Complex Prelim, January 2006

1. Suppose

$$
p(z)=\sum_{n=0}^{N} a_{n} z^{n}
$$

is a complex polynomial. Show that

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|p\left(e^{i \theta}\right)\right|^{2} d \theta=\sum_{n=0}^{N}\left|a_{n}\right|^{2}
$$

2. If u is a harmonic function defined on the complex plane and f is entire, show that $u \circ f$ is harmonic.
3. Construct a conformal mapping from the first quadrant of the complex plane onto the horizontal strip $|y|<1$.
4. If $f(z)$ is an entire function and its real part is bounded from below, show that f must be constant.
5. Find the Laurent expansion of the function

$$
f(z)=\frac{2}{z(z-1)(z-2)}
$$

in the annulus $1<|z|<2$.
6. Suppose $f(z)$ is entire and $p(z)$ is a polynomial. If $|f(z)| \leq|p(z)|$ for all z, show that there exists a constant c such that $f(z)=c p(z)$.
7. Characterize all anaytic functions $f(z)$ in $|z|<1$ such that $|f(z)| \leq|\sin (1 / z)|$ for all $0<|z|<1$.
8. Suppose each $f_{n}(z)$ is analytic in the unit disk $|z|<1$. If $\sum\left|f_{n}(z)\right|$ converges uniformly for $|z|<1$, show that $\sum\left|f_{n}^{\prime}(z)\right|$ converges uniformly for $|z| \leq r$, where $r \in(0,1)$.
9. If $f(z)$ is analytic in $|z|<1$ and $f^{\prime}(0) \neq 0$, prove the existence of an analytic function $g(z)$ such that $f\left(z^{n}\right)=f(0)+g(z)^{n}$ in a neighborhood of the origin.
10. If $f(z)$ is analytic in $|z|<1$ and $|f(z)| \leq 1$ for all $|z|<1$, show that $\left(1-|z|^{2}\right)\left|f^{\prime}(z)\right| \leq 1$ for all $|z|<1$.

