bounded</u> domain. Let \mathcal{F} be the family of functions which are analytic in Ω and map Ω into itself.
 - A. Show that \mathcal{F} has locally bounded derivatives.
 - B. Is \mathcal{F} closed in the topology of uniform convergence on compact subsets of Ω ? Justify your answer.

8. Let
$$I = \int_{-\infty}^{\infty} \frac{\sin x}{x(x^2+1)} dx.$$

- A. Explain why I is absolutely convergent.
- B. Incorporate the semicircle and the result from Problem 4 in a contour integration argument to evaluate I.